Top Banner
IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle http://arxiv.org/abs/1009.2830 today
47

IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle today.

Jan 04, 2016

Download

Documents

Barbra Freeman
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011Sandberg, Delvenne, and Doyle

http://arxiv.org/abs/1009.2830

today

Page 2: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

w white, unit intensity (J-N noise)k Boltzmann’s constant

Phenomenology

R

Resistor RTemperature T

Capacitor CVoltage v

2

dvCv C i

dt

v Ri kTRw

Dissipation Fluctuation

Page 3: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

w white, unit intensityk Boltzmann’s constant

2

dvCv C i

dt

v Ri kTRw

Dissipation Fluctuation

1 2kTCv v w

R R

Origins?Consequences?

Assume

2 1

1

kT

R

Page 4: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

R

y

ideal sensor

v i w

Dissipation

Sensor noise

y v w

Cv i

Fluctuation

Measurement

Page 5: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

R

y

ideal sensor

v i w

Dissipation

Sensor noise

y v w

Cv i

Fluctuation

1 1v v w

C C

Back actionMeasurement

Page 6: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

R

y

ideal sensor

v i w

Cv i

1 1v v w

C C

Back action

y v w

Sensor noise

y v w

Measurement

Page 7: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

R

y

more ideal sensor

v i w

Cv i

1 1v v w

C C

Back action

y v w

Sensor noise

-R Active

Assume active device has infinite power supply

Measurement

Page 8: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1v w

C

Back action

y v w Sensor noise

R

y

-R y

2ˆmin E v v v̂Optimal estimator

2E v

Page 9: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1v w

C

y v w

R

y

-R y

2ˆmin E v v

Optimal estimator

SoftwareHardware

DigitalAnalog

Active

Lumped

Computers

1v w

C

Upside down from other pictures

Page 10: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1v w

C

y v w

y

2ˆmin E v v v̂

Optimal estimator

2E v

2

2

1 1ˆ

1 tE v v

te

22

( )t

E vC

2ˆAssume (0) (0)E v v

0Assume (0) unknownv v

Page 11: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1v w

C

y v w

y

2ˆmin E v v v̂

2E v

2

2

2 1

1 YtE e

te

22

tE v

C

ˆe v v 2ˆAssume (0) (0)E v v

0Assume (0) unknownv v

Can compute everything analytically because of special structure.

Page 12: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1 2kTv w

C R

2y v kTRw

y

2ˆmin E v v v̂

2E v

2

2

2 1

1 YtE e

te

22

tE v

C

back-action

error

v

ˆe v v

ˆe v v

Page 13: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2

2

2 1

1 tE e

te

22

tE v

C

back-action

error

v

ˆe v v

1

22 2

2

1 2 1

1 t

tE v E e

C Ce

Cold sensors are uniformly easier

Page 14: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2 RE e

t

22

tE v

RC

back-action

error

v

ˆe v v

2 2 1E v E e

C

Page 15: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2 RE e

t

22

1tE v

R C

2

2 2 1E v E e

C

time t 2 2E e

Page 16: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2 RE e

t

22

tE v

RC

back-action

error

v

ˆe v v

2 2 1E v E e

C

t small

vary R

Page 17: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

Particle mass

Position

Velocity

m

x

v

Dectector at 0

Friction

x t

R

x v

0x

m vm v

Heisenberg?

Page 18: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1 2

x v

kTv w

m R

Back action

2y v kTRw Sensor noise

y

2ˆmin E v v

Optimal estimator

2E v

Particle mass

Position

Velocity

m

x

v

Dectector at 0

Friction

x t

R

2E x

2

2

ˆ

ˆ

E x x

E v v

Page 19: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1

x v

v wm

y v w

2

2

ˆ

ˆ

E x x

E v v

2

2

2

2 1ˆ

1

t

t

eE x x t

e

2

2

ˆAssume (0) (0) 0

ˆ (0) (0)

E x x

E v v

0

Assume x(0) 0 known

(0) unknownv v

2

2

2 1ˆ

1 tE v v

te

Page 20: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1

x v

v wm

y v w

2

2

ˆ

ˆ

E x x

E v v

2ˆE x x t

2 2

2

ˆ ˆ

2 11

1

t

t

E v v E x x

e

e

2 1ˆE v v

t

Page 21: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

error

error

2ˆE x x t

2 1ˆE v v

t

22

tE v

m back

action

Cold sensors (and large masses) are uniformly easier

Page 22: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

error

error

2ˆE x x t

2 1ˆE v v

t

Let 2 1kT R

22

tE v

m back

action

2 2ˆ ˆ 1E v v E x x

2 22

1ˆE v v E v

m

Page 23: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

R

y

more ideal sensor

1 1 2kTv v w

CR C R

Back action

2y v kTRw

Sensor noise

-R Active

Active device has infinite power supply

Page 24: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2ˆE x x Rt

2ˆR

E v vt

22

1tE v

R m

2 2ˆ ˆE v v E x x R

2 22

1ˆE v v E v

m

Next steps• Estimation to control• Efficiency of devices, enzymes• Classical to quantum

Page 25: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

w white, unit intensityk Boltzmann’s constant

2

dvCv C i

dt

v Ri kTRw

Dissipation Fluctuation

1 2kTCv v w

R R

Origins?Consequences?

