Top Banner
III. Multicore Processors (5) Dezső Sima Spring 2007 (Ver. 2.0) Dezső Sima, 2007
46

III. Multicore Processors (5)

Jan 14, 2016

Download

Documents

taya

III. Multicore Processors (5). Dezső Sima Spring 2007. (Ver. 2.0).  Dezső Sima, 2007. 10.3 IBM’s MC processors. 10.3.1 POWER line. 10.3.2 Cell BE. 10.3 IBM’s MC processors. 10.3.1 POWER line. POWER4. 180 nm. 10 /200 1. 130 nm. POWER4+. 11 /200 2. POWER5. 130 nm. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: III. Multicore Processors (5)

III. Multicore Processors (5)

Dezső Sima

Spring 2007

(Ver. 2.0) Dezső Sima, 2007

Page 2: III. Multicore Processors (5)

• 10.3.1 POWER line

• 10.3.2 Cell BE

10.3 IBM’s MC processors

Page 3: III. Multicore Processors (5)

10.3 IBM’s MC processors

• POWER4 180 nm10/2001• POWER4+ 130 nm11/2002

10.3.1 POWER line

• POWER5 130 nm 5/2004

• POWER5+ 90 nm10/2005• POWER6 65 nm2007

Page 4: III. Multicore Processors (5)

Figure: The evolution of IBM’s major RISC lines

92 93 94 95 96 97 98 999190 02 030100 04 058988

OS/400

Commercial computing

IMPI/48

AIX

Technical computing

PowerPC/32

PowerPC AS/64

PowerPC/64

POWER/32

A10 A30

A50 Pulsar SStar

601 604 604e

POWER POWER2

Power3

Power3-II

P2SC

AS/400 e-Server iSeries

RS/6000 e-Server pSeries

(Scalar CISC)

(~2.G. superscalar)

(~1.G. superscalar)

(3.G. superscalar)

(3.G. superscalar)

(1.-2.G. superscalar)

Upwards binary compatible extension

Transition

Derived from

Northstar SStar

POWER4 POWER5

PowerPC/64 ext.

PowerPC AS/64 ext.(1.G. superscalar)

PSC

AS/400-line

06 07

POWER4+ POWER5+

POWER6

10.3.1 Evolution of IBM’s major RISC lines

Page 5: III. Multicore Processors (5)

Figure : POWER4 chip logical view

Built-In-SelfTest

Service Processor

Power On Reset

Core interface Unit(crossbar)

Non-CacheableUnit

MultiChip Module

10.3.1 POWER4 (1)

Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25,

http://www.research.ibm.com/journal/rd/461/tendler.pdf

Page 6: III. Multicore Processors (5)

Source: Power4 System Microarchitecture, Technical White Paper, 2001, IBM Corp., http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf

Figure: Logical view of the L3 controller

10.3.1 POWER4 (2)

Page 7: III. Multicore Processors (5)

Figure: The memory cotroller of the POWER4

Source: Power4 System Microarchitecture, Technical White Paper, 2001, IBM Corp., http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf

10.3.1 POWER4 (3)

Page 8: III. Multicore Processors (5)

Figure: I/O controller of the POWER4

Source: Power4 System Microarchitecture, Technical White Paper, 2001, IBM Corp., http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf

Fabric Controller

10.3.1 POWER4 (4)

Page 9: III. Multicore Processors (5)

Figure: POWER4 chip

Source: R. Kalla, B. Sinharoy, J. Tendler: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003

http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

10.3.1 POWER4 (5)

Page 10: III. Multicore Processors (5)

10.3.1 POWER4 (6)

Table: Main features of IBM’s dual-core POWER line

Off-chipMem. contr.

