Top Banner
Hydraulic Engineering Eng. Osama Dawoud
33
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hydraulic Engineering Eng. Osama Dawoud. .

Hydraulic EngineeringHydraulic

Engineering

Eng. Osama Dawoud

Eng. Osama Dawoud

Page 2: Hydraulic Engineering Eng. Osama Dawoud. .

http://www.haestad.com/library/books/awdm/online/wwhelp/wwhimpl/java/html/wwhelp.htm

Page 3: Hydraulic Engineering Eng. Osama Dawoud. .
Page 4: Hydraulic Engineering Eng. Osama Dawoud. .

Lecture 4

Head Losses in Pipelines Part2

Page 5: Hydraulic Engineering Eng. Osama Dawoud. .

Minor Losses

• Additional losses due to entries and exits, fittings and valves are traditionally referred to as minor losses

2

22

22 gA

Qk

g

Vkh LLm

Page 6: Hydraulic Engineering Eng. Osama Dawoud. .

Losses due to contraction

g

Vkh cc 2

22

A sudden contractionA sudden contraction in a pipe usually causes a marked drop in pressure in the pipe due to both the increase in velocity and the loss of energy to turbulence.

Page 7: Hydraulic Engineering Eng. Osama Dawoud. .

Value of the coefficient Kc for sudden contraction

VV22

Page 8: Hydraulic Engineering Eng. Osama Dawoud. .

Head losses due to pipe contraction may be greatly reduced by introducing a gradual pipe gradual pipe transition transition known as a confusor confusor

g

V'k'h cc 2

22

'kc

Page 9: Hydraulic Engineering Eng. Osama Dawoud. .

Losses due to Enlargement

g

VVhE 2

)( 221

A sudden EnlargementA sudden Enlargement in a pipe

Page 10: Hydraulic Engineering Eng. Osama Dawoud. .

Head losses due to pipe enlargement may be greatly reduced by introducing a gradual pipe gradual pipe transition transition known as a diffusor diffusor

g

VV'k'h EE 2

22

21

Page 11: Hydraulic Engineering Eng. Osama Dawoud. .

Loss due to pipe entranceGeneral formula for head loss at the entrance of a pipe is also expressed in term of velocity head of the pipe

g

VKh entent 2

2

Page 12: Hydraulic Engineering Eng. Osama Dawoud. .

Loss at pipe exit (discharge head loss)

In this case the entire velocity head of the pipe flow is dissipated and that the discharge loss is

g

Vhexit 2

2

Page 13: Hydraulic Engineering Eng. Osama Dawoud. .

Loss of head in pipe bends

g

Vkh bb 2

2

Page 14: Hydraulic Engineering Eng. Osama Dawoud. .

Loss of head through valves

g

VKh vv 2

22

Page 15: Hydraulic Engineering Eng. Osama Dawoud. .
Page 16: Hydraulic Engineering Eng. Osama Dawoud. .

Minor loss calculation using equivalent pipe length

f

DkL l

e

Page 17: Hydraulic Engineering Eng. Osama Dawoud. .

Example 1In the figure shown two new cast iron pipes in series, D1 =0.6m , D2 =0.4m length of the two pipes is 300m, level at A =80m , Q = 0.5m3/s (T=10oC).there are a sudden contraction between Pipe 1 and 2, and Sharp entrance at pipe 1.Fine the water level at B

e = 0.26mmv = 1.31×10-

6Q = 0.5 m3/s

Page 18: Hydraulic Engineering Eng. Osama Dawoud. .

exitcentffL

fBA

hhhhhh

hZZ

21

g

Vk

g

Vk

g

Vk

g

V

D

Lf

g

V

D

Lfh exitcentL 22222

22

22

21

22

2

22

21

1

11

01800170

000650000430600

26.0

102211018

sec98340

4

50sec771

604

50

21

11

6222

5111

222

211

.f .f

,.D

, .D

,.υ

DV R , .

υ

DVR

, m/..

π.

A

Q, V m/.

.

A

QV

moodymoody

ee

1 ,27.0 ,5.0 exitcent hhh

Solution

Page 19: Hydraulic Engineering Eng. Osama Dawoud. .

m.g

.

g

..

g

..

g

. .

. .

g

. .

. .h f

36132

983

2

983270

2

77150

2

983

40

3000180

2

771

60

3000170

222

22

ZB = 80 – 13.36 = 66.64 m

g

Vk

g

Vk

g

Vk

g

V

D

Lf

g

V

D

Lfh exitcentL 22222

22

22

21

22

2

22

21

1

11

Page 20: Hydraulic Engineering Eng. Osama Dawoud. .

