Top Banner

of 13

IKA10N60T Data Sheets

Apr 02, 2018

Download

Documents

tarpino
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 IKA10N60T Data Sheets

    1/13

  • 7/27/2019 IKA10N60T Data Sheets

    2/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 2 Rev. 2 Oct-04

    Thermal Resistance

    Parameter Symbol Conditions Max. Value Unit

    Characteristic

    IGBT thermal resistance,

    junction case

    Rt h J C TO-220 FullPak 5

    Diode thermal resistance,

    junction case

    Rt h J C D TO-220 FullPak 5.8

    Thermal resistance,

    junction ambient

    Rt h J A TO-220 FullPak 80

    K/W

    Electrical Characteristic, at Tj = 25 C, unless otherwise specified

    ValueParameter Symbol Conditions

    min. typ. max.Unit

    Static CharacteristicCollector-emitter breakdown voltage V( B R ) C E S VG E=0V, IC=0.2mA 600 - -

    Collector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=10A

    Tj=25C

    Tj=175C

    -

    -

    1.5

    1.8

    2.05

    Diode forward voltage VF VG E=0V, IF=10A

    Tj=25C

    Tj=175C

    -

    -

    1.6

    1.6

    2.05

    -

    Gate-emitter threshold voltage VG E ( t h ) IC=0.3mA,VCE=VG E 4.1 4.6 5.7

    V

    Zero gate voltage collector current IC E S VC E=600V ,VG E=0V

    Tj=25C

    Tj=175C

    -

    -

    -

    -

    40

    1000

    A

    Gate-emitter leakage current IG E S VC E=0V,VGE =20V - - 100 nA

    Transconductance gf s VC E=20V, IC=15A - 6 - S

    Integrated gate resistor RG i n t none

    Dynamic Characteristic

    Input capacitance Ci s s - 551 -

    Output capacitance Co s s - 40 -

    Reverse transfer capacitance Cr ss

    VC E=25V,

    VG E=0V,

    f=1MHz - 17 -

    pF

    Gate charge QG ate VC C=480V, IC=10A

    VG E=15V

    - 62 - nC

    Internal emitter inductance

    measured 5mm (0.197 in.) from case

    LE TO-2 20-3 -31 - 7 - nH

    Short circuit collector current1)

    IC ( S C ) VG E=15V,tS C5sVC C = 400V,

    Tj = 25C

    - 100 - A

    1)Allowed number of short circuits: 1s.

  • 7/27/2019 IKA10N60T Data Sheets

    3/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 3 Rev. 2 Oct-04

    Switching Characteristic, Inductive Load, at Tj=25 C

    ValueParameter Symbol Conditions

    min. typ. max.Unit

    IGBT CharacteristicTurn-on delay time td ( o n ) - 12 -

    Rise time tr - 8 -

    Turn-off delay time td ( o f f ) - 215 -

    Fall time tf - 38 -

    ns

    Turn-on energy Eo n - 0.16 -

    Turn-off energy Eo f f - 0.27 -

    Total switching energy Et s

    Tj=25C, VC C=400V, IC=10A,VG E=0/15V,

    RG=23 ,

    L2 )

    =60nH,

    C2 )

    =40pFEnergy losses includetail and diodereverse recovery. - 0.43 -

    mJ

    Anti-Parallel Diode Characteristic

    Diode reverse recovery time tr r - 115 - ns

    Diode reverse recovery charge Q r r - 0.38 - CDiode peak reverse recovery current Ir r m - 10 - A

    Diode peak rate of fall of reverserecovery current during tb

    dir r/dt

    Tj=25C,

    VR=400V, IF=10A,diF/dt=880A/ s

    - 680 - A/s

    Switching Characteristic, Inductive Load, at Tj=175 C

    ValueParameter Symbol Conditions

    min. typ. max.Unit

    IGBT Characteristic

    Turn-on delay time td ( o n ) - 10 -

    Rise time tr - 11 -

    Turn-off delay time td ( o f f ) - 233 -

    Fall time tf - 63 -

    ns

    Turn-on energy Eo n - 0.26 -

    Turn-off energy Eo f f - 0.35 -

    Total switching energy Et s

    Tj=175C, VC C=400V, IC=10A,

    VG E=0/15V,RG= 23

    L1 )

