Top Banner
Hőtan II (hőközlés) kidolgozott tételek - 1 - I. TÉTEL Alapkérdések A hősugárzás főbb jellegzetességei és matematikai leírása (a STEFAN- BOLTZMANN és a PLANCK egyenlet). A testek jellemzése hősugárzás szempontjából (a fekete, szürke és színes test értelmezése). A hallgató válaszában: adja meg a hőmérsékleti sugárzás jellemezőit (részletesen); írja fel és értelmezze a Stefan-Boltzmann- egyenletet; rajzolja fel a Planck-függvény grafikonját és adjon hozzá rövid értelmező magyarázatot (görbék menete, hőm. függése, a görbe alatti terület értelmezése); adja meg az összefüggést a S-B és a P egyenlet között; adjon pontos meghatározást a fekete, a szürke és a színes testre, melynek során térjen ki az anyag és a sugárzás közötti lehetséges kölcsönhatásokra. Források: Hőközlés jegyzet 12.1 fejezet (131-136.old) Emelt Hőcserélők méretezése a logaritmikus közepes hőmérsékletkülönbség, valamint a BOŠNJAKOVIĆ féle hatásosság felhasználásával. A logaritmikus közepes hőmérsékletkülönbség fizikai (matematikai) értelmezése és meghatározásának módja. A BOŠNJAKOVIĆ féle hatásosság fizikai (matematikai) értelmezése és meghatározásának módja. Források: Hőközlés jegyzet 11.2 fejezet (113-120.old)
44

I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Feb 20, 2018

Download

Documents

dokhuong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 1 -

I. TÉTEL Alapkérdések

A hősugárzás főbb jellegzetességei és matematikai leírása (a STEFAN-BOLTZMANN és a PLANCK egyenlet).

A testek jellemzése hősugárzás szempontjából (a fekete, szürke és színes test értelmezése).

A hallgató válaszában:

adja meg a hőmérsékleti sugárzás jellemezőit (részletesen);

írja fel és értelmezze a Stefan-Boltzmann- egyenletet;

rajzolja fel a Planck-függvény grafikonját és adjon hozzá rövid értelmező magyarázatot (görbék

menete, hőm. függése, a görbe alatti terület értelmezése);

adja meg az összefüggést a S-B és a P egyenlet között;

adjon pontos meghatározást a fekete, a szürke és a színes testre, melynek során térjen ki az anyag

és a sugárzás közötti lehetséges kölcsönhatásokra.

Források:

Hőközlés jegyzet 12.1 fejezet (131-136.old)

Emelt

Hőcserélők méretezése a logaritmikus közepes hőmérsékletkülönbség, valamint a BOŠNJAKOVIĆ féle hatásosság felhasználásával.

A logaritmikus közepes hőmérsékletkülönbség fizikai (matematikai) értelmezése és meghatározásának módja.

A BOŠNJAKOVIĆ féle hatásosság fizikai (matematikai) értelmezése és meghatározásának módja.

Források:

Hőközlés jegyzet 11.2 fejezet (113-120.old)

Page 2: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 2 -

Alapkérdések

A hősugárzás jellemzői:

mindegyik test bocsát ki elektromágneses sugárzást

alacsony hőmérsékleten ez a sugárzás elhanyagolható, nagyobb hőmérsékleten azonban

jelentőssé válik

a hősugárzás sugarainak hullámhossz tartománya 0,5-100μm

műszaki gyakorlatban számítására egyszerűsítést alkalmazunk

A Stefan-Boltzmann egyenlet:

E0e = σ0 T

4

σ0 - S-B állandó [W

m2K2]

E0e =

𝑑��

𝑑𝐹 – sugárzás felületi energiasűrűsége [

𝑊

𝑚2]

Értelmezés: Egy adott hőmérsékletű fekete testnek a teljes spektrumra vonatkoztatott felületi

energiasűrűségét határozzuk meg vele.

Planck függvény grafikonja:

Iλω,0e – Planck-függvény: A fekete test egységnyi térszögre vonatkozó, tetszőleges irányban kibocsátott

sugárzási intenzitása. Függ a hullámhossztól és hőmérséklettől.

Page 3: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 3 -

Grafikon magyarázata:

Görbék maximumhelyeit a Wien-féle eltolódási törvény írja le: 𝜆𝑚𝑎𝑥 ∙ 𝑇 = 2,9 [𝑚𝑚𝐾], vagyis

nagyobb hőmérséklethez rövidebb hullámhossz tartozik.

Görbék alatti terület a sugárzás felületi energiasűrűségét adja meg

Kapcsolat a S-B egyenlet és Planck függvény között:

E0e = ∫ π Iλω,0

e dλ∞

0

= σ0 T4

azaz, a sugárzási intenzitás függvények görbe alatti területe a felületi energiasűrűséget adja.

Planck törvény szerint a fekete test diffúz sugárzó (intenzitás minden irányba azonos), és a kibocsátott

energia nagyban függ a test abszolút hőmérsékletétől.

A testek jellemzése hősugárzás szempontjából (a fekete, szürke és színes test értelmezése):

Abszolút fekete test:

bármely adott hőmérsékleten ez sugároz a legnagyobb mértékben, minden hullámhosszon, és

minden irányban

a ráeső sugárzást teljes egészében elnyeli

a sugárzásának a színképét a Planck- féle eloszlás írja le

a sugárzásának irány szerinti eloszlását a Lambert törvény írja le

mind az általa visszavert, mind az átengedett sugárzás részaránya nulla

Szürke test:

a ráeső sugárzásnak azonos részarányát nyeli el minden hullámhosszon

az általa és egy fekete test által kisugárzott energia aránya minden hullámhosszon ugyanakkora

mind az általa visszavert, mind az átengedett energia részaránya független a hullámhossztól

reflexiója diffúz

Színes test:

a ráeső sugárzásnak eltérő részarányát nyeli el a különböző hullámhosszokon

az általa és egy fekete test által kisugárzott energia aránya függ a hullámhossztól

az általa visszavert és átengedett energia részaránya is függ a hullámhossztól

Page 4: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 4 -

Emelt

Hőcserélők méretezése a logaritmikus közepes hőmérsékletkülönbség, valamint a BOŠNJAKOVIĆ féle hatásosság felhasználásával.

Hőcserélők tervezése során a szükséges teljesítményű hőcseréhez tudnunk kell az átadás felületét, a

közegek hőmérsékletét és a hőátviteli viszonyokat.

A hőátvitelt a következőképpen számoljuk:

�� = 𝑘 ∙ 𝐹 ∙ (𝑡𝑓1 − 𝑡𝑓2)

Ebből indulunk ki, de nem ezt használjuk, mert a hőmérsékletek a felület mentén változnak. A szükséges

felületet kétféleképpen is számolhatjuk:

Logaritmikus közepes hőmérsékletkülönbség:

Δ𝑡 𝑙𝑜𝑔 =

Δ𝑡0 − Δ𝑡𝐹

lnΔ𝑡0Δ𝑡𝐹

A hőáram így: �� = 𝑘 ∙ 𝐹 ∙ Δ𝑡 𝑙𝑜𝑔

BOŠNJAKOVIĆ féle hatásosság:

Φ =𝑡1

′ − 𝑡1′′

𝑡1′ − 𝑡2

A hőátadási felület ekkor Φ −𝑘𝐹

𝑊1 diagram segítségével határozható meg (�� = ��𝑐 : hőkapacitás áram [

𝑊

𝐾])

A logaritmikus közepes hőmérsékletkülönbség fizikai (matematikai) értelmezése és meghatározásának módja.

A hőmérséklet exponenciálisan változik a felület mentén a következőféleképpen:

Δ𝑡𝐹 = Δ𝑡0𝑒−𝛽𝑘𝐹

Ekkor a hőáram egy adott felületi ponton:

𝑑�� = 𝑘 ∙ 𝑑𝐹 ∙ Δ𝑡0𝑒−𝛽𝑘𝐹

A teljes felületre a hőáram integrálás és rendezés után:

∫ 𝑑����

0

= ∫ 𝑘 ∙ Δ𝑡0𝑒−𝛽𝑘𝑓 𝑑𝑓𝐹

0

�� =Δ𝑡0 − Δ𝑡𝐹

lnΔ𝑡0Δ𝑡𝐹

∙ 𝑘 ∙ 𝐹

Page 5: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 5 -

A BOŠNJAKOVIĆ féle hatásosság fizikai (matematikai) értelmezése és meghatározásának módja.

Fizikai jelentése: a kisebb hőkapacitás áramú közeg hőmérséklet változásának (𝑡1′ − 𝑡1

′′) és a közegek

belépéskori hőmérséklet különbségének (𝑡1′ − 𝑡2

′ ) hányadosa.

A Φ hatásosság – hőcserélő típustól és konstrukciótól függően más és más formában – két dimenziótlan

változónak, a 𝑘𝐹

𝑊1 és a

𝑊1

𝑊2 hányadosnak a függvénye

A Φ függvény alakjának meghatározása történhet a hőcserélőben áramló közegek hőmérséklet változásait

leíró összefüggések felhasználásával, vagy az adott hőcserélőn végzett mérés eredményei alapján.

Page 6: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 6 -

II. TÉTEL Alapkérdések

A hővezetés főbb jellegzetességei és matematikai leírása (a FOURIER egyenlet).

A hőellenállás és kontakt hőellenállás értelmezése. A hőellenállásokkal értelmezett műveletek. A hőátvitel jelensége és a hőátviteli tényező értelmezése.

A hallgató válaszában:

írja le a hővezetés jelenségét, ismertesse a gázokra, folyadékokra és szilárd testekre, ezen belül a fémekre jellemző hővezetési folyamatot;

írja fel és részletesen értelmezze a FOURIER egyenletet (minden részét nevesítse), adja meg a negatív előjel értelmezését;

adjon meghatározást a hőellenállásra (a konkrét esetre vonatkozó számítási összefüggés hibának számít), adja meg a hőellenállás mértékegységét;

mutassa meg a sorba és párhuzamosan, ill. vegyesen kapcsolt hőellenállásokból álló rendszer eredő hőellenállásának meghatározását;

ismertesse a hőátvitel (hőátadás–hővezetés–hőátadás) jelenségét (segédábra szükséges!);

mutassa meg a kapcsolatot és a hőátvitelt jellemző eredő hőellenállás és a hőátviteli tényező között.

Források:

Hőközlés jegyzet 6.1.1. , 6.1.2. , 6.1.4. , 6.1.5. fejezet (5-7.old , 10.old , 12.old)

Emelt

Hőcserélőkben végbemenő folyamatok ábrázolása különféle esetekben (egyen- és ellen-áramú, halmazállapot-változással járó és anélküli esetek).

A hőcserélőben végbemenő hőátviteli folyamatok differenciális mérlegegyenletei egyen- és ellenáramú hőcserélőkre.

A BOŠNJAKOVIĆ féle hatásosság NTU-tól és RC-től való függése egyen- és ellenáramú hőcserélők esetén (elvi megfontolások, a függvények jellegre helyes grafikonjai).

Források:

Hőközlés jegyzet 11.1.1. , 11.2 fejezet (109-111.old , 113-120.old)

Page 7: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 7 -

Alapkérdések

Hővezetés általában és egyes anyagokra:

Hővezetés az energia térbeli terjedésének az a formája, amikor a hő a magasabb hőmérsékletű részéből az

alacsonyabb felé történő "áramlása" során a közeget alkotó részecskék elmozdulása nem számottevő illetve

rendezetlen. (Például az egyik végén melegített rúd másik vége is, felmelegszik, az energia a rúd melegebb

végétől hővezetéssel jut a másik végéhez.)

Gázokban az atomok, molekulák rendezetlen mozgása miatti ütközéseknek (és a diffúzió)

következtében terjed az energia.