Example 2A pipe enlarge suddenly from D1=240mm to D2=480mm. the H.G.L rises by 10 cm calculate the flow in the pipe

Page 21: Hydraulic Engineering Eng. Osama Dawoud. .

Solution

Page 22: Hydraulic Engineering Eng. Osama Dawoud. .

smAVQsmV

g

V

g

VV

g

V

g

V

VV

VV

AVAV

g

VV

g

V

g

V

zg

pz

g

ph

g

V

g

V

hzg

V

g

pz

g

V

g

p

e

e

/103.048.057.0/57.0

1.02

6

1.02

4

22

16

4

48.024.0

1.0222

22

22

324222

22

2

222

22

2

21

242

241

2211

2

212

22

1

11

22

22

21

2

222

1

211

Solution

Page 23: Hydraulic Engineering Eng. Osama Dawoud. .

Power in pipelines

gQHQHPower

power) (horse HP 1 7.745

/.

Watt

WattsmN

mf

m

f

hhHγ Q

γ Q h

γ Q h

γ Q H

PowerExit At

lossminor todue dissipatedPower

friction todue dissipatedPower

Power EntranceAt

Page 24: Hydraulic Engineering Eng. Osama Dawoud. .

Calculate the max transported power through pipe line

f

π

π

f

mf

hg

V

D

f LH

g

V

D

f L HDγ

dV

dP

g

V

D

Lf HVDγ P

VAQhHγ Q

hhHγ Q

32

..3

2..30at Max.

2

P

lossminor neglect

PExit At

2

22

4

32

4

The max transported power through pipe line at 3

H h f

Page 25: Hydraulic Engineering Eng. Osama Dawoud. .

%67.661003max

H

HH

H

hHη

H

hhH

γQH

hhHγQη

f

mfmf

Efficiency in power transportation through pipelines

Page 26: Hydraulic Engineering Eng. Osama Dawoud. .

Example 3Pipe line has length 3500m and Diameter 0.5m is used to transport Power Energy using water. Total head at entrance = 500m. Determine the maximum power at the Exit. F = 0.024 fout h Hγ QP

mH

h f 3

500

3at Power Max.

g

V

..

g

V

D

Lfh f 230

35000240

2

22

m/s 3.417V

/s m...AVQ π 32

4 24150417330

Page 27: Hydraulic Engineering Eng. Osama Dawoud. .

HP.

tt) N.m/s (Wa

..

HgQ

HHgQ

hHγQP f

10597745

789785789785

500241508191000

3

32

32

Page 28: Hydraulic Engineering Eng. Osama Dawoud. .

Lecture 5

Pipelines in series & parallel

Page 29: Hydraulic Engineering Eng. Osama Dawoud. .

Pipelines in Series

nQQQQ 21

LnLLL ....hhhh 21

Page 30: Hydraulic Engineering Eng. Osama Dawoud. .

Pipelines in Parallel

n

iiQQ

1

LnLLLL ....hhhhh 321

Page 31: Hydraulic Engineering Eng. Osama Dawoud. .

Example 4الشكل التالي يوضح نظام مكون من أنابيب من الحديد المجلفن، األنبوب الرئيسي •

Gate، تم تثبيت صمام سكينة 2 و 1 م، بين الوصلتين 4 سم بطول 20قطره Valve سم بطول 12، األنبوب المتفرع قطره 2، عند نهايته مباشرة قبل الوصلة

وصمام منزلي. يتدفق 90o (R/D = 2.0) م. يتكون من وصالت مرفقية بزاية 6.4 10o/ث عند درجة حرارة 3 م0.26الماء عبر النظام بحيث يكون التدفق الكلي

مئوية، احسب التدفق في كل أنبوب عندما تكون الصمامات مفتوحة بالكامل.

Page 32: Hydraulic Engineering Eng. Osama Dawoud. .

Example 4

22

031402

20 m.

.πAa

22

011302

120 m.

.πAb

V.V.VAV A m. babbaa 0113003140260 3

g

V.

g

V

D

Lfh aa

a

aaa 2

1502

22

Page 33: Hydraulic Engineering Eng. Osama Dawoud. .

g

V

g

V.

g

V

D

Lfh bbb

b

bbb 2

102

19022

222

g

V.

.

.f

g

V.

.f b

ba

a 210380

120

46

2150

20

4 22

22 38103353 15020 bbaa V.f.V.f 0255.0

0185.0

b

a

f

f

22 3810025503353 1500185020 ba V...V.. ba V.V 7194

m/s.V

m/s.V

b

a

6301

6937

V.V.VAV A m. bbbbaa 01130)719.4(03140260 3

/s m...VAQ

/s m...VAQ

bbb

aaa

3

3

0180630101130

2420693703140