    =60nH,

    C1 )

    =40pFEnergy losses includetail and diodereverse recovery. - 0.61 -

    mJ

    Anti-Parallel Diode Characteristic

    Diode reverse recovery time tr r - 200 - ns

    Diode reverse recovery charge Q r r - 0.92 - C

    Diode peak reverse recovery current Ir r m - 13 - A

    Diode peak rate of fall of reverse

    recovery current during tb

    dir r/dt

    Tj=175C

    VR=400V, IF=10A,

    diF/dt=880A/ s

    - 390 - A/s

    2)Leakage inductance Land Stray capacity C due to dynamic test circuit in Figure E.

    1)Leakage inductance Land Stray capacity C due to dynamic test circuit in Figure E.

  • 7/27/2019 IKA10N60T Data Sheets

    4/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 4 Rev. 2 Oct-04

    IC,COLLECTORCURRENT

    10Hz 100Hz 1kHz 10kHz 100kHz

    0A

    5A

    10 A

    15 A

    20 A

    25 A

    30 AT

    C=110CTC=80C

    IC,COLLECTORCURRENT

    1V 10V 100V 1000V

    0,1A

    1A

    10A

    50s

    500s

    5ms

    DC

    tp=1s

    20s

    100ms

    f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 1. Collector current as a function ofswitching frequency

    (Tj 175C, D = 0.5, VCE = 400V,

    VGE = 0/+15V, RG = 23)

    Figure 2. Safe operating area

    (D = 0, TC = 25C, Tj175C;VGE=15V)

    Ptot,POWERDISSIPATION

    25C 50C 75C 100C 125C 150C0W

    5W

    10 W

    15 W

    20 W

    25 W

    30 W

    IC,COLLECTORCURRENT

    25C 75C 125C0A

    2A

    4A

    6A

    8A

    10A

    TC, CASE TEMPERATURE TC, CASE TEMPERATURE

    Figure 3. Power dissipation as a function ofcase temperature

    (Tj 175C)

    Figure 4. Collector current as a function ofcase temperature

    (VGE 15V, Tj 175C)

    Ic

    Ic

  • 7/27/2019 IKA10N60T Data Sheets

    5/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 5 Rev. 2 Oct-04

    IC,COLLECTORCURRENT

    0V 1V 2V 3V 4V

    0A

    5A

    10 A

    15 A

    20 A

    25 A

    30 A

    15 V

    6V

    8V

    10 V

    12 V

    VGE=20V

    IC,COLLECTORCURRENT

    0V 1V 2V 3V 4V 5V

    0A

    5A

    10 A

    15 A

    20 A

    25 A

    30 A

    15 V

    6V

    8V

    10 V

    12 V

    VGE=20V

    VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 5. Typical output characteristic(Tj = 25C)

    Figure 6. Typical output characteristic(Tj = 175C)

    IC,COLLECTORCURRENT

    0V 2V 4V 6V 8V 10V0A

    5A

    10A

    15A

    20A

    25A

    25C

    TJ=175C

    VCE(sat),

    COLLECTOR-EMITTSATURATIONVOLTAGE

    -50C 0C 50C 100C 150C0,0V

    0,5V

    1,0V

    1,5V

    2,0V

    2,5V

    3,0V

    IC=10A

    IC=20A

    IC=5 A

    VGE, GATE-EMITTERVOLTAGE TJ, JUNCTION TEMPERATURE

    Figure 7. Typical transfer characteristic(VCE=20V)