Fémekben a hő két párhuzamos, majdnem független mechanizmus révén terjed, egyrészt a

kristály rácsot alkotó atomok rezgése által, másrészt a szabad elektronok diffúziója révén.

Nem fémes anyagok és folyadékok esetén az energia terjedése rugalmas elemi hullámok révén

valósul meg.

FOURIER törvénye:

FOURIER törvénye szerint egy homogén testben a hőáram a csökkenő hőmérsékletek irányába mutat

(negatív), arányos a terjedési irányú, hosszegységenkénti hőmérséklet-változással és az erre az irányra

merőleges keresztmetszettel. Ez az összefüggés un. empirikus törvény, azaz megfigyelésen alapul. A

törvény matematikailag megfogalmazva: (egydimenziós és általános)

�� = −𝜆 ∙ 𝐹 ∙𝑑𝑡

𝑑𝑥= −𝜆 ∙ 𝐹 ∙ 𝑔𝑟𝑎𝑑(𝑡)

�� – Hőáram, az 𝐹 [𝑚2] felületen időegység alatt átáramló energia [𝑊]

𝜆 – Hővezetési tényező, anyagjellemző [𝑊

𝑚𝐾]

𝑑𝑡

𝑑𝑥 és 𝑔𝑟𝑎𝑑(𝑡) – Hőmérséklet hely szerinti deriváltja, hosszegységenkénti hőmérsékletváltozás [

𝐾

𝑚]

Hőellenállás meghatározása, kontakt hőellenállás:

Egy valamilyen hőterjedést leíró egyenletben a Hőellenállás az arányossági tényező a Hőáram és a

hőmérsékletkülönbség közt, ahol a Hőellenállás a Hőáram együtthatója.

Például a Fourier egyenlet hőáram számításának síkfalra vonatkozó egyenletét úgy átrendezve, hogy a

hőmérsékletek különbsége maradjon a jobboldalon, az eredmény:

�� ∙Δ𝑥

𝜆 ∙ 𝐹= Δ𝑡

Δ𝑥

𝜆∙𝐹= 𝑅ℎ – Hőellenállás (v. Termikus ellenállás) mértékegysége: [

𝐾

𝑊]

A hőátadás alapegyenletében, a Newton-egyenletben a hőellenállás:

�� ∙1

𝛼𝐹= Δ𝑡

1

𝛼𝐹= 𝑅𝛼 – hőátadás hőellenállása. [

𝐾

𝑊]

Page 8: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 8 -

A kontaktus hőellenállása (Rk) abból adódik, hogy a rétegek a felületi érdességük miatt nem érintkeznek

tökéletesen egymással, a fellépő rés átlagos (δ) vastagsága és a rést kitöltő anyag (λ) hővezetési tényezője

ismeretében értéke megbecsülhető (Rk≈δ/λ), pontosan általában csak laboratóriumi mérésekkel tudjuk

meghatározni.

Hőellenállásokkal értelmezett műveletek:

Analógia az Ohm-törvénnyel:

�� ∙ 𝑅ℎ = Δ𝑡 𝐼 ∙ 𝑅 = 𝑈

A hőellenállás fogalmának alkalmazása a hőáram számításában igen hatékony. A különböző, összetett

hőterjedési folyamatoknál a sorosan, ill. párhuzamosan kapcsolt ellenállásokra vonatkozó összegző

összefüggések felhasználásával írhatjuk fel a szükséges számítási összefüggéseket, határozhatjuk meg a

hőáramot.

Soros kapcsolás: 𝑅𝑒 = 𝑅1 + 𝑅2

Párhuzamos kapcsolás: 𝑅𝑒 =𝑅1𝑅2

𝑅1+𝑅2

Hőátvitel:

Amikor egy szilárd fal két különböző, (pl. 𝑡𝑓1 > 𝑡𝑓2) állandó hőmérsékletű folyadékot választ el, a melegebb

közegtől a hidegebb felé hőáram lép fel. A melegebb közeg oldalán a folyadék és a vele érintkező felszín

között hőátadás, a falban hővezetés és a hidegebb folyadékkal érintkező felületen ismét hőátadás történik.

A hőterjedésnek ezt az együttes folyamatát Hőátvitelnek nevezzük. Matematikailag:

�� = 𝑘 𝐹𝑣(𝑡𝑓1 − 𝑡𝑓2)

�� – Hőáram, az 𝐹𝑣 [𝑚2] vonatkoztatási felületen időegység alatt átáramló energia [𝑊]

𝑘 – Hőátviteli tényező [𝑊

𝑚2𝐾]

Kapcsolat a hőellenállással:

��(𝑅𝛼1 + 𝑅𝜆 + 𝑅𝛼2) = (𝑡𝑓1 − 𝑡𝑓2)

vagyis az eredő hőellenállás fordítottan arányos a felülettel és a hőátviteli tényezővel:

1

𝑅𝛼1 + 𝑅𝜆 + 𝑅𝛼2= 𝑘𝐹𝑣

Page 9: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 9 -

Emelt

Hőcserélőkben végbemenő folyamatok ábrázolása különféle esetekben (egyen- és ellen-áramú, halmazállapot-változással járó és anélküli esetek).

Ha nincs halmazállapot változás:

Halmazállapot változással járó folyamatok:

A hőcserélőben végbemenő hőátviteli folyamatok differenciális mérlegegyenletei egyen- és ellenáramú hőcserélőkre.

A hőcserélő hőmérlege az energiamegmaradás értelmében: a felmelegedő közeg által felvett hő egyenlő a

csökkenő hőmérsékletű közeg által leadott hővel, azaz

�� = ��2𝑐2(𝑡2𝑘𝑖 − 𝑡2𝑏𝑒) = ��1𝑐1(𝑡1𝑏𝑒 − 𝑡1𝑘𝑖)

Bevezetve: Δ𝑡 = |𝑡𝑘𝑖 − 𝑡𝑏𝑒| és �� [𝑊

𝐾] = ��𝑐 – hőkapacitás áram, ahol az 1-es indexű a kisebb:

�� = 𝑊1 Δ𝑡1 = ��2Δ𝑡2

Egy elemi dF felület mentén a két közeg közötti hőátvitel hőárama:

𝑑�� = 𝑘 ∙ 𝑑𝐹 ∙ (𝑡1 − 𝑡2)

forrásban lévő víz

víz

F

T

egyik folyadékban halmazállapot változás

forrásban lévő víz

kondenzálódó víz

F

T

mindkét folyadékban halmazállapot

változás

Page 10: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 10 -

Egyenáram esetén:

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = −𝑊1 ∙ d𝑡1

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = +𝑊2 ∙ d𝑡2

Ellenáram esetén:

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = −𝑊1 ∙ d𝑡1

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = −𝑊2 ∙ d𝑡2

A BOŠNJAKOVIĆ féle hatásosság NTU-tól és RC-től való függése egyen- és ellenáramú hőcserélők esetén (elvi megfontolások, a függvények jellegre helyes grafikonjai).

BOŠNJAKOVIĆ féle hatásosság:

Φ =𝑡1

′ − 𝑡1′′

𝑡1′ − 𝑡2

A Φ hatásosság – hőcserélő típustól és konstrukciótól függően más és más formában – két dimenziótlan

változónak, a 𝑘𝐹

𝑊1 és a

𝑊1

𝑊2 hányadosnak a függvénye

A Φ függvény alakjának meghatározása történhet a hőcserélőben áramló közegek hőmérséklet változásait

leíró összefüggések felhasználásával, vagy az adott hőcserélőn végzett mérés eredményei alapján (további

elvi megfontolások a jegyzet 117.old utolsó bekezdésétől).

NTU – átviteli hányados:

𝑁𝑇𝑈 =𝑘𝐹

𝑊1

RC – hőkapacitásáram arány:

𝑅𝑐 =𝑊1

𝑊2

Grafikonok:

Page 11: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 11 -

III. TÉTEL Alapkérdések

A hőátadás főbb jellegzetességei és matematikai leírása (a NEWTON és a NUSSELT egyenlet).

A hőátadás NUSSELT féle alapegyenletének értelmezése és fizikai tartalma.

A hallgató válaszában:

írja le a hőátadás, mint komplex hőterjedési folyamat jelenségét;

ismertesse a határréteg fogalmát (termikus és hidraulikus) és a hőátadásban betöltött jelentőségét;

jellemezze le a termikus és a hidraulikus határréteg, valamint a hőátadási tényező közötti

kapcsolatot;

írja fel és részletesen értelmezze a Newton és Nusselt egyenleteket (minden részét nevesítse),

adja meg a Nusselt egyenlet fizikai értelmezését.

Források:

Hőközlés jegyzet 6.1.1. , 6.1.3. , 10.2.1. fejezet (5.old , 8.old , 87-89.old)

Emelt

A hővezetés általános differenciálegyenletének (HVÁDE) származtatása, az egyenlet fizikai tartalma, kapcsolata a termodinamika főtételeivel.

A HVÁDE megoldásának lehetőségei: az alapmegoldások. Az alapmegoldás fogalma, típusai.

A hibafüggvény, mint alapmegoldás: alkalmazhatóság.

Források:

Hőközlés jegyzet 8.1 fejezet (54-59.old)

Page 12: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 12 -

Alapkérdések

Hőátadás jelensége:

Az áramló folyadékok (gázok) és a határoló felületeik közötti hőterjedést hőátadásnak nevezzük. Ez a

mechanizmus nem a hőterjedés külön formája, hanem hővezetés, hőszállítás (konvekció) és – a

feltételektől függően – a hősugárzás együttes megvalósulása melletti jelenség. A hőátadást tehát

alapvetően az energia különböző halmazállapotú közegek határán keresztüli terjedése jellemzi és egy

bonyolult és összetett folyamat. A leggyakrabban egy szilárd felszín és valamely áramló gáz vagy folyadék

közötti hőátadás történik, de a gázáram és folyadék felszín közötti hőátadás is gyakori folyamat. (Ez utóbbi

esetben általában anyagátadás is történik.)

Termikus és Hidraulikus határréteg, jelentősége:

Az áramlások döntő hányada ún. határréteg áramlás. A felülettel közvetlenül érintkező közegrészecskék

sebessége zérus. Azt a felszínre merőleges távolságot, ahol a sebesség eléri a zavartalan áramlás

értékének egy meghatározott %-át, (pl. 99%-át) a határréteg vastagságának (δx) nevezzük. Ez a határréteg,

amiben a sebesség változik a Hidraulikus határréteg.

A felülettel közvetlenül érintkező közegrészecskék hőmérséklete a fal hőmérsékletével azonos. Hasonlóan a

hidraulikai határréteghez a hőmérséklet is egy adott távolságon belül éri el a zavartalan áramlás

hőmérsékletét, ez a Termikus határréteg.

Newton egyenlet: a hőátadás alapegyenlete:

Egy szilárd test által leadott hő arányos a felülettel, a hőmérséklet-különbséggel és az idővel. Az arányossági

tényezőt hőátadási tényezőnek hívjuk:

𝑄 = 𝛼 ∙ 𝐹 ∙ (𝑡𝑤 − 𝑡𝑓𝑜𝑙𝑦) ∙ 𝜏

𝑄 – hő [J] 𝐹 – felület [m2] 𝜏 – idő [s] 𝛼 – hőátadási tényező [𝑊

𝑚2𝐾]

Page 13: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 13 -

Nusselt egyenlet: a termikus határréteg és a hőátadási tényező kapcsolata:

A tw hőmérsékletű felületről a t∞ hőmérsékletű közeg felé az energia terjedése az (x) helyen, a δx

vastagságú rétegben hővezetéssel történik. Az energiamegmaradás miatt az egységnyi felületen átadott

hő megegyezik a határrétegben vezetett hővel. A hőátadás alapegyenlete, és a FOURIER törvény δx rétegre

felírt egyenlete alapján következik:

𝛼𝑥(𝑡𝑤 − 𝑡∞) = 𝜆𝑓

(𝑡𝑤 − 𝑡∞)

𝛿𝑥

Általánosan – valamennyi határréteges áramlásra – differenciális alakban:

𝛼 (𝑡𝑤 − 𝑡∞) = −𝜆𝑓 ∙ 𝑔𝑟𝑎𝑑(𝑡)|𝑤

Page 14: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 14 -

Emelt

A hővezetés általános differenciálegyenletének (HVÁDE) származtatása, az egyenlet fizikai tartalma, kapcsolata a termodinamika főtételeivel.

