Top Banner
Ice-Cube: Low temperature flow chemistry for enhanced safety and selectivity Heather Graehl, MS, MBA Director of Sales North America
30

IceCube Low Temperature Flow Chemistry v2

May 11, 2015

Download

Business

hgraehl
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: IceCube Low Temperature Flow Chemistry v2

Ice-Cube: Low temperature flow chemistry for enhanced safety and selectivity

Heather Graehl, MS, MBA Director of Sales North America

Page 2: IceCube Low Temperature Flow Chemistry v2

Who  are  we?  

ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

Market  leader:  800  customer  install  base  on  6  conCnents.  33  employees  with  own  chemistry  team.  11  years  old-­‐most  established  flow  reactor  company.  

R&D  Top  100  Award  Winner.

Page 3: IceCube Low Temperature Flow Chemistry v2

Customers (>800 worldwide)

Page 4: IceCube Low Temperature Flow Chemistry v2

What  is  flow  chemistry?  

Performing  a  reacCon  conCnuously,  typically  on  small  scale,  

through  either  a  coil  or  fixed  bed  reactor.  

OR  

Pump  Reactor   CollecCon  

Page 5: IceCube Low Temperature Flow Chemistry v2

Mixing  (batch  vs.  flow)  

Flow  reactors  can  achieve  homogeneous  mixing  and  uniform  hea6ng  in  microseconds  (suitable  for  fast  reac6ons)  

Page 6: IceCube Low Temperature Flow Chemistry v2

KineCcs  In  Flow  Reactors  

In  a  microfluidic  device  with  a  constant  flow  rate,  the  concentraCon  of  the  reactant  decays  exponenCally  with  distance  along  the  reactor.    

Thus  Cme  in  a  flask  reactor  equates  with  distance  in  a  flow  reactor  

X  

A  

dX/dt  >  0    

dA/dt  <  0    

Page 7: IceCube Low Temperature Flow Chemistry v2

MiniaturizaCon:  Enhanced  temperature  control    Large  surface/volume  rate  

Microreactors  have  higher  surface-­‐to-­‐volume  raCo  than  macroreactors,  heat  transfer  occurs  rapidly  in  a  flow  microreactor,  enabling  precise  temperature  control.  

Yoshida,  Green  and  Sustainable  Chemical  Synthesis  Using  Flow  Microreactors,  ChemSusChem,  2010  

Page 8: IceCube Low Temperature Flow Chemistry v2

HeaCng  Control  

Batch   Flow  

-­‐  Lower  reacCon  volume.    -­‐  Closer  and  uniform  temperature  control  

Outcome:  

-­‐  Safer  chemistry.  -­‐  Lower  possibility  of  exotherm.  

-­‐  Larger  solvent  volume.    -­‐  Lower  temperature  control.  

Outcome:  

-­‐ More  difficult  reacCon  control.    -­‐   Higher  possibility  of  exotherm.  

Page 9: IceCube Low Temperature Flow Chemistry v2

HeaCng  Control  

Lithium  Bromide  Exchange  

Batch  

Flow  

•   Batch  experiment  shows  temperature  increase  of  40°C.  •   Flow  shows  liile  increase  in  temperature.  

 Ref:  Thomas  Schwalbe  and  Gregor  Wille,  CPC  Systems    

Page 10: IceCube Low Temperature Flow Chemistry v2

Industry  percepCon  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaCon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaCon  

§  SelecCvity  

   Why  move  to  flow?  

Page 11: IceCube Low Temperature Flow Chemistry v2

Low  Temperature  

Chemistry  

Page 12: IceCube Low Temperature Flow Chemistry v2

IceCube  

Safe:  Low  reacCon  volume,  excellent  temperature  control,  SW  controlled  –  including  many  safety  control  points  

Simple  to  use:  easy  to  set  up,  default  reactor  structures,  proper  system  construcCon  

Powerful:  Down  to  -­‐50°C/-­‐70°C,  up  to  80°C  

Versa6le  chemistry:  Ozonolysis,  nitraCon,  lithiaCon,  azide  chemistry,  diazoCzaCon  

Versa6le  reactors:  Teflon  loops  for  2  reactors  with  1/16”  and  1/8”  loops  

Chemical  resistance:  Teflon  weied  parts  

Mul6step  reac6ons:  2  reacCon  zones  in  1  system  Modular:  OpCon  for  Ozone  Module,  more  pumps  

