Top Banner
1 2006/4/12 1 Chapter 7 Plasma Basics 2006/4/12 2 Objectives List at least three IC processes using plasma Name three impor tant collisions in plasma Descr ibe mean free path Explain how plasma enhance etch and CVD processes Name two high density plasma sources
45

IC Ch07-Plasma Basics

Apr 07, 2018

Download

Documents

Rain Stone
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 1/45

1

2006/4/12 1

Chapter 7

Plasma Basics

2006/4/12 2

Objectives

• List at least three IC processes using plasma

• Name three important collisions in plasma

• Describe mean free path

• Explain how plasma enhance etch and CVD

processes

• Name two high density plasma sources

Page 2: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 2/45

2

2006/4/12 3

Topics of Discussion

• What is plasma?

• Why use plasma?

• Ion bombardment

• Application of plasma process

2006/4/12 4

Applications of Plasma

• CVD

Etch• PVD

• Ion Implantation

• Photoresist strip

• Process chamber dry clean

Page 3: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 3/45

3

2006/4/12 5

What Is Plasma

A plasma is a ionized gas with equal numbers

of positive and negative charges.

A more precise definition: a plasma is a quasi-

neutral gas of charged and neutral particles

which exhibits collective behavior .

Examples: Sun, flame, neon light, etc.

2006/4/12 6

Components of Plasma

A plasma consists of neutral atoms or

molecules, negative charges (electrons) and

positive charges (ions)

Quasi-neutral: ni  ne

Ionization rate:  ne /(ne + nn)

Page 4: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 4/45

Page 5: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 5/45

5

2006/4/12 9

Parallel Plate Plasma System

Plasma

RF power

Dark spaces orsheathlayers

Electrodes

To Vacuum Pump

2006/4/12 10

Generation of a Plasma

• External power is needed

• Radio frequency (RF) power is the mostcommonly used power source with which avarying electric field is established

• Electrons and ions are continually generated andlost by collisions and recombination

• A plasma is stabilized when generation rate of electrons is equal to loss rate of electrons

• Vacuum system is required to generate a stable RFplasma

Page 6: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 6/45

6

2006/4/12 11

Ionization Process

e + A A+ + 2 e

Ionization collisions generate electrons and ions

It sustains a stable plasma

• Electron collides with neutral atom or molecule

• Knock out one of orbital electron

2006/4/12 12

Illustration of Ionization

Free

Electron

Free

Electrons

Orbital

Electron

Nucleus Nucleus

Page 7: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 7/45

7

2006/4/12 13

Excitation and Relaxation

e + A A* + e where A* is excited state

A* A + h  (Photons) light emission

Different atoms or molecules have difference

frequencies, that is why different gases have

different glow colors.

The change of the glow colors is used for etch

and chamber clean process endpoint.

2006/4/12 14

Excitation Collision

Impact

electron

Grounded

electron

Excited

electron

NucleusNucleus

Impact

electron

Page 8: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 8/45

8

2006/4/12 15

Relaxation

Ground State

h: Planck Constant

 : Frequency of Light

Excited State

2006/4/12 16

Dissociation

• Electron collides with a molecule, it can

break the chemical bond and generate free

radicals:

e + AB A + B + e

• Free radicals have at least one unpaired

electron and are very chemically reactive.

• Increasing chemical reaction rate

• Very important for both etch and CVD.

Page 9: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 9/45

9

2006/4/12 17

Dissociation

A B

e-

B

e-

A

Molecule

Free Radicals

2006/4/12 18

Plasma Etch

• CF4 is used in plasma to generate fluorine

free radical (F) for oxide etch

e + CF4 CF3 + F + e

4F + SiO2 SiF4 + 2O

• Enhanced etch chemistry

Page 10: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 10/45

10

2006/4/12 19

Plasma Enhanced CVD

• PECVD with SiH4 and NO2 (laughing gas)

e + SiH4 SiH2 + 2H + e

e + N2O N2 + O + e

SiH2 + 3O SiO2 + H2O

• Plasma enhanced chemical reaction• PECVD can achieve high deposition rate at

relatively lower temperature

2006/4/12 20

Q & A

• Why are dissociation not important in the

aluminum and copper PVD processes?

• Aluminum and copper sputtering processes

only use argon. Argon is a noble gas, which

exist in the form of atoms instead of 

molecules. Thus there is no dissociation

process in argon plasma

Page 11: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 11/45

11

2006/4/12 21

Q & A

• Is there any dissociation collision in PVD

processes?