SZÁRMAZTATÁS: A vizsgált tartomány kicsiny – dV – térfogat elemében (=cella) termodinamikai egyensúly

van, a képzeletbeli cella válaszfalak a termikus kölcsönhatás számára átjárhatóak, a cellabeli állapotjelzők

között az állapotegyenlet érvényes, és

𝑑𝐻 = 𝜌 ∙ 𝑐𝑝 ∙ 𝑑𝑡

Az energia megmaradás tétele érvényes, azaz a cellába be- és kilépő energia különbsége és a cellában

felszabaduló energia teljesen a cella entalpiájának megváltozására fordítódik

FIZIKAI TARTALOM: Az elemi dV térfogat energiamérlege: entalpia megváltozás (𝜌𝑐𝑝𝑑𝑡

𝑑𝜏) = keletkező

energia (��𝑉) - (ki - bemenő energiaáram) (−𝜆∇2𝑡)

KAPCSOLAT: Az elemi cellában a hőtan 0. és 1.főtételét használjuk, azaz a termodinamikai egyensúly és az

energiamegmaradás törvényét.

EGYENLET: 𝜌 𝑐𝑝𝑑𝑡

𝑑𝜏= ��𝑉 + 𝜆 ∇2𝑡

A HVÁDE megoldásának lehetőségei: az alapmegoldások. Az alapmegoldás fogalma, típusai.

HVÁDE egydimenziós általános alak (ahol n=0 a síkfalak, n=1 hengerek és n=2 gömbök):

𝜕𝑡

𝜕𝜏= 𝑎 (

𝜕2𝑡

𝜕𝑟2+

𝑛

𝑟

𝜕𝑡

𝜕𝑟 )

A 𝑡(𝑟, 𝜏) megoldást két függvény szorzataként feltételezzük, ahol az egyik csak a helytől, míg a másik csak

az időtől függ: 𝑡(𝑟, 𝜏) = Φ(𝜏) ∙ Ψ(𝑟), amiket visszahelyettesítve az egyenletbe egy ±𝛽2 szeparációs

állandóval egyeznek meg.

Az időfüggő tag megoldása:

Φ = C0 ∙ 𝑒−𝛽2𝑎𝜏

A helyfüggő tag megoldása függ a geometriától, a 𝐽0 és 𝑌0 az első és másod fajú, nullad rendű BESSEL

függvényektől.

HVÁDE általános megoldását így írhatjuk:

𝑡(𝑟, 𝜏) = C0 ∙ 𝑒−𝛽2𝑎𝜏 ∙ Ψ(𝛽 ∙ 𝑟)

Page 15: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 15 -

A hibafüggvény, mint alapmegoldás: alkalmazhatóság.

A FOURIER egyenletnek n=0 esetében, a dimenziók vizsgálata alapján feltételezhetjük, hogy létezik az x és τ

változókból képzett 𝜉 =𝑥

2√𝑎∙𝜏 dimenziótlan változótól függő megoldása, azaz:

𝑡(𝑥, 𝜏) = Θ(𝜉)

Visszahelyettesítve a HVÁDE-be közönséges differenciálegyenletet kapunk:

Θ′′ + 2 ∙ 𝜉 ∙ Θ′ = 0

melynek általános megoldása kifejezhető a GAUSS hiba integrállal, amit röviden hibafüggvénynek nevezünk

és erf(z) a használatos jelölése, a definíciója pedig:

erf 𝑧 =2

√𝜋∙ ∫ 𝑒−𝜉2

𝑑𝜉𝑧

0

Alkalmazás: végtelen rövid idő alatt bekövetkező, véges hőfelszabadulás hatására fellépő

hőmérsékleteloszlások meghatározására használhatunk fel.

Page 16: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 16 -

IV. TÉTEL Alapkérdések

Bordák és rudak hővezetése. A borda fogalma. A borda hőmérséklet-eloszlását leíró differenciál-egyenlet származtatása: az elemi bordaszakasz differenciális hőmérlege.

A bordahatásfok. A borda hatásfokának függése a borda egyes jellemzőitől: hossz, anyagminőség, keresztmetszet.

A hallgató válaszában:

adjon meghatározást a bordára (keresztmetszetéhez képest hosszú rúd, mely jellemezhető a hossz

szerinti hőm. eloszlással);

írja fel a FOURIER- és a differenciális NEWTON- egyenlet felhasználásával egy elemi (dx)

bordaszakasz hőmérlegét, a válasz tartalmazzon szóbeli magyarázatot;

adjon meghatározást (nem számítási összefüggést!) a bordahatásfokra;

szöveges magyarázattal kiegészített ábrákkal mutassa meg a borda hatásfokának függését a

megadott mennyiségek közül legalább kettőre.

Források:

Hőközlés jegyzet 6.1.5. , 6.1.6. fejezet (14.old , 20.old , 23.old)

Hőközlés segédlet 11. fejezet

Emelt

A forrás jelensége. A forrás NUKIYAMA féle jelleggörbéje és forrás egyes szakaszai, azok jellemzői.

A buborékképződés mechanizmusa. A forrás intenzitását meghatározó jellemzők.

Források:

Hőközlés jegyzet 10.6.1. fejezet (105-106.old)

Page 17: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 17 -

Alapkérdések

Borda fogalma:

Hőátadó felületek bordázattal való megnövelése egy gyakran alkalmazott módja egy falfelület és a vele

érintkező közeg közötti hőáram fokozásának. Bordázaton a falfelületből a felület melletti közegbe kinyúló

(keresztmetszetéhez képest hosszú), általában a fallal megegyező anyagú, magával a fallal hővezetéses

kapcsolatban álló elemeket értünk.

Borda hatásfok:

Az anyagok véges hővezető képessége miatt a bordázott felület hőárama nem a felület növekedésének

arányában növekszik, mert a bordák átlagos felületi hőmérsékletének eltérése a körülöttük lévő közeg

hőmérsékletétől kisebb, mint a bordázatlan felület esetében.

A bordahatásfok, a borda tényleges hőáramának és az állandó (tw) hőmérsékletű, azaz végtelen hővezetési

tényezőjű borda azonos feltételek melletti hőáramának hányadosa, azaz:

𝜂𝑏 =��𝑏

��𝑏,∞

Borda hatásfokának függése hossztól, anyagminőségtől, keresztmetszettől:

A hatásfok lemezbordára:

𝜂𝑏 =tanh 𝑚𝐻

𝑚𝐻

𝑚 = √𝛼𝑈

𝜆𝐴 – Bordaparaméter, [

1

𝑚]

𝑈 – borda keresztmetszetének kerülete [𝑚]

𝐴 – borda keresztmetszete [𝑚]

𝐻 – borda hossza [𝑚]

A hatásfok 𝛼, 𝑈, 𝐻 függvényében csökken, 𝜆, 𝐴 függvényében nő.

Page 18: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 18 -

Borda differenciálegyenlete:

Elemi bordaszakasz hőmérlege:

Fourier-egyenlet az 𝐴 felületen hővezetéssel áthaladt hőre:

�� = −𝜆 𝐴(𝑥)𝑑𝑡

𝑑𝑥

Newton-egyenlet az elemi szakasz palástján átadott hőre:

𝑄�� = 𝛼 𝑈(𝑥) 𝑑𝑥 [𝑡(𝑥) − 𝑡∞]

Az energia megmaradását alkalmazva a rúdból kivágott szeletre, írhatjuk, hogy a vezetéssel belépő és

távozó hőáram különbsége a paláston leadott hőárammal egyezik meg:

�� − (�� + 𝑑��) = ��𝑝

Behelyettesítve a Newton-egyenletet:

−𝑑�� = 𝛼 𝑈(𝑥) 𝑑𝑥 [𝑡(𝑥) − 𝑡∞]

Behelyettesítve a Fourier-egyenletet és dx-el osztva:

𝑑

𝑑𝑥(𝜆 𝐴(𝑥)

𝑑𝑡

𝑑𝑥) = 𝛼 𝑈(𝑥) [𝑡(𝑥) − 𝑡∞]

Ha a borda keresztmetszete állandó, akkor 𝐴(𝑥) = 𝐴 állandó helyettesítéssel, és 𝑡(𝑥) − 𝑡∞ = Δ𝑡(𝑥)

helyettesítéssel a következő alakra hozható a diffegyenlet:

𝜆 𝐴𝑑2 Δ𝑡(𝑥)

𝑑𝑥2= 𝛼 𝑈 Δ𝑡(𝑥)

Bevezetve az 𝑚2 =𝛼𝑈

𝜆𝐴 bordaparamétert, a borda differenciálegyenlete:

𝑑2 Δ𝑡(𝑥)

𝑑𝑥2= 𝑚2 Δ𝑡(𝑥)

Page 19: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 19 -

Emelt

A forrás jelensége. A forrás NUKIYAMA féle jelleggörbéje és forrás egyes szakaszai, azok jellemzői.

JELENSÉG: A forralás során, a folyadék-gőz fázisátalakulás a folyadék felszín alatt következik be, és a

keletkező gőz buborékok formájában áramlik át a folyadékon.

A fűtőfelület (tw) hőmérsékletéről egy vékony (néhány mm-es) rétegben csökken a hőmérséklet a telítési

hőmérsékletet (ts) megközelítő értékig.

FORRÁS SZAKASZAI: először a felülettel érintkező folyadékot a fűtőfelülettől átvett energia túlhevíti, majd a

túlhevített folyadékból a fázisátalakulással a hő gyakorlatilag ellenállás nélkül jut a gőzbuborékba.

JELLEMZŐI: A fűtőfelületről a gőz fázis felé a közvetlen hőterjedés elhanyagolható, így a forrásos hőátadás

mértékét a fűtőfelület és a túlhevített folyadékréteg közötti hőellenállás határozza meg.

NUKIYAMA féle jelleggörbe:

A buborékképződés mechanizmusa. A forrás intenzitását meghatározó jellemzők.

MECHANIZMUS: A forralásnál tapasztalt intenzív hőátadást a fűtőfelületen keletkező majd leszakadó és újra

keletkező gőzbuborékok által a fűtőfelülettel érintkező folyadékrétegben gerjesztett gyors oszcilláló

áramlások okozzák. A forrásnak ezt az állapotát buborékos forrásnak nevezzük. A gőzbuborékok

keletkezésének, leszakadásának körülményei — az előbbiek szerint — a hőátadás mértékére jelentős

hatással vannak.

INTENZITÁS MEGHATÁROZÓI: A jelenség részletezése nélkül, a felületi feszültség és a felület

nedvesítésének szerepe alapvető a folyamatban.

A keletkező buborékok számát és méretét továbbá meghatározza a fűtőfelületen fellépő hőáramsűrűség

(hőterhelés) is. A hőáram, a hőátadási tényező és a hőmérséklet-különbség közötti kapcsolatot ábrázolja a

NUKIYAMA féle jelleggörbe.

Δ𝑡𝑘𝑟𝑖𝑡 alatt van buborékos forrás, a felett filmforrásról beszélünk. Ekkor a gőzbuborékok összefüggő

gőzpárnává (filmmé) állnak össze a fűtő felületen. Ebben az állapotban a fűtőfelülettel megszűnik a

folyadék közvetlen érintkezése és nagyságrendekkel nő a hőellenállás

Page 20: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 20 -

V.TÉTEL Alapkérdések

A hőtani (fizikai) jelenségek hasonlóságának feltételei. A hasonlósági szám (kritérium) fogalma.

