Top Banner
HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study Dr. Mark Cohen Physical Scientist NOAA Air Resources Laboratory Silver Spring, Maryland Presentation at the Expert Meeting on Mercury Model Comparison MSC-East, Moscow, Russia April 15-16, 2003
30

HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

Jan 08, 2016

Download

Documents

seamus

HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study. Dr. Mark Cohen Physical Scientist NOAA Air Resources Laboratory Silver Spring, Maryland. Presentation at the Expert Meeting on Mercury Model Comparison MSC-East, Moscow, Russia April 15-16, 2003. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

HYSPLIT Modelingin Phase II of the

EMEP Mercury Modeling Intercomparison Study

Dr. Mark Cohen Physical Scientist

NOAA Air Resources LaboratorySilver Spring, Maryland

Presentation at theExpert Meeting on

Mercury Model Comparison MSC-East, Moscow, Russia

April 15-16, 2003

Page 2: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study
Page 3: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study
Page 4: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

#Y

#Y

#Y

#Y#Y#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y#Y

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (0) emitted per year)Fraction of Mercury Emissions Deposited in Lake Superior

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Standard SourceLocations forInterpolation

Page 5: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

Is the source’s impact on any given receptor proportional to its emissions?(for the same emissions speciation)

Impact of5 gram/hrsource

?= 5 x

Impact of1 gram/hrsource

Source

RECEPTOR

Page 6: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

#Y

#Y

#Y

#Y#Y#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y#Y

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (0) emitted per year)Fraction of Mercury Emissions Deposited in Lake Superior

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Standard SourceLocations forInterpolation

Page 7: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

Spatial interpolation

RECEPTOR

Impacts fromSources 1-3are ExplicitlyModeled

2

1

3

Impact of source 4 estimated fromweighted average of impacts of nearbyexplicitly modeled sources

4

Page 8: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

1E-4 1E-3 1E-2 1E-1

Explicitly Modeled Transfer Coefficient

1E-4

1E-3

1E-2

1E-1

Inte

rpol

ated

Tra

nsfe

r C

oeff

icie

nt

Lake Erie

Lake Michigan

Lake Superior

Lake Huron

Lake Ontario

Interpolated =Modeled

Comparison of interpolated transfer coefficients to the Great Lakes with explicitly modeled transfer

coefficients for 2378 TCDD and OCDD

Page 9: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

#Y

#Y

#Y

#Y#Y#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y#Y

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (0) emitted per year)Fraction of Mercury Emissions Deposited in Lake Superior

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Standard SourceLocations forInterpolation

Page 10: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

#Y

#Y

#Y

#Y#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y#Y

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (II) emitted per year)

Fraction of Mercury Emissions Deposited in Lake Superior

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Page 11: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

Transfer Coefficients for Hg are strongly influenced by the “type” of Hg emitted

[Hg(II) has much greaterlocal impacts than Hg(0)]

Page 12: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (p) emitted per year)

Fraction of Mercury Emissions Deposited in Lake Superior

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Page 13: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

“Chemical Interpolation”

Impact ofSourceEmitting30% Hg(0)50% Hg(II)20% Hg(p)

=

Source

RECEPTOR

Impact of Source Emitting Pure Hg(0)0.3 x

Impact of Source Emitting Pure Hg(II)0.5 x

Impact of Source Emitting Pure Hg(p)0.2 x

+

+

Page 14: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (Mixture 2*) emitted per year)

Fraction of Mercury Emissions Deposited in Lake Superior

* Components of Mixture 2 20% Hg(0) 60% Hg(II) 20% Hg(p)

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Page 15: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (Mixture 1*) emitted per year)

Fraction of Mercury Emissions Deposited in Lake Superior

* Components of Mixture 1 50% Hg(0) 30% Hg(II) 20% Hg(p)

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Page 16: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

Source 1

Source 2

Intersectionof plumesfrom thetwo sources

Do the emissions from one source affect the fate and transport of emissions from another source?

If interaction is important,then sources not independent,and Eulerian approach is needed

Page 17: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

• Hg is present at extremely trace levels in the atmosphere

• Hg won’t affect meteorology (can simulate meteorology independently,

and provide results to drive model)

• Most species that complex or react with Hg are generally present at much higher concentrations than Hg

• Other species (e.g. OH) generally react with many other compounds than Hg, so while present in trace quantities, their concentrations cannot be strongly influenced by Hg

•The current “consensus” chemical mechanism (equilibrium + reactions) does not contain any equations that are not 1st order in Hg

• Wet and dry deposition processes are generally 1st order with respect to Hg

Why might the atmospheric fate of mercury emissions be essentially linearly independent?