    Figure 8. Typical collector-emittersaturation voltage as a function ofjunction temperature(VGE = 15V)

  • 7/27/2019 IKA10N60T Data Sheets

    6/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 6 Rev. 2 Oct-04

    t,SWITCHINGTIMES

    0A 5A 10A 15A 20A

    1n s

    10ns

    100ns

    tr

    td(on)

    tf

    td(off)

    t,SWITCHINGTIMES

    10 20 30 40 50

    1n s

    10ns

    100ns

    tr

    td(on)

    tf

    td(off)

    IC, COLLECTOR CURRENT RG, GATE RESISTOR

    Figure 9. Typical switching times as afunction of collector current(inductive load, TJ=175C,VCE = 400V, VGE = 0/15V, RG = 23,Dynamic test circuit in Figure E)

    Figure 10. Typical switching times as afunction of gate resistor(inductive load, TJ = 175C,VCE= 400V, VGE = 0/15V, IC = 10A,Dynamic test circuit in Figure E)

    t,SWITCHINGTIMES

    25C 50C 75C 100C 125C 150C

    1n s

    10ns

    100ns

    tr

    td(on)

    tf

    td(off)

    VGE(th),GATE-EMITTTRSHOLDVOLTAGE

    -50C 0C 50C 100C 150C0V

    1V

    2V

    3V

    4V

    5V

    6V

    7V

    min.

    typ.max.

    TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE

    Figure 11. Typical switching times as afunction of junction temperature(inductive load, VCE = 400V,VGE = 0/15V, IC = 10A, RG=23,Dynamic test circuit in Figure E)

    Figure 12. Gate-emitter threshold voltage asa function of junction temperature(IC = 0.3mA)

  • 7/27/2019 IKA10N60T Data Sheets

    7/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 7 Rev. 2 Oct-04

    E,SWITCHINGENERGYLOSSES

    0A 5A 10A 15A0,0mJ

    0,2mJ

    0,4mJ

    0,6mJ

    0,8mJ

    1,0mJE

    ts*

    Eoff

    *) Eon

    an d Etsinclude losses

    due to diode recovery

    Eon

    *

    E,SWITCHINGENERGYLOSSES

    10 20 30 40 500,0 mJ

    0,2 mJ

    0,4 mJ

    0,6 mJ

    0,8 mJ

    Ets*

    Eon

    *

    *) Eon

    and Ets

    include losses

    due to diode recovery

    Eoff

    IC, COLLECTOR CURRENT RG, GATE RESISTOR

    Figure 13. Typical switching energy lossesas a function of collector current(inductive load, TJ = 175C,VCE = 400V, VGE = 0/15V, RG = 23,Dynamic test circuit in Figure E)

    Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, TJ = 175C,VCE = 400V, VGE = 0/15V, IC = 10A,Dynamic test circuit in Figure E)

    E,SWITCHINGENERGYLOSSES

    50C 100C 150C0,0mJ

    0,1mJ

    0,2mJ

    0,3mJ

    0,4mJ

    0,5mJ

    0,6mJ

    Ets*

    Eon

    *

    *) Eon

    and Ets

    include losses

    due to diode recovery

    Eoff

    E,SWITCHINGENERGYLOSSES

    300V 350V 400V 450V 500V 550V0,0mJ

    0,2mJ

    0,4mJ

    0,6mJ

    0,8mJ

    Ets*

    Eon

    *

    *) Eon

    an d Ets

    include losses

    due to diode recovery

    Eoff

    TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 15. Typical switching energy lossesas a function of junctiontemperature(inductive load, VCE = 400V,VGE = 0/15V, IC = 10A, RG = 23,Dynamic test circuit in Figure E)

    Figure 16. Typical switching energy lossesas a function of collector emittervoltage(inductive load, TJ = 175C,VGE = 0/15V, IC = 10A, RG = 23,Dynamic test circuit in Figure E)