A hasonlóság alkalmazása az időben változó hővezetési feladatok megoldása során. A FOURIER- és a BIOT féle hasonlósági kritérium származtatása és fizikai tartalma.

A hallgató válaszában:

– adja meg hasonlóság négy feltételét;

– adjon meghatározást a hasonlósági számra (az egyenlet dimenziótlanítása során nyert dimenziótlan mennyiségcsoport, a hasonlóság egyik feltétele ezek azonossága)

– adja meg a FOURIER szám forrását (HVÁDE), kiszámításának módját (összefüggés), fizikai tartalmát (időbeli hasonlóság, dimenziótlan idő, a tárolt és a vezetéses hő aránya)

– adja meg a BIOT szám forrását (III. fajú peremfeltétel egyenlet), kiszámításának módját (összefüggés), fizikai tartalmát (peremfeltételek hasonlósága, konvektív és konduktív hőtranszport viszonya)

Források:

Hőközlés jegyzet 8.3. fejezet (59-61.old)

Emelt

A kondenzáció jelensége. A kondenzáció NUSSELT féle leírása (lamináris filmkondenzáció).

A kondenzátum film mozgását alakító erők. A lokális és az átlagos hőátadási tényező meghatározásának módja. A kondenzátum film differenciális mérlegegyenletei.

Források:

Hőközlés jegyzet 10.6.2 fejezet (107-108.old)

Page 21: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 21 -

Alapkérdések

Hasonlóság négy feltétele:

leíró differenciálegyenletek dimenziótlan alakja azonos

kezdeti feltételek dimenziótlan alakja azonos

peremfeltételek dimenziótlan alakja azonos

geometriai körülmények hasonlóak, egyszerű geometriai transzformációval azonossá tehetőek

Hasonlósági szám definíciója:

Az egyenlet dimenziótlanítása során nyert dimenziótlan mennyiségcsoport, a hasonlóság egyik feltétele

ezek azonossága.

Fourier szám:

Bevezetve a következő dimenziótlan változókat:

𝜉 =𝑥

𝐿 𝜗 =

𝑡(𝑥,𝜏)−𝑡∞

𝑡0−𝑡∞

Behelyettesítve a hővezetés általános differenciálegyenletébe:

𝜕𝑡

𝜕𝜏= 𝑎 (

𝜕2𝑡

𝜕𝑟2+

𝑛

𝑟

𝜕𝑡

𝜕𝑟 )

(𝑡0 − 𝑡∞)𝜕𝜗

𝜕𝜏= 𝑎

(𝑡0 − 𝑡∞)

𝐿2 (𝜕2𝜗

𝜕𝜉2+

𝑛

𝜉 𝜕𝜗

𝜕𝜉)

Átrendezve:

𝜕𝜗

𝑎 𝜕𝜏𝐿2

=𝜕2𝜗

𝜕𝜉2+

𝑛

𝜉 𝜕𝜗

𝜕𝜉

Bevezetve a 𝑎 𝜕𝜏

𝐿2 = 𝜕𝐹𝑜 Fourier számot:

𝜕𝜗

𝜕𝐹𝑜=

𝜕2𝜗

𝜕𝜉2+

𝑛

𝜉 𝜕𝜗

𝜕𝜉

A bevezetett dimenziótlan Fourier szám a hővezetés általános differenciálegyenletének hasonlósági száma.

A Fourier szám a hőmérséklet-eloszlások időbeli hasonlóságának kritériuma, vagyis dimenziótlan idő. A

tárolt és a vezetéses hő arányát adja meg.

Tehát ha különböző anyagok Fourier száma megegyezik, akkor a differenciálegyenleteik dimenziótlan

megoldása azonos.

Page 22: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 22 -

Biot szám:

A harmadfajú peremfeltétel dimenziótlan változókkal felírva:

−𝜆𝑑𝑡

𝑑𝑛|

𝑤

= 𝛼(𝑡𝑤 − 𝑡𝑓𝑜𝑙𝑦)

𝜆1

𝜗𝑤

(𝑡0 − 𝑡∞)

𝐿

𝛿𝜗

𝛿𝜉|

𝑤

= 𝛼(𝑡0 − 𝑡∞)

Átrendezve:

1

𝜗𝑤

𝛿𝜗

𝛿𝜉|

𝑤

=𝛼 ∙ 𝐿

𝜆= 𝐵𝑖

Az egyenlet jobb oldalán álló dimenziótlan mennyiséget Biot számnak nevezzük. Ez a harmadfajú

peremfeltétel hasonlósági kritériuma. A konvektív (áramlásos) és konduktív (vezetéses) hőtranszport

viszonya.

Tehát ha két anyagra a Biot szám megegyezik, akkor dimenziótlan hőmérséklet aránya a dimenziótlan

hőmérséklet-differenciálhányadoshoz azonos.

Page 23: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 23 -

Emelt

A kondenzáció jelensége. A kondenzáció NUSSELT féle leírása (lamináris filmkondenzáció).

JELENSÉG: Abban az esetben, amikor egy szilárd felület hőmérséklete alacsonyabb, mint a vele érintkező

gőz telítési hőmérséklete, a gőz kicsapódik a felületre, azaz kondenzáció történik. A keletkező folyadék

(annak függvényében, hogy a kondenzátum nedvesíti-e a felületet) cseppek vagy összefüggő hártya

formájában, a nehézségi erő hatására a felületen csorog végig. A gyakorlati esetek döntő többségében az

utóbbi formájú un. filmkondenzáció történik.

NUSSELT féle leírás: A kondenzálódó gőzt a szilárd felülettől a felület mentén áramló kondenzátum

elválasztja, és a kondenzáció a folyadék film felszínén történik, a felszabaduló energia (párolgáshőnek

megfelelő mennyiség) pedig a folyadékrétegen keresztül, annak hőellenállásán át jut a szilárd felülethez.

Az energiamegmaradás miatt az egységnyi felületen átadott hő megegyezik a határrétegben vezetett

hővel. A hőátadás alapegyenlete, és a FOURIER törvény δx rétegre felírt egyenlete alapján Nusselt egyenlet:

𝛼𝑥(𝑡𝑤 − 𝑡∞) = 𝜆𝑓

(𝑡𝑤 − 𝑡∞)

𝛿𝑥

A kondenzátum film mozgását alakító erők. A lokális és az átlagos hőátadási tényező meghatározásának módja. A kondenzátum film differenciális mérlegegyenletei.

ERŐK: Egy adott (y) magasságban a folyadék film (δy) vastagságát és a film áramlási viszonyait

meghatározza az adott (H) szakaszon kondenzálódott folyadék mennyisége, a nehézségi erő és a folyadék

rétegben fellépő viszkózus erők aránya.

HŐÁTADÁSI TÉNYEZŐ: a folyadék hővezetési tényezője mellett a folyadékfilm áramlási feltételei által

befolyásolt, δy vastagságtól függ. A filmben áramló kondenzátum mennyiségét a (H) magasság és a Δt=ts –

tw hőmérséklet-különbség együttesen határozza meg. Abban az esetben, ha a gőz-folyadék felszínen a

súrlódást elhanyagolhatjuk, és a folyadékfilm lamináris, alkalmazható NUSSELT által az átlagos hőátadási

tényező meghatározására levezetett összefüggés, ami függ a magasságtól (𝐻), telítési és felületi

hőmérséklettől (𝑡𝑠, 𝑡𝑤), viszkozitástól (𝜇), hővezetési tényezőtől (𝜆), sűrűségtől (𝜌) és párolgáshőtől (𝑟).

MÉRLEGEGYENLETEK: A FOURIER törvény (6.2) alapján a λf hővezetési tényezőjű, δy vastagságú rétegen

keresztül a szilárd felület felé a hőáramsűrűség:

��𝑦 =𝜆𝑓

𝛿𝑦

(𝑡𝑠 − 𝑡𝑤)

A hőáramsűrűséget felírhatjuk az (1.4) hőátadás alapegyenlete alapján is:

��𝑦 = 𝛼(𝑡𝑠 − 𝑡𝑤)

Page 24: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 24 -

VI.TÉTEL Alapkérdések

A természetes és a kényszerített áramlás összehasonlító bemutatása. A természetes és kényszerített áramlás megkülönböztetésének módja, az áramlásokat alakító erők alapján.

Az áramlásokat jellemző hasonlósági számok értelmezése, szerepük a hőátadási tényező meghatározásában. A természetes és kényszerített áramlás módozatai és ezek hatása a hőátadás intenzitására.

A hallgató válaszában:

– adja meg a kétfajta áramlás jellegzetességeit és megkülönböztetésük módját;

– mutassa be, hogy mely áramlások esetén mely erők dominálnak;

– definiálja a természetes és a kényszerített áramláshoz kapcsolódó hasonlósági számokat és azok fizikai tartalmát;

– jellemezze a természetes (határolt/határolatlan térben történő), valamint a kényszerített (csatornában, test mellett, ill. test körül végbemenő) áramlásokat;

– röviden utaljon a határréteg szerepére (különös tekintettel a természetes áramlásra);

– mutassa be, hogy a geometriai és hőmérsékleti körülmények hogyan befolyásolják a hőátadás intenzitását (a hőátadási tényező nagyságát).

Források:

Hőközlés jegyzet 10.1 , 10.2 , 10.3. , 10.4. , 10.5. fejezetek (85-104.old)

Emelt

Az egyenáramú hőcserélő differenciális mérlegegyenletei. A közegek hőmérsékletváltozását leíró differenciálegyenlet levezetése.

A logaritmikus közepes hőmérsékletkülönbségre vonatkozó egyenlet levezetése.

Források:

Hőközlés jegyzet 11.1.1. , 11.2.1 fejezetek (109-111.old , 113-114.old)

Page 25: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 25 -

Alapkérdések

Természetes áramlás:

OK: hőmérséklet-különbség -> sűrűségváltozás -> felhajtóerő -> áramlás

PÉLDA: radiátor által felmelegített levegő felfelé áramlása

ERŐK: felhajtó és súrlódó erő

Határréteg jellegű áramlás

JELLEMZŐK:

határolatlan térben történő áramlás: határfelületek nem befolyásolják a határréteget (síklap

egy szobában)

határolt térben történő áramlás: határfelületek befolyásolják a határréteget (cső)

MÉRTÉKADÓ:

jellemző méret: pl függőleges lapnál magasság, vízszintes csőnél átmárő

mértékadó hőmérséklet: szilárd felszín és zavartalan hőmérséklet átlaga

Kényszerített áramlás:

OK: külső mechanikai hatás

PÉLDA: hajszárító ventilátor által a fűtőszálon átfújt levegő

ERŐK: térerő, nyomóerő, súrlódási erő, tehetetlenségi erő

Kontinuitás, Navier-Stokes és HVÁDE-ből számítható sebesség és hőmérséklet eloszlás

JELLEMZŐK:

test mellett történő áramlás (pl hosszú síklapra fújunk -> határréteg)

test körüli áramlás (pl hengerre fújunk)

csatornában történő áramlás

lamináris, vagy turbulens (Re > 2300)

MÉRTÉKADÓ:

jellemző méret: áramlási hossz vagy áramlásra merőleges méret

mértékadó hőmérséklet: zavartalan áramlás hőmérséklete, csőnél az átlag

mértékadó sebesség: zavartalan áramlás sebessége

Page 26: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 26 -

Hasonlósági számok:

Különböző áramlások hasonlóak egymással, ha a hasonlósági számaik megegyeznek.