L3

L21.44 MB/sharedSize/allocation

On-chipImplementation

32 MBSize

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 11: III. Multicore Processors (5)

10.3.2 POWER4+ (1)

Figure: New features of the POWER5+

Source: Grassl C., „New IBM Components for HPCx”, Dec. 2003,http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

Page 12: III. Multicore Processors (5)

10.3.1 POWER4+ (2)

Table: Main features of IBM’s dual-core POWER line

On-chipOff-chipMem. contr.

L3

L21.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipImplementation

32 MB32 MBSize

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 13: III. Multicore Processors (5)

Figure 5.14: Contrasting POWER4 and POWER5 system structures

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

10.3.1 POWER5 (1)

Page 14: III. Multicore Processors (5)

Figure: Block diagram of the POWER5 (1)

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

10.3.1 POWER5 (2)

Page 15: III. Multicore Processors (5)

http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf

Figure: Block diagram of the POWER5 (2)

10.3.1 POWER5 (3)

Page 16: III. Multicore Processors (5)

10.3.1 POWER5 (4)

Figure: Floorplan of the POWER5

Source: Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

Page 17: III. Multicore Processors (5)

POWER4 POWER5

180 nm, 412 mm2 130 nm, 389 mm2 (enlarged)

10.3.1 POWER5 (6)

Figure: Contrasting the floor plans of the POWER4 and POWER5 dies

Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

Sources: R. Kalla, B. Sinharoy, J. Tendler: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

Page 18: III. Multicore Processors (5)

Figure: Packaging alternatives of the POWER4/5 processors

Source: Partridge R. and Ghatpande S., IBM Introduces POWER5+ and Quad-Core Modules in System p5,” Tech Trends Monthly, Nov./Dec. 2005,

POWER5+Dual-Core Module

10.3.1 POWER5 (7)

Page 19: III. Multicore Processors (5)

POWER4 MCM Photo 32-way System Showing 4 MCMs and L3 Cache

                                     

                                          

                                    

Figure: Quad–Chip POWER4 module (MCM) and a 32-way POWER4 system

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

10.3.1 POWER5 (8)

Page 20: III. Multicore Processors (5)

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

Figure: Interpretation of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5

10.3.1 POWER5 (9)

Page 21: III. Multicore Processors (5)

Source:Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

Figure: Photos of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5

10.3.1 POWER5 (10)

Page 22: III. Multicore Processors (5)

Source: Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003,www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

Figure: The Multi-chip module of the POWER5

10.3.1 POWER5 (11)

Page 23: III. Multicore Processors (5)

10.3.1 POWER5 (12)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOff-chipMem. contr.

L3

L21.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipImplementation

36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 24: III. Multicore Processors (5)

Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

Figure: Block diagram of the POWER5+

10.3.1 POWER5+ (1)

Page 25: III. Multicore Processors (5)

Figure: Dual-Core Modules (DCMs) and Quad-Core Modules (QCM) of the POWER5+

Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

10.3.1 POWER5+ (2)

Page 26: III. Multicore Processors (5)

10.3.1 POWER5+ (3)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOn-chipOff-chipMem. contr.

L3

L21.9 MB/shared1.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipOn-chipImplementation

36 MB36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

36 MB

Tags on-chip

DPM6

DCM4/QCM5

70

1.92

276 mtrs

230 mm2

90 nm

10/2005

DC

POWER5+

L3 size

L3 impl.

Power management

Dual threaded

Packaging

TDP [W]

Implementation

fc [GHz]

Nr. of transistors

Die size

Technology

Introduced

Dual/Quad-Core

POWER line

10.3

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 27: III. Multicore Processors (5)

POWER6 POWER5+

Figure: Contrasting the block diagrams of the POWER5 and POWER6 processors

Source: Kanter D., „IBM Previews the Power6,” Oct. 2006, [email protected]

Hardware support of decimal arithmetic

10.3.1 POWER6 (1)

Page 28: III. Multicore Processors (5)

10.3.1 POWER6 (2)

Table: Main features of IBM’s dual-core POWER line

On-chipOn-chipOn-chipOff-chipMem. contr.