• Yes. In TiN deposition process, both Ar and

N2 are used. In plasma, N2 is dissociated to

generate free radical N, which reacts withTi target to from TiN on the surface. Ar+

ions sputter TiN molecules from the surface

and deposit them on wafer surface.

2006/4/12 22

Table 7.1 Silane Dissociation

Collisions Byproducts Energy of Formation

e-

+ SiH4 SiH2 + H2 + e-

2.2 eV

SiH3 + H + e-

4.0 eV

Si + 2 H2 + e-

4.2 eV

SiH + H2 + H + e-

5.7 eV

SiH2*

+ 2H + e-

8.9 eV

Si*

+ 2H2 + e-

9.5 eV

SiH2+

+ H2 + 2 e-

11.9 eV

SiH3+

+ H + 2 e-

12.32 eV

Si+

+ 2H2 + 2 e-

13.6 eV

SiH+

+ H2 + H + 2 e-

15.3 eV

Page 12: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 12/45

12

2006/4/12 23

Q & A

• Which one of collisions in Table 7.1 is most

likely to happen? Why?

• The one that requires the least energy is the

one most likely to happen.

2006/4/12 24

Mean Free Path (MFP)

The average distance a particle can travel

before colliding with another particle.

  

n2

1

n is the density of the particle

 is the collision cross-section of the particle

Larger molecules have shorter MFP because

it is proportional to molecule size and cross-

section

Page 13: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 13/45

13

2006/4/12 25

MFP Illustration

Large

particle

Small

particle

Large

particle

Small

particle

(a) (b)

2006/4/12 26

Mean Free Path (MFP)

Effect of pressure:

Higher pressure, shorter MFP

 1 p

Page 14: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 14/45

14

2006/4/12 27

Q & A• Why does one need a vacuum chamber to

generate a stable plasma?

• At atmospheric pressure (760 Torr), MFP of an

electron is very short. Electrons are hard to get

enough energy to ionize gases molecules.

• Extremely strong electric field can create

plasma in the form of arcing (lightening)

instead of steady state glow discharge.

2006/4/12 28

Movement of Charged Particle

Electron is much lighter than ion

me << mi

me:m Hydrogen =1:1836 Electric forces on electrons and ions are the same

F = qE 

Electron has much higher acceleration

a = F/m

Page 15: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 15/45

15

2006/4/12 29

Movement of Charged Particle

RF electric field varies quickly, electrons are

accelerated very quickly while ions react slowly

Ions have more collisions due to their larger

cross-section that further slowing them down

Electrons move much faster than ions in plasma

2006/4/12 30

Thermal Velocity

Electron thermal velocity, 1eV = 11594 K

 v = (kT e /me)1/2

RF plasma, T e is about 2 eV

 ve 5.93107 cm/sec = 1.33107 mph

(equivalent to airplane’s speed)

Page 16: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 16/45

16

2006/4/12 31

Magnetic Force and Gyro-motion

Magnetic force on a charged particle:

F = qvB

Magnetic force is always perpendicular to the

particle velocity

Charged particle will spiral around themagnetic field line.

Gyro-motion.

2006/4/12 32

Gyro-motion

Trajectory of charged particleMagnetic Field Line

Page 17: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 17/45

17

2006/4/12 33

Gyrofrequency• Charged particle in gyro motion in magnetic field

m

qB

Gyro radius

• Gyroradius of charged particle in a magneticfield,   , can be expressed as:

  = v / 

2006/4/12 34

Energy, E

      f      (      E      )

2 - 3 eV

Electrons with

enough energy

for ionization

Boltzmann Distribution

Page 18: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 18/45

18

2006/4/12 35

Ion Bombardment

Electrons reach electrodes and chamber wall first

Electrodes charged negatively, repel electrons

and attract ions.

The sheath potential accelerates ions towards the

electrode and causes ion bombardment.

Ion bombardment is very important for etch,sputtering and PECVD processes.