Nusselt szám: Nusselt egyenletből vezethető le, hőátadás hasonlóságát fejezi ki

𝑁𝑢 =𝛼𝐿

𝜆𝑓

Reynolds szám: Navier-Stokes egyenletből vezethető le, tehetetlenségi és súrlódó erők

viszonyát fejezi ki

𝑅𝑒 =𝑤𝑘𝐿

𝜈

Peclet [piklé] szám: HVÁDE-ből vezethető le, hőmérséklet eloszlások hasonlóságát fejezi ki

𝑃𝑒 =𝑤𝑘𝐿

𝑎

Prandtl szám: Navier-Stokes egyenletből vezethető le elhanyagolásokkal, hő és impulzus

transzport hasonlóságát fejezi ki (Pe és Re hányadosa, anyagjellemző)

𝑃𝑟 =𝜈

𝑎

Grashoff szám: Navier-Stokes egyenletből vezethető le természetes áramlásoknál, viszkózus és

felhajtó erők viszonyát fejezi ki (𝛽: térfogati hőtágulási együttható 1/K)

𝐺𝑟 =𝑔 𝛽 Δ𝑡 𝐿3

𝜈2

Természetes áramlásnál a Nusselt szám függ a Prandtl számtól és a Grashoff számtól

𝑁𝑢(𝐺𝑟, Pr)

Kényszerített áramlásnál a Nusselt szám függ a Reynolds és Prandtl számtól valamint korrekciós tényezőtől

𝑁𝑢𝑘(𝑅𝑒, 𝑃𝑟, 𝑘)

Hőátadás intenzitását befolyásoló tényezők:

A hőátadás intenzitása a hőátadási tényezőtől függ. Nusselt egyenlet alapján:

𝛼𝑥(𝑡𝑤 − 𝑡∞) = 𝜆𝑓

(𝑡𝑤 − 𝑡∞)

𝛿𝑥

tehát a hőátadási tényező függ a határréteg vastagságától és a folyadék hővezetési tényezőjétől.

Befolyásoló tényezők továbbá a hőmérséklet és a geometria. Newton egyenlet alapján:

𝑄 = 𝛼 ∙ 𝐹 ∙ (𝑡𝑤 − 𝑡𝑓𝑜𝑙𝑦) ∙ 𝜏

𝛼 =��

(𝑡𝑤 − 𝑡𝑓) ∙ 𝐹

ezzel egy adott időtartamra és felületre vonatkozó átlagos értéket kapunk, hiszen a hőmérséklet-különbség

hely és idő szerint változhat.

Page 27: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 27 -

Emelt

Az egyenáramú hőcserélő differenciális mérlegegyenletei. A közegek hőmérsékletváltozását leíró differenciálegyenlet levezetése.

A hőcserélő hőmérlege az energiamegmaradás értelmében: a felmelegedő közeg által felvett hő egyenlő a

csökkenő hőmérsékletű közeg által leadott hővel. Bevezetve: Δ𝑡 = |𝑡𝑘𝑖 − 𝑡𝑏𝑒| és �� [𝑊

𝐾] = ��𝑐 –

hőkapacitás áram, ahol az 1-es indexű a kisebb:

�� = 𝑊1 Δ𝑡1 = ��2Δ𝑡2

Egy elemi 𝑑𝐹 felület mentén a két közeg közötti hőátvitel hőárama:

𝑑�� = 𝑘 ∙ 𝑑𝐹 ∙ (𝑡1 − 𝑡2)

bevezetve még: Δ𝑡 = (𝑡1 − 𝑡2) a fenti egyenleteket rendezve a következő egyenletet kapjuk:

−𝛽 ∙ 𝑘 ∙ 𝑑𝐹 =𝑑Δ𝑡

Δ𝑡↓ 𝑖𝑛𝑡𝑒𝑔𝑟á𝑙𝑣𝑎

− ∫ 𝛽 ∙ 𝑘 ∙ 𝑑𝑓𝐹

0

= ∫𝑑Δ𝑡

Δ𝑡

Δ𝑡𝐹

Δ𝑡0

Δ𝑡𝐹 = Δ𝑡0 ∙ 𝑒−𝛽𝑘𝐹

ahol egyenáramra Δ𝑡0 = (𝑡1𝑏𝑒 − 𝑡2𝑏𝑒). Visszahelyettesítve a mérlegegyenletekbe és integrálva kapjuk az

egyes közegek hőmérsékletváltozását az F felület függvényében (111.old (11.10))

A logaritmikus közepes hőmérsékletkülönbségre vonatkozó egyenlet levezetése.

A hőátvitel hőáramának összefüggésében a hőmérséklet különbség helyére a Δ𝑡𝐹 –et helyettesítve:

𝑑�� = 𝑘 ∙ 𝑑𝐹 ∙ Δ𝑡0𝑒−𝛽𝑘𝐹

A teljes felületre a hőáram integrálás és rendezés után (114.old):

∫ 𝑑����

0

= ∫ 𝑘 ∙ Δ𝑡0𝑒−𝛽𝑘𝑓 𝑑𝑓𝐹

0

�� =Δ𝑡0 − Δ𝑡𝐹

lnΔ𝑡0Δ𝑡𝐹

∙ 𝑘 ∙ 𝐹

ahol az első tag a logaritmikus hőmérsékletkülönbség: Δ𝑡 𝑙𝑜𝑔 =

Δ𝑡0−Δ𝑡𝐹

lnΔ𝑡0Δ𝑡𝐹

Egyenáram esetén:

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = −𝑊1 ∙ d𝑡1

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = +𝑊2 ∙ d𝑡2

bevezetve: 𝛽 = (1

𝑊1+

1

𝑊2)

Page 28: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 28 -

VII.TÉTEL Alapkérdések

Részletesen (vázlat, egyenlet és szöveges magyarázat) mutasson be legalább három, a hővezetés általános differenciálegyenletének megoldásához alkalmazható peremfeltételt!

Mely egyenletből származtatható és hogyan (levezetés) a BIOT féle hasonlósági kritérium?

A hallgató válaszában:

– részletesen mutassa be az elsőfajú (Dirichlet), a másodfajú (Neumann-féle) és a harmadfajú, mint általánosan használt peremfeltételeket;

– opcionális lehetőségként bemutathatja (pluszpontért) a szilárd felületek érintkezését, a sugárzás figyelembevételét lehetővé tevő peremfeltételeket;

– minden peremfeltételt ábrával, differenciálegyenlettel és szöveges magyarázattal mutasson be;

– a harmadfajú peremfeltételt dimenziótlanítva vezesse be a Biot féle a hasonlósági kritériumot.

Források:

Hőközlés jegyzet 8.1. , 8.3. fejezetek (55-57.old , 61.old)

Emelt

Az ellenáramú hőcserélő differenciális mérlegegyenletei. A közegek hőmérsékletváltozását leíró differenciálegyenlet levezetése.

A logaritmikus közepes hőmérsékletkülönbségre vonatkozó egyenlet levezetése.

Források:

Hőközlés jegyzet 11.1.1. , 11.2.1 fejezetek (109-111.old , 113-114.old)

Page 29: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 29 -

Alapkérdések

A peremfeltétel:

Az időben változó hővezetési feladat megoldása azt jelenti, hogy meghatározzuk azt a t(r,τ ) függvényt

mely megoldásfüggvénye a hővezetés differenciálegyenletének, továbbá kielégíti az adott feladatban

szereplő test (tartomány) határán érvényes, a test és a környezete közötti kölcsönhatásokat leíró un.

peremfeltételi egyenleteket is.

Elsőfajú (Dirichlet) peremfeltétel:

A tartomány adott határán a hőmérséklet értékét ismerjük. Ez jelentheti azt is, hogy valamilyen állandó

érték, vagy ha nem állandó, akkor az idő ismert függvénye szerint változik. Ilyen eset az, amikor ismerjük a

test felszíni hőmérsékletét, ami állandó, mert pl. tökéletes hőkontaktusban van egy végtelen hőkapacitású

“hőtartállyal”. Változhat a felszín hőmérséklete pl. periodikusan (ω körfrekvenciával)

𝑡𝑤 = 𝑡0 sin 𝜔𝜏

Másodfajú (Neumann) peremfeltétel:

A tartomány adott határán a ��𝒘 hőáramsűrűséget ismerjük, ami a FOURIER törvény szerint egyben azt

jelenti, hogy a hőmérsékletet meghatározó t(r,τ ) függvény differenciálhányadosát ismerjük a peremen. Ez

lehet állandó, vagy az idő ismert függvényeként változó érték. Például elektromos fűtőtesttel melegítjük a

test felszínét. Speciális eset a hőszigetelt felszín, ilyenkor a hőáramsűrűség és ezzel a hőmérsékletet leíró

függvény normális irányú deriváltja is zérus.

Matematikai formában: (n a felületre merőleges normál vektor, a w index pedig a felszínre utal)

��𝑤 = −𝜆𝑑𝑡

𝑑𝑛|

𝑤

Harmadfajú peremfeltétel:

A test adott felszínén a hőáramsűrűség arányos a test felszíni és a környezet hőmérsékletének a

különbségével - azaz ha hőátadás történik. Ekkor a hőátadás alapegyenlete és a FOURIER törvény alapján:

−𝜆 𝑑𝑡

𝑑𝑛= 𝛼(𝑡𝑤 − 𝑡𝑓)

átrendezve:

−𝜆

𝛼∙

𝑑𝑡

𝑑𝑛= 𝑡𝑤 − 𝑡𝑓

Az egyenlet szerint a hőmérsékletet a test belsejében leíró függvény deriváltjának értéke a test felszínén

minden időpillanatban arányos a felszín és a vele érintkező közeg hőmérsékletének különbségével, az

arányossági tényező pedig a hőátadási- és a hővezetési tényező hányadosa.

Page 30: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 30 -

Peremfeltételek ábrával:

Biot féle hasonlósági kritérium:

Bevezetve a következő dimenziótlan változókat:

𝜉 =𝑥

𝐿 𝜗 =

𝑡(𝑥,𝜏)−𝑡∞

𝑡0−𝑡∞

A harmadfajú peremfeltétel dimenziótlan változókkal felírva:

−𝜆𝑑𝑡

𝑑𝑛|

𝑤

= 𝛼(𝑡𝑤 − 𝑡𝑓𝑜𝑙𝑦)

𝜆1

𝜗𝑤

(𝑡0 − 𝑡∞)𝛿𝜗

𝐿 ∙ 𝛿𝜉|

𝑤

= 𝛼(𝑡0 − 𝑡∞)

Átrendezve:

1

𝜗𝑤

𝛿𝜗

𝛿𝜉|

𝑤

=𝛼 ∙ 𝐿

𝜆= 𝐵𝑖

Az egyenlet jobb oldalán álló dimenziótlan mennyiséget Biot számnak nevezzük. Ez a harmadfajú

peremfeltétel hasonlósági kritériuma. A konvektív és konduktív hőtranszport viszonya.

Tehát ha két anyagra a Biot szám megegyezik, akkor dimenziótlan hőmérséklet aránya a dimenziótlan

hőmérséklet-differenciálhányadoshoz azonos.

Page 31: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 31 -

Emelt

Az ellenáramú hőcserélő differenciális mérlegegyenletei. A közegek hőmérsékletváltozását leíró differenciálegyenlet levezetése.

