Top Banner
Hybrid Discontinuous Galerkin methods for incompressible flow problems Christoph Lehrenfeld, Joachim Sch¨ oberl MathCCES Computational Mathematics in Engineering DG Workshop Linz, May 31 - June 1, 2010
34

Hybrid Discontinuous Galerkin methods for incompressible ...

Feb 18, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hybrid Discontinuous Galerkin methods for incompressible ...

Hybrid Discontinuous Galerkin methods forincompressible flow problems

Christoph Lehrenfeld, Joachim Schoberl

MathCCES

ComputationalMathematics

in Engineering

DG Workshop Linz, May 31 - June 1, 2010

Page 2: Hybrid Discontinuous Galerkin methods for incompressible ...

ContentsI The methods:

HDG(HIPDG)(HUDG)

HDG(HIPDG)(HUDG)

Egger, Schöberl, 2009

DG for NSE(IPDG)(UDG)

DG for NSE(IPDG)(UDG)

HDG for NSE(HIPDG)(HUDG)

HDG for NSE(HIPDG)(HUDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

Reduced 'high order

divfree'basis

Reduced 'high order

divfree'basis

Cockburn, Kanschat,

Schötzau, 2005

Cockburn, Lazarov, Gopalakrishnan, 2008

Schöberl, Zaglmayr, 2005

Scalar convection

diffusion

incompressibleNavier Stokes

Equations

I Software, Examples, Conclusion

Page 3: Hybrid Discontinuous Galerkin methods for incompressible ...

ContentsI The methods:

HDG(HIPDG)(HUDG)

HDG(HIPDG)(HUDG)

Egger, Schöberl, 2009

DG for NSE(IPDG)(UDG)

DG for NSE(IPDG)(UDG)

HDG for NSE(HIPDG)(HUDG)

HDG for NSE(HIPDG)(HUDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

Reduced 'high order

divfree'basis

Reduced 'high order

divfree'basis

Cockburn, Kanschat,

Schötzau, 2005

Cockburn, Lazarov, Gopalakrishnan, 2008

Schöberl, Zaglmayr, 2005

Scalar convection

diffusion

incompressibleNavier Stokes

Equations

I Software, Examples, Conclusion

Page 4: Hybrid Discontinuous Galerkin methods for incompressible ...

Hybrid DG for scalar convectiondiffusion equations

−∆u + div(bu) = f

Page 5: Hybrid Discontinuous Galerkin methods for incompressible ...

Discretization space

Trial functions are:

I discontinuous

I piecewise polynomials(on each facet and element)

with appropriate formulations we get

I more unknowns but less matrix entries

I implementation fits into standardelement-based assembling

I structure allows condensation of elementunknowns

Page 6: Hybrid Discontinuous Galerkin methods for incompressible ...

HDG formulation for −∆u

Symmetric Interior Penalty Formulation (τh ∼ hp2 ):

BDG(u, v) =XT

ZT

∇u∇v dx

+X

E

−Z

E

nn∂u

∂n

oo[[v ]] ds −

ZE

nn∂v

∂n

oo[[u]] ds +

ZE

τh[[u]][[v ]] ds

ff

Hybrid Symmetric Interior Penalty Formulation (τh ∼ hp2 ):

B (u,uF),(v ,vF) =XT

ZT

∇u ∇v dx

−Z

∂T

∂u

∂n(v − vF ) ds −

Z∂T

∂v

∂n(u − uF ) ds

+

Z∂T

τh(u − uF )(v − vF ) ds

ffThis and other hybridizations of CG, mixed and DG methods were discussed in

[Cockburn+Gopalakrishnan+Lazarov,’08]

Page 7: Hybrid Discontinuous Galerkin methods for incompressible ...

HDG formulation for −∆u

Symmetric Interior Penalty Formulation (τh ∼ hp2 ):

BDG(u, v) =XT

ZT

∇u∇v dx

+X

E

−Z

E

nn∂u

∂n

oo[[v ]] ds −

ZE

nn∂v

∂n

oo[[u]] ds +

ZE

τh[[u]][[v ]] ds

ff

Hybrid Symmetric Interior Penalty Formulation (τh ∼ hp2 ):

B (u,uF),(v ,vF) =XT

ZT

∇u ∇v dx

−Z

∂T

∂u

∂n(v − vF ) ds −

Z∂T

∂v

∂n(u − uF ) ds

+

Z∂T

τh(u − uF )(v − vF ) ds

ffThis and other hybridizations of CG, mixed and DG methods were discussed in

[Cockburn+Gopalakrishnan+Lazarov,’08]

Page 8: Hybrid Discontinuous Galerkin methods for incompressible ...