Size:  Stackable  to  reduce  footprint  

Page 13: IceCube Low Temperature Flow Chemistry v2

The  IceCube  family  

•   2pcs  rotary  piston  pumps    

•   2pcs  3-­‐way  inlet  valves  

•   Flow  rate:  0.2  –  4.0  mL/min  

•   Max  pressure:  6.9  bar  

•   Main  reactor  block  temp:    -­‐70/50°C  –  +80°C    

•   Main  reactor  volume  up  to  8  mL  

•   Tubing:  1/16”  or  1/8”  OD  PTFE  

•   Secondary  reactor  block  temp.:    -­‐  30  –  +80°C  

•   Secondary  reactor  volume  up  to  4  mL  

Cooling  Module  

•   ConCnuous  ozone  producCon  

•   Controlled  oxygen  introducCon  

•   Max.  100  mL/min  gas  flow  

•   14%  Ozone  producCon  

Pump  Module   Ozone  Module  

Page 14: IceCube Low Temperature Flow Chemistry v2

VerstaClity  to  access  mulCple  working  modes  

A  

B  C  

A  B  

C  

D  

Pre-­‐cooler/Mixer   Reactor  

-­‐70-­‐+80ºC  

-­‐70-­‐+80ºC   -­‐30-­‐+80ºC  

Poten6al  Apps:  Azide,  Lithia6on,  ozonolysis,  nitra6on,  Swern  oxida6on  

Poten6al  Apps:  Azide,  nitra6on,  Swern  oxida6on  

Page 15: IceCube Low Temperature Flow Chemistry v2

ReacCon  zone  cooling  

First  ReacCon  Zone  

Secondary  ReacCon  Zone  

Right  hand  side:    Water  inlet  and  outlet  

Reactor  plate  coiled  with  Teflon  tube  (1/16”)  

Ideal for dangerous/exotherm chemistry -Water (high specific heat) used in peltier cooler -Aluminum reactor plate has high thermal conductivity (205 W/mK)

Page 16: IceCube Low Temperature Flow Chemistry v2

Control  –  Graphical  User  Interface  

Welcome  screen  of  the  IceCube  

Ozonolysis  set-­‐up   3  pump  –  2  reactor  set-­‐up  

Seamless control of all the modules on a touch screen interface

For custom flow configurations, flexible to allow control of each module on their own (pump, ozone generator, cooler)

Page 17: IceCube Low Temperature Flow Chemistry v2

?   Halogena6on  9  653  

Nitra6on  26  701  

Azides  89  718  

Mul6step  reac6ons  

Modular  

Lithia6on  9  432  

Ozonolysis  9  655  

Swern  Oxida6on  3  289  

Exothermic  ReacCons  #  of  hits  in  sciencedirect.com  

Main  applicaCon  areas  

Page 18: IceCube Low Temperature Flow Chemistry v2

Why  ozonolysis  is  neglected?  

Highly  exothermic  reacCon,  high  risk  of  explosion    

Normally  requires  low  temperature:  -­‐78°C.  In  addiCon,  the  batchwise  accumulaCon  of  ozonide  is  associated  again  with  risk  of  explosion  

There  are  alternaCve  oxidizing  agents/systems:  •  Sodium  Periodate  –  Osmium  Tetroxide  (NaIO4-­‐OsO4)  

•  Ru(VIII)O4    +  NaIO4  

•  Jones  oxidaCon  (CrO3,  H2SO4)  

•  Swern  oxidaCon  Most  of  the  listed  agents  are  toxic,  difficult,  and/or    expensive  to  use.  

Page 19: IceCube Low Temperature Flow Chemistry v2

What  is  ozonolysis?  

Ozonolysis  is  a  technique  that  cleaves  double  and  

triple  C-­‐C  bonds  to  form  a  C-­‐O  bond.  

Page 20: IceCube Low Temperature Flow Chemistry v2

How  does  it  work?  