A hőcserélő hőmérlege az energiamegmaradás értelmében: a felmelegedő közeg által felvett hő egyenlő a

csökkenő hőmérsékletű közeg által leadott hővel. Bevezetve: Δ𝑡 = |𝑡𝑘𝑖 − 𝑡𝑏𝑒| és �� [𝑊

𝐾] = ��𝑐 –

hőkapacitás áram, ahol az 1-es indexű a kisebb:

�� = 𝑊1 Δ𝑡1 = ��2Δ𝑡2

Egy elemi 𝑑𝐹 felület mentén a két közeg közötti hőátvitel hőárama:

𝑑�� = 𝑘 ∙ 𝑑𝐹 ∙ (𝑡1 − 𝑡2)

bevezetve még: Δ𝑡 = (𝑡1 − 𝑡2) a fenti egyenleteket rendezve a következő egyenletet kapjuk:

−𝛽 ∙ 𝑘 ∙ 𝑑𝐹 =𝑑Δ𝑡

Δ𝑡↓ 𝑖𝑛𝑡𝑒𝑔𝑟á𝑙𝑣𝑎

− ∫ 𝛽 ∙ 𝑘 ∙ 𝑑𝑓𝐹

0

= ∫𝑑Δ𝑡

Δ𝑡

Δ𝑡𝐹

Δ𝑡0

Δ𝑡𝐹 = Δ𝑡0 ∙ 𝑒−𝛽𝑘𝐹

ahol ellenáramra Δ𝑡0 = (𝑡1𝑏𝑒 − 𝑡2𝑘𝑖). Visszahelyettesítve a mérlegegyenletekbe és integrálva kapjuk az

egyes közegek hőmérsékletváltozását az F felület függvényében (111.old (11.10))

A logaritmikus közepes hőmérsékletkülönbségre vonatkozó egyenlet levezetése.

A hőátvitel hőáramának összefüggésében a hőmérséklet különbség helyére a Δ𝑡𝐹 –et helyettesítve:

𝑑�� = 𝑘 ∙ 𝑑𝐹 ∙ Δ𝑡0𝑒−𝛽𝑘𝐹

A teljes felületre a hőáram integrálás és rendezés után (114.old):

∫ 𝑑����

0

= ∫ 𝑘 ∙ Δ𝑡0𝑒−𝛽𝑘𝑓 𝑑𝑓𝐹

0

�� =Δ𝑡0 − Δ𝑡𝐹

lnΔ𝑡0Δ𝑡𝐹

∙ 𝑘 ∙ 𝐹

ahol az első tag a logaritmikus hőmérsékletkülönbség: Δ𝑡 𝑙𝑜𝑔 =

Δ𝑡0−Δ𝑡𝐹

lnΔ𝑡0Δ𝑡𝐹

Ellenáram esetén:

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = −𝑊1 ∙ d𝑡1

𝑘 ∙ (𝑡1 − 𝑡2) ∙ 𝑑𝐹 = −𝑊2 ∙ d𝑡2

bevezetve: 𝛽 = (1

𝑊1−

1

𝑊2)

Page 32: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 32 -

VIII.TÉTEL Alapkérdések

Ismertesse a hőterjedés alapvető formáit! Milyen módon jut el a termikus energia egyik helyről a másikra az egyes hőterjedési módok során?

Írja fel a hőterjedés alapvető formáit leíró alapegyenleteket és adja meg ezen egyenletek elnevezéseit is, valamint nevesítse az egyenletben előforduló mennyiségeket és adja meg mértékegységeiket!

A hallgató válaszában:

– részletesen ismertesse a hőterjedési módokat, különös tekintettel a mikrorészecskék és mikrostruktúrák, valamint az elektromágneses hullámok szerepét illetően;

– elemezze a hőterjedési módokat a közvetítő közeg szükségessége szempontjából;

– írja fel az egyes hőterjedési módokhoz tartozó alapegyenleteket (jellemzően a hőáramra vagy hőáramsűrűségre vonatkozókat);

– adja meg az egyenletekben szereplő valamennyi mennyiség megnevezését és mérték-egységét;

– végezze el a felírt egyenletek dimenzióanalízisét.

Források:

Hőközlés jegyzet 6.1.1. , 6.1.2. , 6.1.3. , 6.1.5 , 12.1.2 fejezetek (5-8.old , 12.old , 135.old)

Emelt

Milyen módszerek állnak rendelkezésre a két test közötti sugárzásos hőáram csökkentésére? Mik ezen módszerek jellemzői?

Mutassa be, hogy a sík felületek közé helyezett további sík lemezek hogyan befolyásolják a sugárzásos hőáramot!

Források:

gyakorlati jegyzet

Page 33: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 33 -

Alapkérdések

Hővezetés:

DEFINÍCIÓ: A hővezetés (konduktív hőtranszport) az energia térbeli terjedésének az a formája, amikor a hő

a magasabb hőmérsékletű részéből az alacsonyabb felé történő "áramlása" során a közeget alkotó

részecskék elmozdulása nem számottevő illetve rendezetlen. (Például az egyik végén melegített rúd másik

vége is, felmelegszik, az energia a rúd melegebb végétől hővezetéssel jut a másik végéhez.) A hőáram a

csökkenő hőmérsékletek irányába mutat (negatív).

TERJEDÉS: Hővezetés azonos fázisú anyagrészben valósuk meg, mikrorészecskék szintjén a

következőféleképpen:

Gázokban az atomok, molekulák rendezetlen mozgása miatti ütközéseknek (és a diffúzió)

következtében terjed az energia.

Fémekben a hő két párhuzamos, majdnem független mechanizmus révén terjed, egyrészt a

kristály rácsot alkotó atomok rezgése által, másrészt a szabad elektronok diffúziója révén.

Nem fémes anyagok és folyadékok esetén az energia terjedése rugalmas elemi hullámok révén

valósul meg.

ALAPEGYENLET: a Fourier egyenlet (egydimenziós és általános):

�� = −𝜆 ∙ 𝐹 ∙𝑑𝑡

𝑑𝑥= −𝜆 ∙ 𝐹 ∙ 𝑔𝑟𝑎𝑑(𝑡)

�� – Hőáram, az 𝐹 [𝑚2] felületen időegység alatt átáramló energia [𝑊]

𝜆 – Hővezetési tényező, anyagjellemző [𝑊

𝑚𝐾]

𝑑𝑡

𝑑𝑥 𝑣𝑎𝑔𝑦 𝑔𝑟𝑎𝑑(𝑡) – Hőmérséklet hely szerinti deriváltja, hosszegységenkénti hőmérsékletváltozás [

𝐾

𝑚]

Hőszállítás:

DEFINÍCIÓ: A hőszállítás (konvekció) az energia térbeli terjedésének az a módja, amely a közeget alkotó

részecskék rendezett elmozdulásának (áramlásának) következtében valósul meg.

TERJEDÉS: Az áramló közegben az energia térbeli terjedésének a (molekuláris szintű) vezetéses és –

bizonyos közegekben – a sugárzásos formája is jelen van. Az áramlás fajtái:

természetes áramlás: OK: hőmérséklet-különbség -> sűrűségváltozás -> felhajtóerő -> áramlás,

PÉLDA: radiátor által felmelegített levegő felfelé áramlása

kényszerített áramlás: OK: külső mechanikai hatás, PÉLDA: hajszárító ventilátor által a

fűtőszálon átfújt levegő

ALAPEGYENLET: a Kontinuitási egyenlete (összenyomhatatlan folyadékra):

𝑑𝑖𝑣(��) =𝜕𝑤𝑥

𝜕𝑥+

𝜕𝑤𝑦

𝜕𝑦+

𝜕𝑤𝑧

𝜕𝑧= 0

Page 34: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 34 -

Hőátadás:

DEFINÍCIÓ: A hőátadás a szilárd testek és a folyadékok (gázok) érintkező felületein keresztül történő

hőterjedés. Ez a mechanizmus nem a hőterjedés külön formája, hanem hővezetés, hőszállítás és olykor

hősugárzás együttes megvalósulása melletti összetett folyamat.

TERJEDÉS: Áramló közegek esetében a folyadékok (gázok) saját hővezetése a hőszállításhoz képest

jelentéktelen az áramló közeg nagy részében, azonban a szilárd felülettel érintkező, áramló folyadék

esetében mindig találunk egy vékony határréteget, amelyen belül a hőterjedés hővezetés révén valósul

meg.

ALAPEGYENLET: a Newton egyenlet:

𝑄 = 𝛼 ∙ 𝐹 ∙ (𝑡𝑤 − 𝑡𝑓𝑜𝑙𝑦) ∙ 𝜏

𝑄 – hő [J] 𝐹 – felület [m2] 𝜏 – idő [s] 𝛼 – hőátadási tényező [𝑊

𝑚2𝐾]

Hőátvitel:

Nem a hőterjedés külön formája. Amikor egy szilárd fal két különböző, (pl. 𝑡𝑓1 > 𝑡𝑓2) állandó hőmérsékletű

folyadékot választ el, a melegebb közegtől a hidegebb felé hőáram lép fel. A melegebb közeg oldalán a

folyadék és a vele érintkező felszín között hőátadás, a falban hővezetés és a hidegebb folyadékkal érintkező

felületen ismét hőátadás történik.

�� = 𝑘 𝐹𝑣(𝑡𝑓1 − 𝑡𝑓2)

�� – Hőáram, az 𝐹𝑣 [𝑚2] vonatkoztatási felületen időegység alatt átáramló energia [𝑊] = [𝐽

𝑠]

𝑘 – Hőátviteli tényező [𝑊

𝑚2𝐾] 𝑡𝑓𝑖 – folyadék hőmérséklete [𝐾]

Hősugárzás:

DEFINÍCIÓ: Az energia térbeli terjedésének elektromágneses hullámok formájában megvalósuló folyamata,

amihez nem kell közvetítő közeg. Általában elhanyagolható, de a hőmérséklet növekedésével egyre

jelentősebbé válik.

TERJEDÉS: Folyamatos energia átalakulással terjed: a hő elektromágneses sugárzássá majd a tér egy másik

pontján az elektromágneses sugárzás ismét hővé alakul. A hőmérsékletnek a terjedés irányában nem

monoton csökken. (Például a Napból a Földre elektromágneses sugárzás formájában érkező energia döntő

része a földfelszínen, illetve a légkörben hővé alakul.)

ALAPEGYENLET: a Planck függvény és a Stefan-Boltzmann egyenlet összefüggése:

E0e = ∫ π Iλω,0

e dλ∞

0

= σ0 T4

σ0 - S-B állandó [W

m2K2]

E0e =

𝑑��

𝑑𝐹 – sugárzás felületi energiasűrűsége [

𝑊

𝑚2]

Iλω,0e – Planck függvény: A fekete test egységnyi térszögre vonatkozó, tetszőleges irányban kibocsátott

sugárzási intenzitása. Függ a hullámhossztól és hőmérséklettől. Ha diffúz: Iλ,0e = π Iλω,0

e

Page 35: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 35 -

Emelt

Milyen módszerek állnak rendelkezésre a két test közötti sugárzásos hőáram csökkentésére? Mik ezen módszerek jellemzői?

A sugárzásos hőáram két test között ernyőzéssel csökkenthető. Ez azt jelenti, hogy a két test közötti

sugárzás útjába állítunk tetszőleges számú szilárd testet (ernyőt). Ernyőzéssel a sugárzásos hőáram

tetszőleges mértékben csökkenthető.

A sugárzásos hőáram csökkenthető még a felület nagyságának megváltoztatásával (borda), vagy más

emissziós tényezőjű bevonat képzéssel (szín változtatása).

ERNYŐ: vékony fólia, melynek kétoldali hőmérséklete és emissziós tényezője megegyezik a felületén.

Mutassa be, hogy a sík felületek közé helyezett további sík lemezek hogyan befolyásolják a sugárzásos hőáramot!

