Top Banner
HYDRODYNAMIC ANALYSIS TRAINING YUNI ARI WIBOWO
20

Hydrodynamic Analysis Training

Apr 09, 2016

Download

Documents

Agi Nugroho

Hydrodynamic Analysis Training mas Yuni
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hydrodynamic Analysis Training

HYDRODYNAMIC ANALYSIS

TRAININGYUNI ARI WIBOWO

Page 2: Hydrodynamic Analysis Training

PRINSIP HIDRODINAMIKA

• Menghitung besarnya beban fluida air laut dari gelombang dan/atau arus yang bekerja pada struktur

Prinsip Hidrodinamika

Pemodelan medan aliran

Perhitungan kecepatan

aliran

Perhitungan tekanan yang

timbul

Gaya & Momen aksi

fluida

1

2

3

4

Page 3: Hydrodynamic Analysis Training

MEDAN ALIRAN

• Source• Uniform

• Sink • Vortex

Page 4: Hydrodynamic Analysis Training

MEDAN ALIRAN KOMBINASI

Uniform + Source Flow Superposition flow

Page 5: Hydrodynamic Analysis Training

Medan Aliran Fluida pada Struktur

• Strip Theory 2D• (+) Input mudah• (+) Simpel• (+) Waktu running singkat

• (-) Model kurang detail

• 3D Diffraction Theory (panel method)• (+) Model detail• (+) Lebih akurat

• (-) Input susah• (-) Waktu running lama

Page 6: Hydrodynamic Analysis Training

PERSAMAAN GERAK

Page 7: Hydrodynamic Analysis Training

Gaya Inersia

• Gaya inersia Finersia = m 𝑢

• Translasionalmass, added mass & COG

• Rotationalmass, added mass & Radius of Gyration (I = M x R2)

• Added mass arah gerak vessel arah datang gelombang

Page 8: Hydrodynamic Analysis Training

Gaya Redaman

• Gaya redaman Fredaman = C 𝑢

• Faktor redaman, Cf = C/Cc

• Cc = 2 𝐾(𝑚 +𝑚𝑎)

• Redaman C biasanya ditentukan

Page 9: Hydrodynamic Analysis Training

Gaya Pengembali

• Gaya pengembali Fpengembali = k 𝑢

• Hydrostatic stiffness gerakan ke arah vertikal

• Heave (33) : x g x WPA

• Heave-pitch (35) : x g x WPA x (LCF – LCB)

• Roll (44) : x g x V x GMT

• Pitch (55) : x g x V x GML

Page 10: Hydrodynamic Analysis Training

FREKUENSI NATURAL

• Frekuensi natural terjadinya resonansi (dengan frekuensi gelombang)

• 𝜔 =𝐾

𝑚+𝑚𝑎

• 𝜔 = frekuensi natural

• 𝐾 = kekakuan gerakan

• 𝑚 = massa struktur

• 𝑚𝑎 = massa tambah gerakan

Page 11: Hydrodynamic Analysis Training

GAYA EKSITASI

• Gaya eksitasi gaya gelombang 1st order

• F = 𝐴 cos(𝜔𝑡)

• Gaya eksitasi = gaya tekanan dinamis + gaya percepatan partikel gelombang

Page 12: Hydrodynamic Analysis Training

RESPONSE AMPLITUDE OPERATOR (RAO)

• RAO karakteristik gerakan• F = gaya eksitasi

• K = kekakuan

• w = frekuensi gelombang

• wn = frekuansi natural

• Cc = redaman kritis

• Periode gelombang 3s – 20s

22

2

0

21

/

nn

zz

Cc

KFz

w

w

w

w

Page 13: Hydrodynamic Analysis Training

Respon Struktur

• Respon struktur Respon spektra

• Respon spektra = RAO2 x Spektra gelombang

• Puncak RAO pada frekuensi gelombang = Puncak energi gelombang (dalam spektra gelombang) Resonansi (magnifikasi)

• Respon struktur nilai-nilai stokastik :• s = Amplitudo signifikan (2,00 × 𝑚0)

• av = Rata-rata amplitudo (1,25 × 𝑚0)

• max = Amplitudo ekstrim ( 𝜁𝛼 = 𝑚0 × 2 ln602𝑇

2𝜋𝛼

𝑚2

𝑚0)

Page 14: Hydrodynamic Analysis Training

Fenomena 2nd Order

• Large moored tankers Low frequency resonance associated withslowly varying wave drift force

• Signifikasi pengaruh 2nd order kedalaman + mooring

• Combination of large mass + small spring forces (slack mooring)

• 𝜔 =𝐾

𝑚

small

large

Very small

Associated with

Drift force / low frequency

Resonance

Page 15: Hydrodynamic Analysis Training

Evidence of 2nd order loads

• Consider the case where

• 𝐹 = 𝐴1 cos 𝜔1𝑡 + 𝐴2 cos 𝜔2𝑡

• 𝐹2 =𝐴12

2+

𝐴22

2

+𝐴12

2cos 2𝜔1𝑡 +

𝐴22

2cos 2𝜔2𝑡

+𝐴1𝐴2cos[(𝜔1-𝜔2)𝑡] + 𝐴1𝐴2cos[(𝜔1+𝜔2)𝑡]

Mean components Rapidly varying components

Slowly varying components

Page 16: Hydrodynamic Analysis Training

NON-LINEAR wave load effect

• Mean wave drift force determine the equilibrium position of themoored system (together with wind and current). They are importantfor the design of mooring lines

• Slowly varying wave drift force the force have frequencies muchslower than the wave elevation frequency. These can excite resonantmodes in the horizontal position of the moored vessel.

• Rapidly varying wave drift force these force have frequencycomponents which are higher than the wave elevation frequency.

Page 17: Hydrodynamic Analysis Training

LOADS IMPACT TO THE SYSTEM

Page 18: Hydrodynamic Analysis Training

LOADS IMPACT TO THE SYSTEM

Page 19: Hydrodynamic Analysis Training

SUMMARY

• Hydrodynamic analysis needs :• Surface model• Mass (displacement)/draft, COG, RG• Heading of propagated waves

• Mooring analysis needs :• RAO (Response Amplitude Operator)/Transfer Function• Added mass & damping matrix• Mean wave drift force (mean drift force + slowly varying force) QTF (Quadratic

Transfer Function)• Excitation force (Panel force)• Wave spectra (include : Hs & T), Current & Wind load• Mooring layout• Mooring equipment

Page 20: Hydrodynamic Analysis Training

THANK YOU