SM1  /  Reactant  or  Solvent  

SM2  /  Quench  or  Solvent  

Product  or  Waste  

Page 21: IceCube Low Temperature Flow Chemistry v2

Olefins  using  as  masked  terminal  aldehydes/  alcohols  

Biologically  acCve  natural  product  

Synthesis  of  a  Key  intermediate  for  Indolizidine  215F  

S.  Van  Ornum    et  al,  Chem.  Rev.106,    2990-­‐3001  (2006)    

Oxandrolone,  anabolic  steroid  used  to  promote  weight  gain  following  extensive  surgery,  chronic  infecCon  

Page 22: IceCube Low Temperature Flow Chemistry v2

Flow  Ozonolysis  of  Styrenes  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lei.,  

Page 23: IceCube Low Temperature Flow Chemistry v2

Oxida6on  of  alkynes  

Oxida6on  of  amines  to  nitro  groups  

Flow  Ozonolysis  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lei.,  

Page 24: IceCube Low Temperature Flow Chemistry v2

Flow  Ozonolysis  Of  Thioanisole  

M.  Irfan,  T.  N.  Glasnov,  C.  O.  Kappe,  Org.  Lei.,  

Page 25: IceCube Low Temperature Flow Chemistry v2

Batch  reac6on:  Max.  -­‐60°C  to  avoid  side  reacCon  

In  Flow:  

Even  at  -­‐10°C  without  side  product  formaCon  

0.45  M  in  DCM,  0.96  mL/min  

0.45  M  alcohol,  0.14  M  DMSO  in  DCM  0.94  mL/min  

3.6  M  in  MeOH,  0.76  mL/min  

*  Axer  purificaCon  

Swern  OxidaCon  on  IceCube  

When  compared  to  batch  condiCons,  IceCube  can  sCll  control  reacCons  at  warmer  temperatures  due  to  beier  mixing  and  more  efficient  heat  transfer.  

Page 26: IceCube Low Temperature Flow Chemistry v2

DiazoCzaCon  and  azo-­‐coupling  in  the  IceCube  

Entry   Vflow  (ml/min)  A  -­‐  B  -­‐  C  

T  (°C)   τ  (1.  loop,  min)  

τ  (2.  loop,  min)  

Isolated  Yield  (%)  

1   0.4   0   2.12   3.33   91  

2   0.9   0   0.94   1.48   91  

3   0.6   0   1.42   2.22   85  

4   0.9   10   0.94   1.48   85  

5   1.5   10   0.56   0.88   86  

6   1.5   15   0.56   0.88   98  

7   1.2   15   0.71   1.11   84  

8   1.8   15   0.47   0.74   86  

Aniline  HCl  sol.   Pump  A  

Pump  B  NaNO2    sol.  

Pump  C  

Phenol    NaOH  sol.   •  Most  aromaCc  diazonium  salts  

are  not  stable  at  temperatures  above  5°C  •  Produces  between  65  and  150  kJ/mole  and  is  usually  run  industrially  at  sub-­‐ambient  temperatures  •  Diazonium  salts  decompose  exothermically,  producing  between160  and  180  kJ/mole.    •  Many  diazonium  salts  are  shock-­‐sensiCve  

Page 27: IceCube Low Temperature Flow Chemistry v2

Safe reaction of azides using Ice-Cube

•  2 Step Azide Reaction in flow •  No isolation of DAGL •  Significantly reduced hazards

TKX50

Page 28: IceCube Low Temperature Flow Chemistry v2

Novel  scaffold  synthesis  from  explosive  intermediates  

NitraCon  of  AromaCc  Alcohols  

Pump  A   Pump  B   Temperature  (oC)  

Loop  size  (ml)  

Conversion  (%)  

SelecCvity  (%)  

SoluCon  Flow  rate  (ml/

min)   SoluCon  Flow  rate  (ml/

min)  

ccHNO3   0.4  1g  PG/15ml  ccH2SO4   0.4   5  -­‐  10   7   100  

0  (different  products)  

1.48g  NH4NO3/15ml  ccH2SO4   0.7  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   100   100  

1.48g  NH4NO3/15ml  ccH2SO4   0.5  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13   50   80  (20%  dinitro)  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (3  bar)   100   100  

70%  ccH2SO4  30%  ccHNO3   0.6  

1g  PG/15ml  ccH2SO4   0.5     5  -­‐  10   13  (1  bar)   80  

70  (30%  dinitro  and  nitro)  

Currently  invesCgaCng  selecCvity  at  lower  temperatures  on  IceCube  

Page 29: IceCube Low Temperature Flow Chemistry v2

Coming  soon…  

•  LithiaCon  experiments  (collaboraCons)  

•  FluorinaCon  experiments  (collaboraCons)  

•  Low  temperature  selecCve  reacCons,  not  certainly  from

 exothermic  nature  

•  Very  low  temperature  experiments,  where  batch

 condiCons  required  liquid  nitrogen  temperature  or

 below  

Page 30: IceCube Low Temperature Flow Chemistry v2

Thank  you  for  your  aienCon!