HDG formulation for div(bu) = f (div(b) = 0)After partial integration on each element we get∫

Ω

div(bu) v dx =∑T

−∫

T

bu ∇v dx +

∫∂T

bnu?v ds

Upwind DG −→ Hybridized Upwind DG:

uUDG =

unb if bn ≤ 0u if bn > 0

=⇒ uHUDG =

uF if bn ≤ 0u if bn > 0

+∑T

∫∂Tout

bn(uF − u)vF ds

This gives us an appropriate bilinearform C((u, uF ), (v , vF )

)for the

convective term. Already used in [Egger+Schoberl, ’09]

Page 9: Hybrid Discontinuous Galerkin methods for incompressible ...

HDG formulation for div(bu) = f (div(b) = 0)After partial integration on each element we get∫

Ω

div(bu) v dx =∑T

−∫

T

bu ∇v dx +

∫∂T

bnu?v ds

Upwind DG −→ Hybridized Upwind DG:

uUDG =

unb if bn ≤ 0u if bn > 0

=⇒ uHUDG =

uF if bn ≤ 0u if bn > 0

+∑T

∫∂Tout

bn(uF − u)vF ds

This gives us an appropriate bilinearform C((u, uF ), (v , vF )

)for the

convective term. Already used in [Egger+Schoberl, ’09]

Page 10: Hybrid Discontinuous Galerkin methods for incompressible ...

HDG formulation for div(bu) = f (div(b) = 0)After partial integration on each element we get∫

Ω

div(bu) v dx =∑T

−∫

T

bu ∇v dx +

∫∂T

bnu?v ds

Upwind DG −→ Hybridized Upwind DG:

uUDG =

unb if bn ≤ 0u if bn > 0

=⇒ uHUDG =

uF if bn ≤ 0u if bn > 0

+∑T

∫∂Tout

bn(uF − u)vF ds

This gives us an appropriate bilinearform C((u, uF ), (v , vF )

)for the

convective term. Already used in [Egger+Schoberl, ’09]

Page 11: Hybrid Discontinuous Galerkin methods for incompressible ...

HDG formulation for −∆u + div(bu) = f (div(b) = 0)

Now we can add the introduced bilinearforms together and easily get aformulation for the convection diffusion problem:

A((u, uF ), (v , vF )

):= B

((u, uF ), (v , vF )

)+ C

((u, uF ), (v , vF )

)= (f , v)

Page 12: Hybrid Discontinuous Galerkin methods for incompressible ...

ContentsI The methods:

HDG(HIPDG)(HUDG)

HDG(HIPDG)(HUDG)

Egger, Schöberl, 2009

DG for NSE(IPDG)(UDG)

DG for NSE(IPDG)(UDG)

HDG for NSE(HIPDG)(HUDG)

HDG for NSE(HIPDG)(HUDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

Reduced 'high order

divfree'basis

Reduced 'high order

divfree'basis

Cockburn, Kanschat,

Schötzau, 2005

Cockburn, Lazarov, Gopalakrishnan, 2008

Schöberl, Zaglmayr, 2005

Scalar convection

diffusion

incompressibleNavier Stokes

Equations

I Software, Examples, Conclusion

Page 13: Hybrid Discontinuous Galerkin methods for incompressible ...

Hybrid DG for incompressibleNavier Stokes Equations

div(−ν∇u + u ⊗ u + pI ) = fdiv u = 0

+ b.c .

Page 14: Hybrid Discontinuous Galerkin methods for incompressible ...

(steady) incompressible Navier Stokes Equations

variational formulation:

B(u, v) + C (u; u, v) + D(p, v) + D(q, u) = f (v)

where B is a suitable bilinearform for the viscous term, D is thebilinearform for the incompressibility-constraint and the pressure termand C is the convective Trilinearform.

tasks:

I Find an appropriate discretization space

I Find appropriate bilinearforms

I Find an iterative procedure to solve the nonlinearity (⇒ Oseen its.)

Page 15: Hybrid Discontinuous Galerkin methods for incompressible ...

ContentsI The methods:

HDG(HIPDG)(HUDG)

HDG(HIPDG)(HUDG)

Egger, Schöberl, 2009

DG for NSE(IPDG)(UDG)

DG for NSE(IPDG)(UDG)

HDG for NSE(HIPDG)(HUDG)

HDG for NSE(HIPDG)(HUDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

Reduced 'high order

divfree'basis

Reduced 'high order

divfree'basis

Cockburn, Kanschat,

Schötzau, 2005

Cockburn, Lazarov, Gopalakrishnan, 2008

Schöberl, Zaglmayr, 2005

Scalar convection

diffusion

incompressibleNavier Stokes

Equations

I Software, Examples, Conclusion

Page 16: Hybrid Discontinuous Galerkin methods for incompressible ...