  • 7/27/2019 IKA10N60T Data Sheets

    8/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 8 Rev. 2 Oct-04

    VGE,GATE-EMITTERVOLTAGE

    0nC 20nC 40nC 60nC0V

    5V

    10 V

    15 V

    480V120V

    c,CAPACITANCE

    0V 10V 20V

    10pF

    100pF

    1nF

    Crss

    Coss

    Ciss

    QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE

    Figure 17. Typical gate charge(IC=10 A)

    Figure 18. Typical capacitance as a functionof collector-emitter voltage(VGE=0V, f= 1 MHz)

    IC(sc),shortcircuitCOLLECTORCURREN

    T

    12V 14V 16V 18V0A

    25A

    50A

    75A

    100A

    125A

    150A

    tSC,SHORTCIRCUITWITHSTANDTIME

    10V 11V 12V 13V 14V0 s

    2 s

    4 s

    6 s

    8 s

    10s

    12s

    VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITETR VOLTAGE

    Figure 19. Typical short circuit collectorcurrent as a function of gate-emitter voltage

    (VCE 400V, Tj 150C)

    Figure 20. Short circuit withstand time as afunction of gate-emitter voltage(VCE=600V, start at TJ=25C,TJmax

  • 7/27/2019 IKA10N60T Data Sheets

    9/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 9 Rev. 2 Oct-04

    ZthJC,TRANSIENTTHERMALRESISTANCE

    10s 100s 1ms 10ms100ms 1s 10s

    -2K/W

    -1K/W

    00K/W

    single pulse

    0.01

    0.02

    0.05

    0.1

    0.2

    D=0.5

    ZthJC,TRANSIENTTHERMALRESISTANCE

    10s 100s 1ms 10ms100ms 1s 10s10 -2K/W

    10-1

    K/W

    100K/W

    single pulse

    0.01

    0.02

    0.05

    0.1

    0.2

    D=0.5

    tP, PULSE WIDTH tP, PULSE WIDTH

    Figure 21. IGBT transient thermal resistance(D = tp/ T)

    Figure 22. Diode transient thermalimpedance as a function of pulsewidth(D=tP/T)

    trr,

    REVERSERECOVERYTIME

    200A/s 400A/s 600A/s 800A/s0ns

    50ns

    100ns

    150ns

    200ns

    250ns

    300ns

    TJ=25C

    TJ=175C

    Qrr,REVERSERECOVERYCHARGE

    200A/s 400A/s 600A/s 800A/s0,0C

    0,1C

    0,2C

    0,3C

    0,4C

    0,5C

    0,6C

    0,7C

    0,8C

    TJ=25C

    TJ=175C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

    Figure 23. Typical reverse recovery time asa function of diode current slope(VR=400V, IF=10A,Dynamic test circuit in Figure E)

    Figure 24. Typical reverse recovery chargeas a function of diode currentslope(VR = 400V, IF = 10A,Dynamic test circuit in Figure E)

    R, ( K / W ) , ( s )

    1.596 4.622 6

    1.985 1.288

    0.5623 5.066*10-2

    0.3324 4.152*10-3

    0.3531 6.059*10-4

    0.1730 7.863*10-5

    C1=1 /R1

    R1 R2

    C2=2 /R2

    R, ( K / W ) , ( s )

    1.418 5.068 6

    2.125 1.416

    0.5890 6.455*10-2

    0.5424 5.732*10-3

    0.6311 1.019*10-3

    0.5061 1.499*10-4

    C1=1 /R1

    R1 R2

    C2=2/R2

  • 7/27/2019 IKA10N60T Data Sheets

    10/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 10 Rev. 2 Oct-04

    Irr,

    REVERSERECOVERYCURRENT

    200A/s 400A/s 600A/s 800A/s0A

    2A

    4A

    6A

    8A

    10 A

    12 A

    14 A

    TJ=25C

    TJ=175C

    dirr/

    dt,DIODEPEAKRATEOFFALL

    OFREVERSERECOVERYCURRENT

    400A/s 600A/s 800A/s0A/s

    -100A/s

    -200A/s

    -300A/s

    -400A/s

    -500A/s

    -600A/s

    -700A/s TJ=25C

    TJ=175C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE

    Figure 25. Typical reverse recovery currentas a function of diode currentslope(VR = 400V, IF = 10A,Dynamic test circuit in Figure E)