Page 18: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

gas-liquid eqlbrm Hg(0)(aq) = K1 * Hg(0)(gas) K1 = 1.1E-01 molar/atmgas-liquid eqlbrm HgCl2(aq) = K2 * HgCl2(gas) K2 = 1.4E+06 molar/atmgas-liquid eqlbrm Hg(OH)2(aq) = K3 * Hg(OH)2(gas) K3 = 1.2E+04 molar/atmgas-liquid eqlbrm O3(aq) = K4 * O3(gas) K4 = 1.1E-02 molar/atmgas-liquid eqlbrm SO2(aq) = K5 * SO2(gas) K5 = 1.2E+00 molar/atmgas-liquid eqlbrm HCl(aq) = K6 * HCl(gas) K6 = 1.1E+00 molar/atmgas-liquid eqlbrm Cl2(aq) = K7 * Cl2(gas) K7 = 7.6E-02 molar/atmgas-liquid eqlbrm H2O2(aq) = K8 * H2O2(gas) K8 = 7.4E+04 molar/atm

aq phase eqlbrm HgCl2 (aq) <--> Hg2+ + 2 Cl-1 K9 = 1.0E-14 molar*molaraq phase eqlbrm Hg(OH)2 (aq) <--> Hg2+ + 2 OH-1 K10 = 1.0E-22 molar*molaraq phase eqlbrm HCl(aq) <--> H+ + Cl-1 K11 = 1.7E+06 molaraq phase eqlbrm Cl2 (aq) <--> HOCl + Cl-1 + H+ K12 = 5.0E-04 molar*molaraq phase eqlbrm HOCl <--> OCl-1 + H+ K13 = 3.2E-08 molaraq phase eqlbrm SO2 (aq) + H2O2 (aq) <--> SO4-2 + 2 H+ K14 = very fast titrationaq phase eqlbrm SO2 (aq) + H2O <--> HSO3-1 + H+ K15 = 1.2E-02 molaraq phase eqlbrm HSO3-1 <--> SO3-2 + H+ K16 = 6.6E-08 molaraq phase eqlbrm Hg+2 + SO3-2 <--> HgSO3 K17 = 5.0E+12 1/molaraq phase eqlbrm HgSO3 + SO3-2 <--> Hg(SO3)2-2 K18 = 2.5E+11 1/molar

gas phase rxn Hg(0) (g) + O3 (g) --> Hg(II) (g) R01 = 3.0E-20 cm3 / molec - secgas phase rxn Hg(0) (g) + HCl (g) --> HgCl2 (g) R02 = 1.0E-19 cm3 / molec - secgas phase rxn Hg(0) (g) + H2O2 (g) --> Hg(OH)2 (g) R03 = 8.5E-19 cm3 / molec - secgas phase rxn Hg(0) (g) + Cl2 (g) --> HgCl2 (g) R04 = 4.0E-18 cm3 / molec - sec

aq phase rxn Hg(0) (aq) + O3 (aq) --> Hg+2 R05 = 4.7E+07 1/molar-secaq phase rxn Hg(0) (aq) + OH-1 (aq) --> Hg+2 R06 = 2.0E+09 1/molar-secaq phase rxn HgSO3 (aq) --> Hg(0) (aq) R07 = 1.1E-02 1/secaq phase rxn Hg(II) (aq) + HO2 (aq) --> Hg(0) (aq) R08 = 1.7E+04 1/molar-secaq phase rxn Hg(0) (aq) + HOCl (aq) --> Hg+2 R09 = 2.1E+06 1/molar-secaq phase rxn Hg(0) (aq) + OCl-1 --> Hg+2 R10 = 2.0E+06 1/molar-secaq phase rxn Hg(II) (aq) <--> Hg(II) (soot) R11 = 9.0E+02 liters/gram; t = 1/hour

Chemical Equilibrium and ReactionScheme for Atmospheric Mercury

Page 19: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study
Page 20: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

#Y

#Y

#Y

#Y#Y#Y

#Y#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y

#Y#Y

#Y#Y#Y

N

Overalll Transfer Coefficient (fraction deposited)