L3

L22*4 MB/private1.9 MB/shared1.9 MB/shared1.5 MB/shared1.44 MB/sharedSize/allocation

On-chipOn-chipOn-chipOn-chipOn-chipImplementation

64 MB?36 MB36 MB32 MB32 MBSize

36 MB

Tags on-chip

DPM6

DCM3/MCM2

80 (est)

1.65/1.9

276 mtrs

389 mm2

130 nm

5/2004

DC

POWER5

SCM1/MCM2

70

1.7

184 mtrs

380 mm2

130 nm

11/2002

DC

POWER4+

32 MB

Tags on-chip

SCM1/MCM2

115/125

Tags on-chip, data off-chip

1.3

174 mtrs

412 mm2

180 nm

10/2001

DC

POWER4

36 MB

Tags on-chip

DPM6

DCM4/QCM5

70

1.92

276 mtrs

230 mm2

90 nm

10/2005

DC

POWER5+

32 MBL3 size

Tags on-chipL3 impl.

n.a.Power management

Dual threaded

n.a.Packaging

~100TDP [W]

Implementation

4-5fc [GHz]

750 mtrsNr. of transistors

341 mm2Die size

65 nmTechnology

2007Introduced

DCDual/Quad-Core

POWER6POWER line

1 SMC: Single Chip Module2 MCM: Multi Chip Module3 DCM: Dual Chip Module

4 DCM: Dual Core Module5 QCM: Quad Core Module6 DPM: Dynamic Power Management

Page 29: III. Multicore Processors (5)

10.3 IBM’s MC processors

• Cell BE 90 nm2/2006

10.3.2 Cell BE

Page 30: III. Multicore Processors (5)

Hofstee H. P., „Cell today and tomorrow,” 2005, http://www.stanford.edu/class/ee380/Abstracts/Cell_060222.pdf

Sources: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Figure: The history and development cost of the Cell BE

10.3.2 Cell BE (1)

Page 31: III. Multicore Processors (5)

AUC: Atomic Update Cache

BIC: Bus Interface Contr.

EIB: Element Interface Bus

LS: Local Store of 256 KB

MFC: Memory Flow Controller

MIC: Memory Interface Contr.

PPE: Power Processing Element

PXU: POWER Execution Unit

SMF: Synergistic Memory Flow

Unit

SPU: Synergistic Processor Unit

SXU: Synergistic Execution Unit

XDR: Rambus DRAM

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Block diagram of the Cell BE

10.3.2 Cell BE (2)

Page 32: III. Multicore Processors (5)

PPE: dual-threaded > 200 GFLOPS (SP) > 20 GFLOPS (DP) > 25 GB/s memory BW > 75 GB/s I/O BW > 300 GB/s EIB BW fc > 4 GHz (lab)

publib.boulder.ibm.com/.../stgv1r0/topic/com.ibm.iea.cbe/cbe/1.0/Overview/L1T1H1_02_CellOverview.pdf Source: IBM „Cell Broadband Engine Overview,” Course Code L1T1H1-02, Mai 2006

Figure: Main design parameters of the Cell BE

10.3.2 Cell BE (3)

Design parameters of the Cell BE:

Page 33: III. Multicore Processors (5)

Figure 5.16: Cell SPE architecture

Source: Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html

10.3.2 Cell BE (4)

Page 34: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Block diagram of the SPE

10.3.2 Cell BE (5)

Page 35: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Pipeline stages of the Cell BE

10.3.2 Cell BE (6)

Page 36: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Floor plan of a single SPE

10.3.2 Cell BE (7)

Page 37: III. Multicore Processors (5)

Source: Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf

Principle of operation of the Element Interface Bus (EIB)

10.3.2 Cell BE (8)

Page 38: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: The Element Interface Bus EIB)

10.3.2 Cell BE (9)

Page 39: III. Multicore Processors (5)