2006/4/12 36

Sheath Potential

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+-

+

+-+-+-+-+-+

+

+

+-+-+-+-+

+

+

+-+-+-+

+

+

+

+

+-+-+

+

+

+

+

+-+

+

+

+

+

+

+

+

+

+

+

Sheath RegionV  p

V  f 

 x

Dark space

Bulk plasma

Sheath Potential

     E     l    e    c     t    r    o     d    e

Page 19: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 19/45

19

2006/4/12 37

Ion Bombardment

Anything close to plasma gets ion bombardment

Mainly determined by RF power

Pressure also can affect bombardment

2006/4/12 38

Applications of Ion bombardment

Help to achieve anisotropic etch profile

Damaging mechanism

Blocking mechanism

Argon sputtering

Dielectric etch for gap fill

Metal deposition

Help control film stress in PECVD processes

Heavier bombardment, more compressive film

Page 20: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 20/45

20

2006/4/12 39

Plasma Potential & DC Bias

Time

     V    o     l     t

DC Bias RF potential

Plasma Potential

2006/4/12 40

DC biases and RF powers

0time

Plasma potential

0

time

Plasma potential

DC bias

RF potentials

DC bias

• Lower RF power

• Smaller DC bias

• Higher RF power

• Larger DC bias

Page 21: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 21/45

21

2006/4/12 41

Ion Bombardment

•Ion energy

•Ion flux (density)

•Both controlled by RF power

2006/4/12 42

Ion Bombardment Control

• Increasing RF power, DC bias increases, ion

density also increases.

• Both ion density and ion bombardment energy

are controlled by RF power.

• RF power is the most important knob controlling

ion bombardment

• RF power also used to control film stress for

PECVD processes

Page 22: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 22/45

22

2006/4/12 43

DC Bias of CVD Chamber Plasma

Vp = 10 20 V

RF hot

Grounded

Dark spaces or sheath regions

2006/4/12 44

DC Bias of Etch Chamber Plasma

DC bias

0time

Wafer Potential

Plasma potential

Self bias

Page 23: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 23/45

23

2006/4/12 45

DC Bias of Etch Chamber Plasma

V 2

A2

A1

V 1 /V 2 =( A2 /A1)

V 1

= 200 to 1000 V

4

DC bias V1

2006/4/12 46

Question and Answer

• If the electrode area ratio is 1:3, what is the

difference between the DC bias and the self-

bias compare with the DC bias?

• The DC bias is V 1 , the self-bias is V 1  V 2 ,

therefore, the difference is

[V 1  (V 1  V 2)]/ V 1 = V 2 / V 1 = ( A1 /  A2)4 = (1/3)4 = 1/81 = 1.23%

Page 24: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 24/45

24

2006/4/12 47

Q and A• Can we insert a fine metal probe into the

plasma to measure the plasma potential V 2?

• Yes, we can. However, it is not very accurate

because of sheath potential near probe surface

• Measurement results are determined by thetheoretical models of the sheath potential,

which have not been fully developed, yet.

2006/4/12 48

Ion Bombardment and Electrode Size

• Smaller electrode has more energetic ion

bombardment due to self-bias

• Etch chambers usually place wafer onsmaller electrode

Page 25: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 25/45

25

2006/4/12 49

Advantages of Using Plasma

• Plasma processes in IC fabrication: – PECVD

• CVD chamber dry clean

 – Plasma Etch

 – PVD

 – Ion implantation

2006/4/12 50

Benefits of Using Plasma in

CVD Process

• High deposition rate at relatively lowertemperature.

• Independent film stress control

• Chamber dry clean

• Gap fill capability

Page 26: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 26/45

26

2006/4/12 51

Comparison of PECVD and LPCVD

Processes LPCVD (150 mm) PECVD (150 mm)

