Top Banner
Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State Physics Research Center J ¨ ulich – p. 1
25

Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Jan 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Hybrid Mott Band Metal InsulatorTransitions

Ansgar Liebsch

Institute for Solid State Physics

Research Center Julich

– p. 1

Page 2: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Band vs Mott Insulator → ‘Hybrid Insulators’

Band Insulator Mott Insulator

UHB LHB Val.

Valence Conduction LHB UHB

LHB Cond. UHB

– p. 2

Page 3: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

OverviewMott transition in multi-orbital materials:

– Coulomb driven inter-orbital charge transfer– role of crystal field splitting– suppression of orbital fluctuations– subband filling / emptying → MIT

Dynamical mean field theory:– exact diagonalization for multiband materials

Ca2−xSrxRuO4 4d4 orbital selective Mott transition ?

V2O3 3d2 Hund vs. Ising exchange ?

LaTiO3 / SrTiO3 3d1 MIT in heterostructures ?3d1−x doping driven Mott transition ?

NaxCoO2 3d5+x topology of Fermi surface ?

– p. 3

Page 4: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Transition metal oxides: Ca2−xSrxRuO4

– p. 4

Page 5: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Ca2−xSrxRuO4: phase diagram

Maeno (PRL 2000 )

– p. 5

Page 6: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Ca2−xSrxRuO4:

0

0.5

1

1.5

-3 -2 -1 0 1

Den

sity

of S

tate

s (1

/eV

)

Energy (eV)

xy

xz,yz

coexisting narrow and wide bands: U/Wi ??

orbital selective Mott transitions ? (Anisimov et al)

crystal field splitting among t2g bands ! (Fang et al)

Sr → Ca: octahedral distortions

– p. 6

Page 7: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Dynamical mean field theoryG(iωn) =

k

(

iωn + µ − H(k) − Σ(iωn))

−1

ij(t2g)

G0 = (G−1 + Σ)−1

exact diagonalization: solid → cluster = impurity + bath

G0,i(iωn) ≈ Gcl0,i(iωn) =

(

iωn + µ − εi −ns∑

k=4

|Vik|2

iωn − εk

)

−1

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

ε11

ε12

Vk

Vk

U

J

– p. 7

Page 8: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

cluster HamiltonianHcl =

X

(εi − µ)niσ +X

εknkσ +X

ikσ

Vik[c+iσckσ + H.c.]

+X

i

Uni↑ni↓ +X

i<jσ≤σ′

(U ′ − Jδσσ′)niσnjσ′ −X

i6=j

J [ c+i↑

ci↓c+j′↓

cj↑ + c+i↑

c+i↓

cj↑cj↓]

cluster Green’s function:

Gcli (iωn) =

1

Z

X

νµ

|〈µ|c+iσ|ν〉|2

Eν − Eµ − iωn

[e−βEν + e−βEµ ]

=1

Z

X

ν

e−βEν

X

µ

|〈µ|c+iσ|ν〉|2

(Eν − Eµ) − iωn

+X

µ

|〈µ|ciσ|ν〉|2

(Eµ − Eν) − iωn

«

assumption: cluster self-energy ≈ solid self-energy:

Σcl = 1/Gcl0 − 1/Gcl ≈ Σ

Hcl sparse: Arnoldi algorithm ns = 12 N = 853776level spacing < 1 meV → finite size effects reducedED/DMFT for realistic t2g materials, Hund exchangecomplementary to QMC/DMFT Perroni, Ishida + A.L. PRB (2007)

– p. 8

Page 9: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Ca2−xSrxRuO4 nature of Mott transition ?Sr → Ca : nxy increases : crystal field ∆ Fang et al (2004)

0

0.5

1

1.5

-3 -2 -1 0 1

Den

sity

of S

tate

s (1

/eV

)

Energy (eV)

xy

xz,yz

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10n i

U (eV)

∆=0.5 eV 00.4 0.2

xy

xz,yz

dyn. correl.: nxy → 1 A.L.+ Ishida, cond-mat/0612539 PRL(2007)

suppression of orbital fluctuations:MIT in half-filled xz,yz band → no orbital selective MITfuture: role of octahedral distortions ? magnetic phases ?

– p. 9

Page 10: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Ca2RuO4 cluster spectra ∆ = 0.4 eV

0

1

-6 -4 -2 0 2

Den

sity

of S

tate

s (1

/eV

)

ω (eV)

(a) U=3.0 eV

0

1

2

-6 -4 -2 0 2

Den

sity

of S

tate

s (1

/eV

)

ω (eV)

(b) U=4.2 eV

0

1

2

-6 -4 -2 0 2

Den

sity

of S

tate

s (1

/eV

)

ω (eV)

(c) U=4.5 eV

gap between filled xy and xz,yz upper Hubbard band

– p. 10

Page 11: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

V2O3 3d2 ED vs QMC

0

0.5

1

1.5

-1 0 1

Den

sity

of s

tate

s (1

/eV

)

ω (eV)

V2O3

ageg

0

0.1

0.2

0.3

0.4

0.5

3 4 5 6

ni

U (eV)

V2O3

T=230 Kna

ne

IsingHund

Keller et al, PRB (2004) A.L. (2007)

dynamical correlations: nag→ 0, MIT in half-filled e′g

suppression of orbital fluctuations

– p. 11

Page 12: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

LaTiO3 3d1

0

1

2

-1 -0.5 0 0.5 1 1.5

Den

sity

of S

tate

s (1

/eV

)