H(div)-conforming elements for Navier Stokes

[Cockburn, Kanschat, Schotzau, 2005]:

DG+

inc. Navier-Stokes+

local conservation+

energy-stability

=⇒

need exactlydivergence-free

convective velocityfor C (u; u, v)

Page 17: Hybrid Discontinuous Galerkin methods for incompressible ...

ContentsI The methods:

HDG(HIPDG)(HUDG)

HDG(HIPDG)(HUDG)

Egger, Schöberl, 2009

DG for NSE(IPDG)(UDG)

DG for NSE(IPDG)(UDG)

HDG for NSE(HIPDG)(HUDG)

HDG for NSE(HIPDG)(HUDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

Reduced 'high order

divfree'basis

Reduced 'high order

divfree'basis

Cockburn, Kanschat,

Schötzau, 2005

Cockburn, Lazarov, Gopalakrishnan, 2008

Schöberl, Zaglmayr, 2005

Scalar convection

diffusion

incompressibleNavier Stokes

Equations

I Software, Examples, Conclusion

Page 18: Hybrid Discontinuous Galerkin methods for incompressible ...

H(div)-conforming elements for Navier Stokes

Trial and test functions:

I normal-cont., tangential-discont.velocity element functions,piecewise polynomial(degree k)u, v

I facet velocity functions for thetangential component only,piecewise polynomial(degree k)ut

F , v tF

I discont. element pressure functions,piecewise polynomial(degree k − 1)p, q

Page 19: Hybrid Discontinuous Galerkin methods for incompressible ...

Hybrid DG Navier Stokes bilinearforms

Viscosity:

B`(u, uF ), (v , vF )

´=XT

ZT

ν ∇u : ∇v dx −Z

∂T

ν ∇u · n (v t − v tF ) ds

−Z

∂T

ν ∇v · n (ut − utF ) ds +

Z∂T

ντh(ut − ut

F ) · (v t − v tF ) ds

ffConvection:

C`w ; (u, uF ), (v , vF )

´=XT

−Z

T

u⊗w : ∇v dx+

Z∂T

wnuupv ds+

Z∂Tout

wn(utF−ut)v t

F ds

ffpressure / incompressibility constraint:

D`(u, uF ), q

´=XT

ZT

div(u)q dx

⇒ weak incompressibility (+ H(div)-conformity)⇒ exactly divergence-free solutions

Page 20: Hybrid Discontinuous Galerkin methods for incompressible ...

ContentsI The methods:

HDG(HIPDG)(HUDG)

HDG(HIPDG)(HUDG)

Egger, Schöberl, 2009

DG for NSE(IPDG)(UDG)

DG for NSE(IPDG)(UDG)

HDG for NSE(HIPDG)(HUDG)

HDG for NSE(HIPDG)(HUDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. DGfor NSE

(exactly divfree)

(IPDG)(UDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

H(div)-conf. HDGfor NSE

(exactly divfree)

(HIPDG)(HUDG)

Reduced 'high order

divfree'basis

Reduced 'high order

divfree'basis

Cockburn, Kanschat,

Schötzau, 2005

Cockburn, Lazarov, Gopalakrishnan, 2008

Schöberl, Zaglmayr, 2005

Scalar convection

diffusion

incompressibleNavier Stokes

Equations

I Software, Examples, Conclusion

Page 21: Hybrid Discontinuous Galerkin methods for incompressible ...

Reduced basis H(div)-conforming Finite ElementsWe use the construction of high order finite elements of[Schoberl+Zaglmayr, ’05, Thesis Zaglmayr ’06]:It is founded on the de Rham complex

H1 ∇−→ H(curl)curl−→ H(div)

div−→ L2S S S SWh

∇−→ Vhcurl−→ Sh

div−→ Qh

1 + 3 + a a + 3 + 3 + b b + 3 + 1 + c c + 1

Leading to a natural separation of the space (for higher order)

Whp = WL1 + spanϕWh.o.

Vhp = VN0 + span∇ϕWh.o.+ spanϕV

h.o.Shp = SRT 0 + spancurlϕV

h.o.+ spanϕSh.o.

Qhp = QP0 + spandivϕSh.o.