Chemical reaction SiH4+ O 2 SiO2 + … SiH4+ N2O SiO2 + …

Process parameters p =3 Torr, T=400 C p=3 Torr, T=400 C and

RF=180 W

Deposition rate 100 to 200 Å/min 8000 Å/min

Process systems Batch system Single-wafer system

Wafer to wafer uniformity Difficult to control Easier to control

2006/4/12 52

Gap Fill by HDP-CVD

• Simultaneously deposition and sputtering

• Tapering the gap opening

• Fill gap between metal lines bottom up

Page 27: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 27/45

27

2006/4/12 53

HDP CVD Void-free Gap Fill

0.25 m, A/R 4:1

2006/4/12 54

Benefits of Using Plasma For

Etch Process

• High etch rate

• Anisotropic etch profile

• Optical endpoint

• Less chemical usage and disposal

Page 28: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 28/45

Page 29: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 29/45

29

2006/4/12 57

PECVD Chambers

• Ion bombardment control film stress

• Wafer is placed grounded electrode

• Both RF hot and grounded electrodes have

about the same area

It has very little self-bias• The ion bombardment energy is about 10 to

20 eV, mainly determined by the RF power

2006/4/12 58

Schematic of a PECVD Chamber

PlasmaChuck 

RF

Wafer

Page 30: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 30/45

30

2006/4/12 59

Plasma Etch Chambers

• Ion bombardment

 – Physically dislodge

 – break chemical bonds

• Wafer on smaller electrode

• Self-bias

• Ion bombardment energy

 – on wafer (RF hot electrode): 200 to 1000 eV

 – on lid (ground electrode): 10 to 20 eV.

2006/4/12 60

Plasma Etch Chambers

• Heat generation by heavy ion bombardment

• Need control temperature to protect masking PR

• Water-cool wafer chuck (pedestal, cathode)

• Lower pressure not good to transfer heat from

wafer to chuck 

• Helium backside cooling required

• Clamp ring or electrostatic chuck (E-chuck) to

hold wafer

Page 31: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 31/45

31

2006/4/12 61

Plasma Etch Chambers

• Etch prefer lower pressure

 – longer MFP, more ion energy and less scattering

• Low pressure, long MFP, less ionization

collision

 – hard to generate and sustain plasma

• Magnets are used to force electron spin and

travel longer distance to increase collisions

2006/4/12 62

Schematic of an Etch Chamber

Process gases

Plasma

Process

chamber

By-products to

the pump

Chuck 

RF power

Backside

cooling helium

Magnet coilsWafer

Page 32: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 32/45

32

2006/4/12 63

Remote Plasma Processes

• Need free radicals

 – Enhance chemical reactions

• Don’t want ion bombardment

 – Avoid plasma-induced damage

• Remote plasma systems

2006/4/12 64

Process

gases Plasma

MW or RF

Process

chamber

By-products to

the pump

Remote

plasma

chamber

Free radicals

Heated plate

Remote Plasma System

Page 33: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 33/45

33

2006/4/12 65

Photoresist Strip

• Remove photoresist right after etch

• O2 and H2O chemistry

• Can be integrated with etch system

• In-situ etch and PR strip

• Improve both throughput and yield

2006/4/12 66

Photoresist Strip Process

H2O, O2 Plasma

OO H

Microwave

Process chamber

H2O, CO2, …

To the pump

Remote plasma

chamber

OO OH HWafer with

photoresist

Heated plate

Page 34: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 34/45

34

2006/4/12 67

Remote Plasma Etch

• Applications: isotropic etch processes:

 – LOCOS or STI nitride strip

 – wineglass contact hole etch

• Can be integrated with plasma etch system

 – improve throughput

• Part of efforts to replace wet process

2006/4/12 68

NF3 Plasma

F FF

F N2N2

F

Microwave

Process

chamber

N2, SiF4, …

To pump

Remote plasma

chamber

Heated plate

Remote Plasma Etch System

Wafer

Page 35: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 35/45

35

2006/4/12 69

Remote Plasma Clean

• Deposition occurs not only on wafer surface

• CVD chamber need clean routinely

 – Prevent particle contamination due to film crack 

• Plasma clean with fluorocarbon gases is

commonly used

 – Ion bombardment affects parts lifetime

 – Low dissociation rate of fluorocarbon

 – Environmental concern of fluorocarbon releases

2006/4/12 70

Remote Plasma Clean

• Microwave high-density plasma

• The free radicals flow into CVD chamber

• React and remove deposited film

• Clean the chamber while

 – gentle process, prolonged part lifetime

 – high dissociation, little fluorocarbon releases

Page 36: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 36/45

36

2006/4/12 71

NF3 Plasma

FF

FF N2N2

F

Microwave

CVD

chamber

N2, SiF4, …

To pump

Remote plasma

chamber

Heated plate

Remote Plasma Clean System

2006/4/12 72

Remote Plasma CVD (RPCVD)

• Epitaxial Si-Ge for high-speed BiCMOS

• Still in R&D

• Gate dielectric: SiO2, SiON, and Si3N4

• High- dielectrics: HfO2, TiO2, and Ta2O5

• PMD barrier nitride

 – LPCVD: budget limitations

 – PECVD: plasma induced damage

Page 37: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 37/45

37

2006/4/12 73

High-density Plasma

• High-density at low pressure are desired

• Lower pressure, longer MFP, less ion

scattering, which enhance etch profile control.