500 0 500 1000 Miles

500 0 500 1000 Kilometers

(grams of total Hg deposited per year / grams of Hg (0) emitted per year)Fraction of Mercury Emissions Deposited in Lake Superior

0 - 0.0000070.000007 - 0.000010.00001 - 0.000020.00002 - 0.000040.00004 - 0.000070.00007 - 0.00010.0001 - 0.00020.0002 - 0.00040.0004 - 0.00070.0007 - 0.0010.001 - 0.0020.002 - 0.0040.004 - 0.0070.007 - 0.010.01 - 0.020.02 - 0.040.04 - 0.070.07 - 0.1

Standard SourceLocations forInterpolation

Page 21: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study
Page 22: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

27-O

ct-9

9

28-O

ct-9

9

29-O

ct-9

9

30-O

ct-9

9

31-O

ct-9

9

01-N

ov-

99

02-N

ov-

99

03-N

ov-

99

04-N

ov-

99

05-N

ov-

99

06-N

ov-

99

07-N

ov-

99

08-N

ov-

99

09-N

ov-

99

10-N

ov-

99

11-N

ov-

99

12-N

ov-

99

13-N

ov-

99

14-N

ov-

99

15-N

ov-

99

16-N

ov-

99

17-N

ov-

99

18-N

ov-

99

19-N

ov-

99

0

1

2

3

4

5

conc

entr

atio

n (n

g/m

3)

measured TGMmodeled Hg(0) + RGMmodeled Hg(0)

Neuglobsow 1999 (with background)

27-O

ct-9

9

28-O

ct-9

9

29-O

ct-9

9

30-O

ct-9

9

31-O

ct-9

9

01-N

ov-

99

02-N

ov-

99

03-N

ov-

99

04-N

ov-

99

05-N

ov-

99

06-N

ov-

99

07-N

ov-

99

08-N

ov-

99

09-N

ov-

99

10-N

ov-

99

11-N

ov-

99

12-N

ov-

99

13-N

ov-

99

14-N

ov-

99

15-N

ov-

99

16-N

ov-

99

17-N

ov-

99

18-N

ov-

99

19-N

ov-

99

0

1

2

3

4

5

conc

entr

atio

n (n

g/m

3)

measured TGM

modeled Hg(0) + RGM

modeled impact from one large source

modeled Hg(0)

Neuglobsow 1999 (with background)

Page 23: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

01-N

ov-

99

02-N

ov-

99

03-N

ov-

99

04-N

ov-

99

05-N

ov-

99

06-N

ov-

99

07-N

ov-

99

08-N

ov-

99

09-N

ov-

99

10-N

ov-

99

11-N

ov-

99

12-N

ov-

99

13-N

ov-

99

14-N

ov-

99

15-N

ov-

99

16-N

ov-

99

0.0

0.5

1.0

1.5

2.0

2.5

3.0

con

cen

trat

ion

(n

g/m

3)

measured TGMmodeled TGM

Comparison of measured vs. simulatedtotal gaseous mercury (TGM) at Zingst

Page 24: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

21-J

un

-95

22-J

un

-95

23-J

un

-95

24-J

un

-95

25-J

un

-95

26-J

un

-95

27-J

un

-95

28-J

un

-95

29-J

un

-95

30-J

un

-95

01-J

ul-

95

02-J

ul-

95

03-J

ul-

95

04-J

ul-

95

05-J

ul-

95

06-J

ul-

95

07-J

ul-

95

08-J

ul-

95

09-J

ul-

95

10-J

ul-

95

0

1

2

3

4

5

6

conc

entr

atio

n (n

g/m

3)

modeled Hg(0)modeled Hg(0) + RGMmeasured TGM

Comparison of Modeled vs. Measured TGM: Zingst, 1995

24-Jun-9525-Jun-95

26-Jun-9527-Jun-95

28-Jun-9529-Jun-95

30-Jun-9501-Jul-95

02-Jul-9503-Jul-95

04-Jul-9505-Jul-95

06-Jul-9507-Jul-95

08-Jul-9509-Jul-95

Date

0.0

0.5

1.0

1.5

2.0

2.5

concentr

atio

n (

ng/m

3)

measured TGM - Zingstmodeled Hg(0) - Zingstmodeled Hg(0) + RGM - Zingst

Comparison of Measured vs. Modeled TGM

Correlation Coefficient = - 0.03

But daily avg conc not too far off…

Page 25: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

11/0111/02

11/0311/04

11/0511/06

11/0711/08

11/0911/10

11/1111/12

11/1311/14

11/1511/16

day (1999)