Figure: The Synergistic Memory Flow unit (SMF)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

10.3.2 Cell BE (10)

Page 40: III. Multicore Processors (5)

Source: Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Figure: Floor plan of the Cell BE processor

235 mm2

241 mtrs

10.3.2 Cell BE (11)

Page 41: III. Multicore Processors (5)

10.3.2 Cell BE (12)

Table: Main features of the IBM’s Cell BE

L3

On-chipMemory controller

Ring basedInterconnection network

Up to 75 MB/sI/O bandwidth

PPE: 2-waySPE:

Multithreading

95 W @ 3GHzTDP [W]

25 GB/sMemory bandwidth

PPE: 512 KBSPE: 256 KB Local Store (128*128 bit)

L2

3.0/3.2fc [GHz]

234 mtrsNr. of transistors

221 mm2Die size

90 nmTechnology

9/2006 (in the QS20 BladeCenter)Introduction

PPE: 64-bit RISCSPE: Dual-issue 32-bit SIMD with 128 bit capability

Cores

PowerPC 2.02Architecture

Heterogeneous1xPPE, 8*SPE

Implementation

Cell BESeries

Page 42: III. Multicore Processors (5)

Source: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Figure: Cell BE Blade Roadmap

10.3.2 Cell BE (13)

Page 43: III. Multicore Processors (5)

Source: Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

Figure: Roadmap of the Cell BE

10.3.2 Cell BE (14)

Page 44: III. Multicore Processors (5)

10.3 Literature (1)

POWER4, POWER4+

Grassl C., „New IBM Components for HPCx”, Dec. 2003,http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf

Krevell K., „IBM’s POWER4 Unveiling Continuues”, Microprocessor Report, Nov. 20. 2000, pp- 1-4

Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture, IBM Server, Technical White Paper, October 2001

http://www-03.ibm.coom/servers/eserver/pseries/hardware/whitepapers/power4.pdf

POWER5, POWER5+

Grassl C., „New IBM Components for HPCx”, Dec. 2003,http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf

Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/

DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf

Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003,www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25,

http://www.research.ibm.com/journal/rd/461/tendler.pdf

Page 45: III. Multicore Processors (5)

Kalla R., Sinharoy B., Tendler J.: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003

http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf

Krevell K., „POWER5 Tops on Bandwidth”, Microprocessor Report, Dec. 2003http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf

Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521

Kanter D., „IBM Previews the Power6,” Oct. 2006, [email protected]

Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

POWER6

POWER5, POWER5+ (cont.)

Cell BE

Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html

Day M. and Hofstee P., „Hardware and Software Architectures for the Cell Broadband Engine processor, ”CODES, Sept. 2006, http://www.casesconference.org/cases2005/pdf/Cell-tutorial.pdf

10.3 Literature (2)

Page 46: III. Multicore Processors (5)

10.3 Literature (3)

Cell BE (cont.)

Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf

Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

Solie, D., „Technology Trends Presentation,” Power Symposium, Aug. 2006, http://www-03.ibm.com/procurement/proweb.nsf/objectdocswebview/ file14+-+darryl+solie+-+ibm+power+symposium+presentation/$file/ 14+-+darryl+solie-ibm-power+symposium+presentation+v2.pdf

- „Cell Broadband Engine processor – based systems,” White Paper, IBM Corp., 2006

Krewell K., „Cell Moves Into The Limelight,” Microprocessor Report, Febr. 14 2005, pp. 1-9

Gschwind M., Hofstee H. P., Flachs B. K., Hophkins M., Watanabe Y., Yamazaki T „Synergistic Processing in Cell's Multicore Architecture,” IEEE Micro, Vol. 26, No. 2, 2006, pp. 10-24

Krolak D., „Unleashing the Cell Broadband Engine Processor,” MPR Fall Proc. Forum, Nov. 2005, http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/?ca=dgr-lnxwCellConnects