Page 26: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

Resistor RTemperature T

Capacitor CVoltage v

w white, unit intensityk Boltzmann’s constant

T=0

R

1 2kTCv v w

R R

Temporarily

Page 27: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1

Cs

Y

+

1Y

R

R

step response

1v v

CRy v

y v

Caution: this is a visualization of the equations, the “signals” are not physical(“virtual”)

Page 28: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1

Cs

Y

+

1Y

R

R

step response

1v v

CRy v

y v

Caution: this is a visualization of the equations, the “signals” are not physical

Step response is easier to visualize than impulse…

Page 29: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

0 100

0.5

1

1.5

Time (sec)

Am

plitu

de

1 te

1

1

C

Y

dissipative,lossy

But the microscope world is lossless (energy is conserved). Where does dissipation come from?

1

s

1

+step response

0Y

1v v

CRy v

Page 30: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

+step response

2 2

4

k

s

T s

LosslessApproximate

1

+step response

dissipative,lossy

Page 31: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

LosslessApproximate

1dissipative,

lossy

step response

2 2

4

k

s

T s

1: 2 : 2k nT

step response

Step response

Emphasize the differences

Cosine series

Page 32: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

LosslessApproximate

1dissipative,

lossy

2 2

4

k

s

T s 1: 2 : 2k n

Step response

0 0.5 1 1.5

-1

0

1

n=10, =1

Time (sec)

Time (sec)

n=5, =1 dissipative,lossy

Page 33: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

n=5, =1

n=10, =1

n=10, =2

For n/, step

2 2

4

k

s

T s 1: 2 : 2k n

Page 34: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

=1

0 1 2

-1

0

1

n=10

n/

LosslessApproximate

step response

2 2

4

k

s

T s

1: 2 : 2k nT

age of universe 4e26 nanosecs

Page 35: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

=1

n=10

0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1-1.5

-1

-0.5

0

0.5

1

1.5

n=100

Theorem: Linear dissipative (passive)iff linear lossless approximation

For n/,

Page 36: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

Theorem: Linear dissipative (passive)iff linear lossless approximation

Corollary: Linear active needs nonlinear lossless approximation

Proof: Essentially Fourier series plus elementary control theory.

Question: what nonlinearities can be fabricated?

For n/,

Page 37: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

0 2 4 6 8 100

0.5

1

1.5

Time (sec)

1

Cs+step

responsev(t)

2 2

4

k

s

T s

LosslessApproximate

=10n=10

n=4

1

1

C

R

Page 38: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

0 0.5 1 1.5 2 2.5-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

Am

plitu

de

n=10

step response

2 2

4

k

s

T s

LosslessApproximate

Page 39: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2 2

4

k

s

T s

random initial

conditions

0 0.2 0.4 0.6 0.8 1-0.5

0

0.5

n=10

Page 40: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

random initial

conditions

2 2

4

k

s

T s

0 0.5 1 1.5 2 2.5-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

Am

plitu

de

n=10

step response

2 2

4

k

s

T s

0 0.2 0.4 0.6 0.8 1-0.5

0

0.5

Page 41: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

0 0.5 1 1.5 2 2.5-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

Am

plitu

de

n=10

0 0.2 0.4 0.6 0.8 1-0.5

0

0.5

Impulse responseg t

Autocorrelationa t

fluctuation

dissipation

a(t) = kT g(t) (all n)

k = Boltzmann constant, T=temperature

Theorem:

Page 42: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

T=1

n=100

n=10

0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

0

“white” for n large

Page 43: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

n=1000 0.2 0.4 0.6 0.8 1

0

T=10 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Dissipation

Fluctuation

Theorem: Fluctuation Dissipation

Page 44: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

Theorem: Fluctuation Dissipation

Theorem: Linear passive iff linear lossless approximation

Corollary: Linear active needs nonlinear lossless approximation

“New”

“Old”

Page 45: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

Resistor RTemperature T

Capacitor CVoltage v

1 1 2kTv v w

CR C R

w white, unit intensityk Boltzmann’s constant

1

Cs

Y

+

1Y

R

T>0

Page 46: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

1v w

C

Back action

y v w Sensor noise

R

y

-R y

2ˆmin E v v v̂Optimal estimator

2E v

Page 47: IEEE TRANS ON AUTOMATIC CONTROL, FEBRUARY, 2011 Sandberg, Delvenne, and Doyle  today.

2 RE e

t

22

tE v

RC

back-action

error

v

ˆe v v

t small

vary R

1

22 2

2

1 2 1

1 t

tE v E e

C Ce