0

20

40

60

80

100

120

conc

entr

atio

n (p

g/m

3)

Measured

Modeled (background = 0)

Modeled (with background)

Comparison of measured vs. simulatedtotal particulate mercury at Zingst

Page 26: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

10/2810/29

10/3010/31

11/0111/02

11/0311/04

11/0511/06

11/0711/08

11/0911/10

11/1111/12

11/1311/14

11/1511/16

11/1711/18

day (1999)

0

5

10

15

conc

entra

tion

(pg/

m3)

Rorvik measured RGM Rorvik modeled RGM

Comparison of measured vs. modeled RGM (comparison for measurement periods only)

Page 27: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

• In the first version of the HYSPLIT-Hg model used in this intercomparison, Hg(p) was assumed to be completely converted to dissolved Hg(II) whenever a particle becomes a droplet (e.g., above approximately 80% relative humidity); and dissolved Hg(II) assumed to become Hg(p) whenever the droplet dries out

• Hg(p) and Hg(II) were thus somewhat “equivalent” in the model

• With this assumption, the model tended to underpredict Hg(p) and overpredict Hg(II), suggesting that the assumption of complete conversion was not valid.

• However, it was encouraging to note that the model was getting approximately the right answer for the sum of the two forms of mercury (Hg(p) + Hg(II), representing the total pool of oxidized Hg in the atmosphere [see the following graphs]

Page 28: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

27

-Oc

t-9

9

28

-Oc

t-9

9

29

-Oc

t-9

9

30

-Oc

t-9

9

31

-Oc

t-9

9

01

-No

v-9

9

02

-No

v-9

9

03

-No

v-9

9

04

-No

v-9

9

05

-No

v-9

9

06

-No

v-9

9

07

-No

v-9

9

08

-No

v-9

9

09

-No

v-9

9

10

-No

v-9

9

11-N

ov

-99

12

-No

v-9

9

13

-No

v-9

9

14

-No

v-9

9

15

-No

v-9

9

16

-No

v-9

9

17

-No

v-9

9

18

-No

v-9

9

19

-No

v-9

9

20

-No

v-9

9

date

0

50

100

150

200

con

cen

tra

tion

(p

g/m

3)

modeled RGM + Hg(p)

measured RGM + Hg(p)

NOTE: measurement data are plotted only at times when there were measurements of BOTH RGM and TPM

Comparison of measured vs. modeled RGM + TPM at Mace Head

27

-Oc

t-9

9

28

-Oc

t-9

9

29

-Oc

t-9

9

30

-Oc

t-9

9

31

-Oc

t-9

9

01

-No

v-9

9

02

-No

v-9

9

03

-No

v-9

9

04

-No

v-9

9

05

-No

v-9

9

06

-No

v-9

9

07

-No

v-9

9

08

-No

v-9

9

09

-No

v-9

9

10

-No

v-9

9

11-N

ov

-99

12

-No

v-9

9

13

-No

v-9

9

14

-No

v-9

9

15

-No

v-9

9

16

-No

v-9

9

17

-No

v-9

9

18

-No

v-9

9

19

-No

v-9

9

20

-No

v-9

9

date

0

50

100

150

con

cen

tra

tion

(p

g/m

3)

modeled RGM + Hg(p)

measured RGM + Hg(p)

NOTE: measurement data are plotted only at times when there were measurements of BOTH RGM and TPMmodeled data are plotted only at times when there are measurement data

Comparison of measured vs. modeled RGM + TPM at Mace Head

Page 29: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

As a result of this observation, the model was re-run with the assumption that Hg(p) was not soluble.

With this assumption, the results for Hg(p) and RGM were dramatically better. [These new results are what have been shown in this presentation, except for the immediately preceding RGM+Hg(p) graphs]

The affect of changing this assumption had a negligible impact on Hg(0), as might be expected, given the generally very low concentrations of Hg(II) and Hg(p) relative to Hg(0).

Page 30: HYSPLIT Modeling in Phase II of the EMEP Mercury Modeling Intercomparison Study

Some Concluding Notes

The version of HYSPLIT-Hg used for these calculations represented a very early stage of development of the model.

Methodology assumes linear independence of sources; potential advantage that detailed source-receptor relationships can be estimated

The model has been changed significantly since these runs… (hopefully improved!)

It may be useful to reconsider some of the model evaluation metrics

Hg(p) solubility?