Hőáramsűrűség ernyő nélkül:

�� = 휀1,2 ∙ 𝜎0 ∙ (𝑇14 − 𝑇2

4)

ahol: 휀1,2 =1

1

𝜀1+

1

𝜀2−1

– kölcsönös besugárzási tényező

Egyetlen ernyő alkalmazása esetén (n=1), feltételezve, hogy az ernyő mindkét oldalán a hőmérséklet

megegyezik:

��𝑒 = 휀1,𝑒𝑏∙ 𝜎0 ∙ (𝑇1

4 − 𝑇𝑒4)

��𝑒 = 휀𝑒𝑗,2 ∙ 𝜎0 ∙ (𝑇𝑒4 − 𝑇2

4)

ahol: 휀1,𝑒𝑏=

11

𝜀1+

1

𝜀𝑒𝑏−1

, 휀𝑒𝑗,2 =1

1

𝜀𝑒𝑗+

1

𝜀2−1

. 휀𝑒 = 휀𝑒𝑏= 휀𝑒𝑗

egyszerűsítéssel, az egyenleteket elosztva 휀𝜎0 –al és

összeadva a két egyenletet:

��𝑒

𝜎0(

1

휀1+

1

휀𝑒− 1 +

1

휀𝑒+

1

휀2− 1) = 𝑇1

4 − 𝑇24

��𝑒

𝜎0(

1

휀1+

2

휀𝑒+

1

휀2− 2) = 𝑇1

4 − 𝑇24

휀1,𝑒,2 =1

1

𝜀1+

2

𝜀𝑒+

1

𝜀2−2

Analóg módon, n számú ernyő esetén, feltételezve, hogy mindegyik ernyő azonos tulajdonságú, valamint az

ernyők mindkét oldala ugyanolyan feketeségi fokú:

휀1,𝑛,2 =1

1휀1

+2𝑛휀𝑒

+1휀2

− (𝑛 + 1)

Ezek alapján a hőáramsűrűség csökkenése:

��𝑒

��=

1휀1

+1휀2

− 1

1휀1

+2𝑛휀𝑒

+1휀2

− (𝑛 + 1)

Page 36: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 36 -

IX.TÉTEL Alapkérdések

Mit nevezünk hősugárzás esetén színes testnek! Hogyan határozható meg a színes test által kisugárzott, ill. elnyelt hőáram az abszorpciós tényező 𝛼(𝜆) függvényének ismeretében?

Hogyan helyettesíthető egyenértékű szürke sugárzóval a színes test?

A hallgató válaszában:

– adjon meghatározást a színes testre, válaszát diagramokkal szemléltesse (pl. abszorpciós tényező, kisugárzott teljesítménysűrűség stb.)

– adjon formális összefüggést a kisugárzott és elnyelt energia meghatározásának módjára, emelje ki az eltéréseket a fekete testre vonatkozó összefüggésekhez képest,

– a fekete test sugárzási függvényének felhasználásával mutassa meg az egyenértékű (átlagos) abszorpciós, ill. emissziós tényező meghatározásának módját.

Források:

gyakorlati jegyzet

Hőközlés jegyzet 12.1.2. fejezet (135-136.old)

Emelt

Oldja meg a hővezetés FOURIER féle alapegyenletét hengeres vagy gömb alakú falra! Vázolja a falban kialakuló hőmérséklet eloszlást! Adja meg a fal hőellenállásának kiszámítására szolgáló összefüggést!

Mit nevezünk a hőszigetelés kritikus méretének?

A hővezető fal külső oldalán fellépő hőátadást figyelembe véve adja meg a hővezető fal kritikus méretét! Vezesse le az ezt megadó összefüggést!

Források:

előadás jegyzet

Hőközlés jegyzet 6.1. táblázat (11.old)

Page 37: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 37 -

Alapkérdések

Színes test meghatározása:

A színes test szelektív sugárzó, vagyis a ráeső sugárzásnak eltérő részarányát nyeli el a különböző

hullámhosszokon; az általa és egy fekete test által kisugárzott energia aránya függ a hullámhossztól; az

általa visszavert és az átengedett energia részaránya is függ a hullámhossztól.

Sugárzási jellemzők:

abszorpciós tényező (elnyelő képesség), az abszorbeált és beeső sugárzás aránya:

𝑎(𝜆) =𝐼𝜆

𝑎

𝐼𝜆𝑖

reflexiós tényező (visszaverő képesség), a reflektált és beeső sugárzás aránya:

𝑟(𝜆) =𝐼𝜆

𝑟

𝐼𝜆𝑖

diatermikus vagy transzmissziós tényező (áteresztőképesség), az áteresztett és beeső sugárzás

aránya:

𝑑(𝜆) =𝐼𝜆

𝑑

𝐼𝜆𝑖

Színes test intenzitás - hullámhossz függvénye:

Page 38: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 38 -

Színes test abszorpciós tényező - hullámhossz függvénye:

Emissziós tényező meghatározása:

Az emissziós tényező (feketeségi fok), a test hősugárzásának és az (azonos hőmérsékletű) fekete test

sugárzásának aránya:

휀(𝜆) =𝐼𝜆

𝑒

𝐼𝜆,0𝑒

A teljes beeső sugárzásra vonatkozó abszorpciós tényező (𝑎) a beeső sugárzás spektrumától függ, a teljes

emittált sugárzásra vonatkozó emissziós szám (휀) az anyag hőmérsékletétől függ.

Kirchhoff törvénye szerint az energiamegmaradás értelmében egy adott irányú és hullámhosszú sugárzásra

az emissziós és az abszorpciós tényező megegyezik. 𝑎𝜆𝜔 = 휀𝜆𝜔

Szürke testeknél az abszorpciós tényező független a hullámhossztól. 𝑎𝜆𝜔 = 𝑎 = 휀 konstans, fekete testnél

휀 = 1. A kisugárzott energia a Stefan-Boltzmann törvény szerint ekkor:

𝐸𝑒 = ∫ 𝐼𝜆𝑒 𝑑𝜆

0

= ∫ 휀 ∙ 𝐼𝜆,0𝑒 𝑑𝜆

0

= 휀 ∫ 𝐼𝜆,0𝑒 𝑑𝜆

0

= 휀𝜎0𝑇4

A színes testek által elnyelt energia:

𝐸𝑎 = ∫ 𝐼𝜆𝑎 𝑑𝜆

0

= ∫ 𝑎(𝜆) ∙ 𝐼𝜆,0𝑎 𝑑𝜆

0

Ahol 𝐼𝜆𝑎 a színes test által elnyelt sugárzási intenzitás, 𝐼𝜆,0

𝑎 a fekete test által elnyelt intenzitás.

Egyenértékű emissziós tényező:

Színes testek emissziós tényezője helyettesíthető egy hullámhossztól nem függő egyenértékű szürke test

emissziós tényezőjével, aminek a kisugárzott energiája megegyezik a színes testével:

𝐸𝑒 = ∫ 𝐼𝜆𝑒 𝑑𝜆

0

= ∫ 휀(𝜆) ∙ 𝐼𝜆,0𝜀 𝑑𝜆

0

= 휀𝑒𝑔𝑦𝑒𝑛𝜎0𝑇4

Az egyenlet átrendezésével megkapjuk az egyenértékű emissziós tényezőt:

휀𝑒𝑔𝑦𝑒𝑛 =∫ 휀(𝜆) ∙ 𝐼𝜆,0

𝜀 𝑑𝜆∞

0

𝜎0𝑇4

1

a

𝜆

Page 39: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 39 -

Emelt

Oldja meg a hővezetés FOURIER féle alapegyenletét hengeres vagy gömb alakú falra! Vázolja a falban kialakuló hőmérséklet eloszlást! Adja meg a fal hőellenállásának kiszámítására szolgáló összefüggést!

Fourier törvénye:

�� = −𝜆 ∙ 𝐹 ∙𝑑𝑡

𝑑𝑟

Hengeres falnál: 𝐹 = 2𝜋𝑟𝐻. Átrendezve 𝑟 –et és 𝑑𝑟 –et egy oldalra és integrálva:

𝑑𝑟

𝑟= −

𝜆2𝜋𝐻

�� 𝑑𝑡 → ∫

1

𝑟 𝑑𝑟

𝑟2

𝑟1

= −𝜆2𝜋𝐻

��∙ ∫ 𝑑𝑡

𝑡2

𝑡1

ln𝑟2

𝑟1=

𝜆2𝜋𝐻

��(𝑡1 − 𝑡2)

Tehát hengeres falnál a hőáram: �� =𝜆2𝜋𝐻

ln𝑟2𝑟1

(𝑡1 − 𝑡2), a hőellenállás 𝑅ℎ =ln

𝑟2𝑟1

𝜆2𝜋𝐻

Gömbnél: 𝐹 = 4𝜋𝑟2. Átrendezve 𝑟 –et és 𝑑𝑟 –et egy oldalra és integrálva:

𝑑𝑟

𝑟2= −

𝜆4𝜋

�� 𝑑𝑡 → ∫

1

𝑟2 𝑑𝑟

𝑟2

𝑟1

= −𝜆4𝜋

��∙ ∫ 𝑑𝑡

𝑡2

𝑡1

(1

𝑟1−

1

𝑟2) =

𝜆4𝜋

��(𝑡1 − 𝑡2)

Tehát gömbnél a hőáram: �� =𝜆4𝜋

1

𝑟1−

1

𝑟2

(𝑡1 − 𝑡2), a hőellenállás 𝑅𝑔 =

1

𝑟1−

1

𝑟2

𝜆4𝜋

Mit nevezünk a hőszigetelés kritikus méretének?

A hőszigetelés kritikus mérete az a méret, amely mellett a maximális hőveszteség következik be.

A hővezető fal külső oldalán fellépő hőátadást figyelembe véve adja meg a hővezető fal kritikus méretét! Vezesse le az ezt megadó összefüggést!

𝑑𝑘𝑟 =2𝜆𝑠𝑧𝑖𝑔

𝛼

Származása a hőellenállással felírt hőáram összefüggéséből:

�� =𝑑𝑡

𝑅𝑒

pl. hengeres falra a hőáram: �� =𝜋(𝑡𝑓𝑎𝑙1−𝑡𝑓𝑎𝑙2)1

𝛼1𝑑1+

1

2𝜆𝑙𝑛

𝑑2𝑑1

+1

𝛼2𝑑2

Hőáramot d2 szerint deriválva, zérussal egyenlővé téve megkapjuk a kritikus méretet.

Page 40: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 40 -

X.TÉTEL Alapkérdések

Mely egyenletekből álló egyenletrendszert kell ahhoz megoldanunk, hogy az áramló közeg hőfok-eloszlását megkapjuk? Mely fizikai mennyiségek között és milyen összefüggést állapítanak meg ezek az egyenletek? Milyen közelítéséket (BOUSSINESQ közelítések) alkalmazunk az áramló közeg hőfokeloszlásának meghatározásakor?

Milyen főbb hasonlósági számok származtathatók ezekből az egyenletekből és mi ezek fizikai tartalma?

A hallgató válaszában:

– nevesítse a szükséges egyenleteket és adja meg azok fizikai tartalmát (mely természeti [megmaradási] törvényt fejezik ki);

– az egyes egyenletek kapcsán részletezze a fontosabb információkat (pl. a NAVIER-STOKES egyenlet esetén azt, hogy milyen erőket vesz figyelembe);

– a közelítések közül legalább négyet említsen meg;

– a levezethető hasonlósági számok közül legalább hármat említsen névvel és hozzá kapcsolódó fizikai tartalommal a származási egyenletet is megemlítve.

Források:

Hőközlés jegyzet 10.2.2. , 10.3.1 fejezetek (89-96.old)

előadás jegyzet

Emelt

Oldja meg a hővezetés FOURIER féle alapegyenletét hengeres vagy gömb alakú falra! Vázolja a falban kialakuló hőmérséklet eloszlást! Adja meg a fal hőellenállásának kiszámítására szolgáló összefüggést!

Mit nevezünk a hőszigetelés kritikus méretének?

A hővezető fal külső oldalán fellépő hőátadást figyelembe véve adja meg a hővezető fal kritikus méretét! Vezesse le az ezt megadó összefüggést!