• Higher density, more ions and free radicals

 – Enhance chemical reaction

 – Increase ion bombardment

• For CVD processes, HDP in-situ, simultaneous

dep/etch/dep enhance gap fill

2006/4/12 74

Limitation of Parallel Plate

Plasma Source

• Capacitively coupled plasma source

• Can not generate high-density plasma

• Hard to generate plasma even with magnets atlow pressure, about a few mTorr.

 – electron MFP too long, no enough ionization

collisions.

Page 38: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 38/45

38

2006/4/12 75

Limitation of Parallel PlatePlasma Source

• Cannot independently control ion flux and ion

energy

• Both are directly related to RF power

• Better process control requires a plasma source

that capable to independently control both of 

them

2006/4/12 76

ICP and ECR

• Most commonly used in IC industry

• Inductively coupled plasma, ICP

 – also called transformer coupled plasma, or TCP

• Electron cyclotron resonance, ECR,

• Low press at few mTorr

• Independently control ion flux and ion energy

Page 39: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 39/45

39

2006/4/12 77

Inductively Coupled Plasma (ICP)

• RF current flows in the coils generates a

changing electric field via inductive coupling

• The angular electric field accelerates electrons

in angular direction.

• Electrons to travel a long distance without

collision with the chamber wall or electrode.

• Ionization collisions generate high-density

plasma at low pressure

2006/4/12 78

Inductively Coupled Plasma (ICP)

• Bias RF power controls the ion energy

• Source RF power controls the ion flux

• Helium backside cooling system with E-chuck controls wafer temperature

Page 40: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 40/45

40

2006/4/12 79

Illustration of Inductive Coupling

RF current in coil

RF magnetic field

Induced electric field

2006/4/12 80

Schematic of ICP Chamber

Helium

Bias RF

Wafer

E-chuck 

Plasma

Inductive coilsSource RF

Chamber body

Ceramic cover

Page 41: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 41/45

41

2006/4/12 81

Application of ICP

• Dielectric CVD

• All patterned etch processes, particularly for

high aspect-ration structure

• Sputtering clean prior to metal deposition

Metal plasma PVD• Plasma immersion ion implantation

2006/4/12 82

ECR

• Gyro-frequency or cyclotron frequency:

• Determined by magnetic field

mqB

Page 42: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 42/45

42

2006/4/12 83

ECR

• Electron cyclotron resonance when   MW  =  e

• Electrons get energy from MW

• Energetic electrons collide with other atoms

or molecules

Ionization collisions generate more electrons• Electrons are spiraling around the field line

• Many collisions even at very low pressure

2006/4/12 84

Illustration of ECR

Electron trajectory

B

M  i c r o w a v e P  o w e r 

Page 43: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 43/45

43

2006/4/12 85

Helium

Bias RF

Magnetic

field line

Microwave

Magnetic

CoilsECR

Plasma

Wafer

E-chuck 

Illustration of ECR

2006/4/12 86

ECR

• Bias RF power controls the ion energy

• Microwave power controls the ion flux

• Magnet coil current controls plasma positionand process uniformity

• Helium backside cooling system with E-chuck 

controls wafer temperature

Page 44: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 44/45

44

2006/4/12 87

Application of ECR

• Dielectric CVD

• All patterned etch processes

• Plasma immersion ion implantation

2006/4/12 88

Summary

• Plasma is ionized gas with n – 

= n+

• Plasma consist of n, e, and i

• Ionization, excitation-relaxation, dissociation

• Ion bombardment help increase etch rate and

achieve anisotropic etch

• Light emission can be used for etch end point

• MFP and its relationship with pressure

• Ions from plasma always bombard electrodes

Page 45: IC Ch07-Plasma Basics

8/6/2019 IC Ch07-Plasma Basics

http://slidepdf.com/reader/full/ic-ch07-plasma-basics 45/45

2006/4/12 89

Summary

• Increasing RF power increases both ion flux

and ion energy in capacitive coupled plasmas

• Low frequency RF power gives ions more

energy, causes heavier ion bombardment

• The etch processes need much more ion

bombardment than the PECVD

• Low pressure, high density plasma are desired

• ICP and ECR are two HDP systems used in IC

fabrication