ω (eV)

LaTiO3

ag

eg 0

0.1

0.2

0.3

0.4

0.5

3 4 5

ni

U (eV)

LaTiO3

na

ne

Pavarini et al, PRL (2004) A.L. (2007)

dynamical correlations: ne → 0, MIT in half-filled ag

suppression of orbital fluctuations

– p. 12

Page 13: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

quasi-particle spectra: LaTiO3 V2O3

Pavarini et al (2006) Poteryaev et al, cond-mat/0701263

excitation gap:

LaTiO3: LHB ag → empty eg bandsV2O3: LHB eg → empty ag band

– p. 13

Page 14: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Ca2RuO4 V2O3 LaTiO3

nσ ≈ (0.8, 0.6, 0.6) nσ ≈ (0.2, 0.4, 0.4) nσ ≈ (0.3, 0.1, 0.1)→ (1.0, 0.5, 0.5) → (0.0, 0.5, 0.5) → (0.5, 0.0, 0.0)

a

e

a

e e

Ca RuO 2 4

n=4

ea

a

ee

V O2 3

n=2

a e

a a

e

n=1

LaTiO3 – p. 14

Page 15: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

La1−xSrxTiO3 3d1−x doping driven MIT

0

0.1

0.2

0.3

0.4

0.5

3 4 5 6

ni

U (eV)

LaTiO3

na

ne

n=1.0

n=0.90

n=0.95

A.L. (2007)

LaTiO3 / SrTiO3 heterostructures: La / Sr interdiffusion:3d0.95 inhibits eg → ag charge transfer: no MIT

thin LaTiO3 layers on SrTiO3:cubic symmetry shifts Uc upwards → no MIT at UTi

– p. 15

Page 16: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2: topology of Fermi surface ?

t2g bands 0.4 ag holes 0.3 e′g holes D.J. Singh, PRB (2000)

-1.5

-1

-0.5

0

0.5

Ene

rgy

(eV

)

Γ M K Γ

a a

aa

e1

e2

e2

e2 e2

e1 hole pockets not seen in ARPES ??

– p. 16

Page 17: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2 QMC vs ED / DMFTCoulomb driven inter-orbital charge transfer for J = U/4

0.7

0.8

0.9

1

0 1 2 3 4 5

nm

U (eV)

T=10 meV

ag

eg ED

QMC

dynamical correlations: stabilization of eg hole pocketsQMC: Ishida, Johannes + A.L. PRL (2005) ED: Perroni, Ishida + A.L. PRB (2007)

– p. 17

Page 18: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2 LDA + U

0.7

0.8

0.9

1

0 1 2 3

ni

U (eV)

J=U/4

J=0 ag

eg (b) LDA+U

Ishida, Johannes + A.L. PRL (2005)

∆εa = 2/3(ne − na)(U − 5J)

∆εe = −1/3(ne − na)(U − 5J) → J=0.9 eV: Uc=4.5 eV

subtle balance:J vs U, shape of DOS, dynamical vs static correlations

– p. 18

Page 19: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2 QMC + crystal field∆ = εa − εe: eg bands shifted down J=0

role of H(k) ! Marianetti, Haule, Kotliar, cond-mat/0612606

– p. 19

Page 20: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2 ED vs QMC same H(k)

13

13.5

14

14.5

0 5 10 15 20 25

Re

Σi (i

ωn)

(e

V)

iωn (eV)

ag

eg

µ = 14.41 eV

Na0.3CoO2 U=3 eV J=0

β = 50 na=0.735 ne=0.957

A.L. (2007) Marianetti, Haule, Kotliar, cond-mat/0612606

– p. 20

Page 21: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2 ED

0.7

0.8

0.9

1

0 1 2 3 4 5 6

ni

U (eV)

na

ne

J=U/5

J=0

H(k) Zhou et al, PRL (2005) A.L. (2007)

– p. 21

Page 22: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

BaVS3

J = U/4 vs J = U/7 Lechermann et al, PRL (2005)

local Coulomb correlations can reduce / enhanceorbital fluctuations !

– p. 22

Page 23: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

LaTiO3 vs BaVS3: both 3d1

0

1

2

-1 -0.5 0 0.5 1 1.5

Den

sity

of S

tate

s (1

/eV

)

ω (eV)

LaTiO3

ag

eg

opposite charge transfer: importance of density of states!– p. 23

Page 24: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

Na0.3CoO2 quasi-particle bands vs ARPES

Perroni, Ishida + A.L. PRB (2007) Qian et al PRL (2006)

∼ 30 % band narrowing: 1.5 → 1.0 eV

– p. 24

Page 25: Hybrid Mott Band Metal Insulator Transitionscorpes07/BEITRAEGE/liebsch.pdf · 2007-05-30 · Hybrid Mott Band Metal Insulator Transitions Ansgar Liebsch Institute for Solid State

V2O3 ED: Hund vs Ising exchange

-2

-1

0

0 1 2 3 4 5

Im Σ

i (iω

n)

ωn

Σa

Σe

V2O3

T=20 meV

Hund

Ising

-2

-1

0

0 1 2 3 4 5

Re Σ

i (iω

n)

ωn

Σa

Σe

V2O3

T=20 meV

Hund

Ising

A.L. (2007)

Ising: nearly localized eg:modifies (i) ag self-energy (ii) intra-eg scattering(see: two-band model !)

– p. 25