    Figure 26. Typical diode peak rate of fall ofreverse recovery current as afunction of diode current slope(VR=400V, IF=10A,Dynamic test circuit in Figure E)

    IF,FORWARDCURRENT

    0V 1V 2V0A

    10 A

    20 A

    30 A

    175C

    TJ=25C

    VF,FORWARDVOLTAGE

    -50C 0C 50C 100C 150C0,0V

    0,5V

    1,0V

    1,5V

    2,0V

    10 A

    IF=20A

    5A

    VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE

    Figure 27. Typical diode forward current asa function of forward voltage

    Figure 28. Typical diode forward voltage as afunction of junction temperature

  • 7/27/2019 IKA10N60T Data Sheets

    11/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 11 Rev. 2 Oct-04

    P-TO220-3-31

    dimensions

    symbol [mm] [inch]

    min max min maxA 10.37 10.63 0.4084 0.4184

    B 15.86 16.12 0.6245 0.6345

    C 0.65 0.78 0.0256 0.0306

    D 2.95 typ. 0.1160 typ.

    E 3.15 3.25 0.124 0.128

    F 6.05 6.56 0.2384 0.2584

    G 13.47 13.73 0.5304 0.5404

    H 3.18 3.43 0.125 0.135

    K 0.45 0.63 0.0177 0.0247

    L 1.23 1.36 0.0484 0.0534

    M 2.54 typ. 0.100 typ.

    N 4.57 4.83 0.1800 0.1900

    P 2.57 2.83 0.1013 0.1113

    T 2.51 2.62 0.0990 0.1030

    Please refer to mounting instructions (application note AN-TO220-3-31-01)

  • 7/27/2019 IKA10N60T Data Sheets

    12/13

    IKA10N60T

    TrenchStop Series

    Power Semiconductors 12 Rev. 2 Oct-04

    Figure A. Definition of switching times

    Figure B. Definition of switching losses

    Ir r m

    90% Ir r m

    10% Ir r m

    di /dt F

    tr r

    IF

    i,v

    tQS

    QF

    tS

    tF

    VR

    di /dt r r

    Q =Q Qr r S F

    +

    t =t t r r S F

    +

    Figure C. Definition of diodesswitching characteristics

    p(t)1 2 n

    T (t)j

    1

    1

    2

    2

    n

    n

    TC

    r r

    r

    r

    rr

    Figure D. Thermal equivalentcircuit

    Figure E. Dynamic test circuit

    Leakage inductance L =60nHand Stray capacity C =40pF.

  • 7/27/2019 IKA10N60T Data Sheets

    13/13

    IKA10N60T

    TrenchStop Series

    Published byInfineon Technologies AG,Bereich Kommunikation

    St.-Martin-Strasse 53,D-81541 Mnchen Infineon Technologies AG 2004All Rights Reserved.

    Attention please!

    The information herein is given to describe certain components and shall not be considered as warranted characteristics.

    Terms of delivery and rights to technical change reserved.

    We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,descriptions and charts stated herein.

    Infineon Technologies is an approved CECC manufacturer.

    Information

    For further information on technology, delivery terms and conditions and prices please contact your nearest InfineonTechnologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

    Warnings

    Due to technical requirements components may contain dangerous substances. For information on the types in questionplease contact your nearest Infineon Technologies Office.

    Infineon Technologies Components may only be used in life-support devices or systems with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure ofthat life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices orsystems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protecthuman life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.