Források:

előadás jegyzet

Hőközlés jegyzet 6.1. táblázat (11.old)

Page 41: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 41 -

Alapkérdések

Hővezetés általános differenciálegyenlete (HVÁDE):

EGYENLET:

𝜌 𝑐𝑝

𝑑𝑡

𝑑𝜏= ��𝑉 + 𝜆 ∇2𝑡

vagy hőmérséklet-vezetési tényezővel (𝑎 =𝜆

𝜌𝑐𝑝[

𝑚2

𝑠]) kifejezve:

𝑑𝑡

𝑑𝜏=

��𝑉

𝜌 𝑐𝑝+ 𝑎 ∇2𝑡

kibontva: 𝜕𝑡

𝜕𝜏+ 𝑤𝑥

𝜕𝑡

𝜕𝑥+ 𝑤𝑦

𝜕𝑡

𝜕𝑦+ 𝑤𝑧

𝜕𝑡

𝜕𝑧=

��𝑉

𝜌𝑐𝑝+ 𝑎 (

𝜕2𝑡

𝜕𝑥2 +𝜕2𝑡

𝜕𝑦2 +𝜕2𝑡

𝜕𝑦2)

egydimenziós általános alak (ahol n=0 a síkfalak, n=1 hengerek és n=2 gömbök): 𝜕𝑡

𝜕𝜏= 𝑎 (

𝜕2𝑡

𝜕𝑟2 +𝑛

𝑟

𝜕𝑡

𝜕𝑟 )

JELENTÉSE:

Energia-megmaradás törvényét fejezi ki. Az elemi dV térfogat energiamérlege:

entalpia megváltozás (𝜌𝑐𝑝𝑑𝑡

𝑑𝜏) = keletkező energia (��𝑉) - (ki - bemenő energiaáram) (−𝜆∇2𝑡)

Navier-Stokes egyenlet:

EGYENLET:

𝜌𝑑��

𝑑𝜏= �� − 𝑔𝑟𝑎𝑑(𝑝) + 𝜇 ∇2��

kibontva:

𝜌𝜕𝑤𝑥

𝜕𝜏+ 𝜌 (𝑤𝑥

𝜕𝑤𝑥

𝜕𝑥+ 𝑤𝑦

𝜕𝑤𝑥

𝜕𝑦+ 𝑤𝑧

𝜕𝑤𝑥

𝜕𝑧) = 𝐺𝑥 −

𝜕𝑝

𝜕𝑥+ 𝜇 (

𝜕2𝑤𝑥

𝜕𝑥2 +𝜕2𝑤𝑥

𝜕𝑦2 +𝜕2𝑤𝑥

𝜕𝑧2 )

𝜌𝜕𝑤𝑦

𝜕𝜏+ 𝜌 (𝑤𝑥

𝜕𝑤𝑦

𝜕𝑥+ 𝑤𝑦

𝜕𝑤𝑦

𝜕𝑦+ 𝑤𝑧

𝜕𝑤𝑦

𝜕𝑧) = 𝐺𝑦 −

𝜕𝑝

𝜕𝑦+ 𝜇 (

𝜕2𝑤𝑦

𝜕𝑥2 +𝜕2𝑤𝑦

𝜕𝑦2 +𝜕2𝑤𝑦

𝜕𝑧2 )

𝜌𝜕𝑤𝑧

𝜕𝜏+ 𝜌 (𝑤𝑥

𝜕𝑤𝑧

𝜕𝑥+ 𝑤𝑦

𝜕𝑤𝑧

𝜕𝑦+ 𝑤𝑧

𝜕𝑤𝑧

𝜕𝑧) = 𝐺𝑧 −

𝜕𝑝

𝜕𝑧+ 𝜇 (

𝜕2𝑤𝑧

𝜕𝑥2 +𝜕2𝑤𝑧

𝜕𝑦2 +𝜕2𝑤𝑧

𝜕𝑧2 )

JELENTÉSE:

Lendület-megmaradás törvényét fejezi ki; a közegre ható erők és a gyorsulás viszonya.

baloldal: az egységnyi térfogatú folyadéktömegre ható erő

jobboldal: �� – térerő 𝑔𝑟𝑎𝑑(𝑝) – nyomóerő 𝜇 ∇2�� – súrlódási erő

ahol �� – folyadék sebességtere [𝑚

𝑠] 𝜌 – sűrűség [

𝑘𝑔

𝑚3] 𝜇 – dinamikai viszkozitás [𝑃𝑎 𝑠]

Kontinuitási egyenlet:

EGYENLET:

differenciális alak:

𝜕𝑤𝑥

𝜕𝑥+

𝜕𝑤𝑦

𝜕𝑦+

𝜕𝑤𝑧

𝜕𝑧= 𝑑𝑖𝑣(��) = 0

Page 42: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 42 -

integrális alak: ∫ �� 𝑑𝐴𝐴

= 0

egyszerűbb alak áramcsőre (sebesség merőleges az 𝐴𝑖 be- és kilépési felületekre): 𝑤1𝐴1 = 𝑤2𝐴2

JELENTÉSE:

Anyagmegmaradás törvényét fejezi ki összenyomhatatlan folyadékokra (𝜌 = á𝑙𝑙), vagyis a térfogatáram

állandó.

Boussinesq közelítések:

stacionárius folyamatok

belső hőforrás nulla (��𝑉 = 0)

disszipáció nulla

nyomás állandó

newtoni közeg

anyagjellemzők állandóak (kivétel a sűrűség a Navier-Stokes térerős tagjában)

Hasonlósági számok:

Különböző áramlások hasonlóak egymással, ha a hasonlósági számaik megegyeznek.

Nusselt szám: Nusselt egyenletből vezethető le, hőátadás hasonlóságát fejezi ki

𝑁𝑢 =𝛼𝐿

𝜆𝑓

Reynolds szám: Navier-Stokes egyenletből vezethető le, tehetetlenségi és súrlódó erők

viszonyát fejezi ki

𝑅𝑒 =𝑤𝑘𝐿

𝜈

Peclet [piklé] szám: HVÁDE-ből vezethető le, hőmérséklet eloszlások hasonlóságát fejezi ki

𝑃𝑒 =𝑤𝑘𝐿

𝑎

Prandtl szám: Navier-Stokes egyenletből vezethető le elhanyagolásokkal, hő és impulzus

transzport hasonlóságát fejezi ki (Pe és Re hányadosa, anyagjellemző)

𝑃𝑟 =𝜈

𝑎

Grashoff szám: Navier-Stokes egyenletből vezethető le természetes áramlásoknál, viszkózus és

felhajtó erők viszonyát fejezi ki (𝛽: térfogati hőtágulási együttható 1/K)

𝐺𝑟 =𝑔 𝛽 Δ𝑡 𝐿3

𝜈2

Természetes áramlásnál a Nusselt szám függ a Prandtl számtól és a Grashoff számtól: 𝑁𝑢(𝐺𝑟, Pr)

Kényszerített áramlásnál a Nusselt szám függ a Reynolds és Prandtl számtól valamint korrekciós tényezőtől:

𝑁𝑢𝑘(𝑅𝑒, 𝑃𝑟, 𝑘)

Page 43: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 43 -

Emelt

Oldja meg a hővezetés FOURIER féle alapegyenletét hengeres vagy gömb alakú falra! Vázolja a falban kialakuló hőmérséklet eloszlást! Adja meg a fal hőellenállásának kiszámítására szolgáló összefüggést!

Fourier törvénye:

�� = −𝜆 ∙ 𝐹 ∙𝑑𝑡

𝑑𝑟

Hengeres falnál: 𝐹 = 2𝜋𝑟𝐻. Átrendezve 𝑟 –et és 𝑑𝑟 –et egy oldalra és integrálva:

𝑑𝑟

𝑟= −

𝜆2𝜋𝐻

�� 𝑑𝑡 → ∫

1

𝑟 𝑑𝑟

𝑟2

𝑟1

= −𝜆2𝜋𝐻

��∙ ∫ 𝑑𝑡

𝑡2

𝑡1

ln𝑟2

𝑟1=

𝜆2𝜋𝐻

��(𝑡1 − 𝑡2)

Tehát hengeres falnál a hőáram: �� =𝜆2𝜋𝐻

ln𝑟2𝑟1

(𝑡1 − 𝑡2), a hőellenállás 𝑅ℎ =ln

𝑟2𝑟1

𝜆2𝜋𝐻

Gömbnél: 𝐹 = 4𝜋𝑟2. Átrendezve 𝑟 –et és 𝑑𝑟 –et egy oldalra és integrálva:

𝑑𝑟

𝑟2= −

𝜆4𝜋

�� 𝑑𝑡 → ∫

1

𝑟2 𝑑𝑟

𝑟2

𝑟1

= −𝜆4𝜋

��∙ ∫ 𝑑𝑡

𝑡2

𝑡1

(1

𝑟1−

1

𝑟2) =

𝜆4𝜋

��(𝑡1 − 𝑡2)

Tehát gömbnél a hőáram: �� =𝜆4𝜋

1

𝑟1−

1

𝑟2

(𝑡1 − 𝑡2), a hőellenállás 𝑅𝑔 =

1

𝑟1−

1

𝑟2

𝜆4𝜋

Mit nevezünk a hőszigetelés kritikus méretének?

A hőszigetelés kritikus mérete az a méret, amely mellett a maximális hőveszteség következik be.

A hővezető fal külső oldalán fellépő hőátadást figyelembe véve adja meg a hővezető fal kritikus méretét! Vezesse le az ezt megadó összefüggést!

𝑑𝑘𝑟 =2𝜆𝑠𝑧𝑖𝑔

𝛼

Származása a hőellenállással felírt hőáram összefüggéséből:

�� =𝑑𝑡

𝑅𝑒

pl. hengeres falra a hőáram: �� =𝜋(𝑡𝑓𝑎𝑙1−𝑡𝑓𝑎𝑙2)1

𝛼1𝑑1+

1

2𝜆𝑙𝑛

𝑑2𝑑1

+1

𝛼2𝑑2

Hőáramot d2 szerint deriválva, zérussal egyenlővé téve megkapjuk a kritikus méretet.

Page 44: I. TÉTEL - glink.huglink.hu/hallgatoi_segedletek/files/dae4f7e1a56f2cf3a6b44a12571f... · Hőtan II (hőközlés) kidolgozott tételek - 2 - Alapkérdések A hősugárzás jellemzői:

Hőtan II (hőközlés) kidolgozott tételek

- 44 -

Tartalom I. TÉTEL ............................................................................................................................................................... 1

II. TÉTEL .............................................................................................................................................................. 6

III. TÉTEL ........................................................................................................................................................... 11

IV. TÉTEL .......................................................................................................................................................... 16

V.TÉTEL ............................................................................................................................................................ 20

VI.TÉTEL ........................................................................................................................................................... 24

VII.TÉTEL .......................................................................................................................................................... 28

VIII.TÉTEL ......................................................................................................................................................... 32

IX.TÉTEL ........................................................................................................................................................... 36

X.TÉTEL ............................................................................................................................................................ 40

Források:

Dr. Gróf Gyula - Hőközlés ideiglenes jegyzet, Budapest, 1999, tanszéki honlap

Dr. Bihari Péter - Hőközlés – Gyakorlati feladatok gyűjteménye és Segédlet, 2011, tanszéki honlap

Műszaki Hőtan II. –előadáson és gyakorlaton elhangzottak

Dr. Lajos Tamás – Az áramlástan alapjai, Budapest, 1992, BME-OMIKK-TKO

wikipedia.org

Megjegyzés:

Hibák javításáért, kiegészítésért vagy a szerkeszthető Word file-ért írj a nyiti28 (a) gmail.com-ra.

Ha a felét megtanulod szerintem már megvan a kettes, de felelősséget nem vállalok Érdemes a jegyzettel

párhuzamosan tanulni és ha valamit nem értesz konzultálj tanárral, segítőkészek.

Eredetileg a Műszaki Hőtan II. (BMEGEENAEHK) tárgy szóbeli vizsgájára készült, de szigorlat hőközlés

részéhez és bármihez használható ahol ugyan ez a tételsor.

Jó felkészülést! ;-)

készítette: én

®nyiti

Bp., 2013