Page 22: Hybrid Discontinuous Galerkin methods for incompressible ...

Reduced basis H(div)-conforming Finite ElementsWe use the construction of high order finite elements of[Schoberl+Zaglmayr, ’05, Thesis Zaglmayr ’06]:It is founded on the de Rham complex

H1 ∇−→ H(curl)curl−→ H(div)

div−→ L2S S S SWh

∇−→ Vhcurl−→ Sh

div−→ Qh

1 + 3 + a a + 3 + 3 + b b + 3 + 1 + c c + 1

Leading to a natural separation of the space (for higher order)

Whp = WL1 + spanϕWh.o.

Vhp = VN0 + span∇ϕWh.o.+ spanϕV

h.o.Shp = SRT 0 + spancurlϕV

h.o.+ spanϕSh.o.

Qhp = QP0 + spandivϕSh.o.

Page 23: Hybrid Discontinuous Galerkin methods for incompressible ...

Reduced basis H(div)-conforming Finite ElementsWe use the construction of high order finite elements of[Schoberl+Zaglmayr, ’05, Thesis Zaglmayr ’06]:It is founded on the de Rham complex

H1 ∇−→ H(curl)curl−→ H(div)

div−→ L2S S S SWh

∇−→ Vhcurl−→ Sh

div−→ Qh

1 + 3 + a a + 3 + 3 + b b + 3 + 1 + c c + 1

Leading to a natural separation of the space (for higher order)

Whp = WL1 + spanϕWh.o.

Vhp = VN0 + span∇ϕWh.o.+ spanϕV

h.o.Shp = SRT 0 + spancurlϕV

h.o.+ spanϕSh.o.

Qhp = QP0 + spandivϕSh.o.

Page 24: Hybrid Discontinuous Galerkin methods for incompressible ...

Reduced basis H(div)-conforming Finite ElementsWe use the construction of high order finite elements of[Schoberl+Zaglmayr, ’05, Thesis Zaglmayr ’06]:It is founded on the de Rham complex

H1 ∇−→ H(curl)curl−→ H(div)

div−→ L2S S S SWh

∇−→ Vhcurl−→ Sh

div−→ Qh

1 + 3 + a a + 3 + 3 + b b + 3 + 1 + c c + 1

Leading to a natural separation of the space (for higher order)

Whp = WL1 + spanϕWh.o.

Vhp = VN0 + span∇ϕWh.o.+ spanϕV

h.o.Shp∗ = SRT 0 + spancurlϕV

h.o.Qhp = QP0 + spandivϕS

h.o.

Page 25: Hybrid Discontinuous Galerkin methods for incompressible ...

space separation in 2D

RT0 DOF higher order edgeDOF

higher order div.-freeDOF

higher order DOF with nonz. div

RT0 shape fncs. curl of H1-edge fncs. curl of H1-el. fncs. remainder

div(Σkh) =

MT

P0(T ) ⊕ 0 ⊕ 0 ⊕M

T

[Pk−1 ∩ P0⊥](T )

#DOF = 3 + 3k + 12 k(k − 1) + 1

2 k(k + 1)− 1

discrete functions have only piecewise constant divergence⇒ only piecewise constant pressure necessary for exact incompressibility

Page 26: Hybrid Discontinuous Galerkin methods for incompressible ...

Summary of ingredients and properties

So, we have presented a new Finite Element Method for Navier Stokes,with

I H(div)-conforming Finite Elements

I Hybrid Discontinuous Galerkin Method for viscous terms

I Upwind flux (in HDG-sence) for the convection term

leading to solutions, which are

I locally conservative

I energy-stable ( ddt ‖u‖

2L2≤ C

ν ‖f ‖2L2

)

I exactly incompressible

I static condensation

I standard finite element assembly is possible

I less matrix entries than for std. DG approaches

I reduced basis possible

Page 27: Hybrid Discontinuous Galerkin methods for incompressible ...

Software, Examples andConclusion

Page 28: Hybrid Discontinuous Galerkin methods for incompressible ...

Software

Netgen

I Downloads: http://sourceforge.net/projects/netgen-mesher/

I Help & Instructions: http://netgen-mesher.wiki.sourceforge.net

NGSolve (including the presented scalar HDG methods)

I Downloads: http://sourceforge.net/projects/ngsolve/

I Help & Instructions: http://sourceforge.net/apps/mediawiki/ngsolve

NGSflow (including the presented methods)

I Downloads: http://sourceforge.net/projects/ngsflow/

I Help & Instructions: http://sourceforge.net/apps/mediawiki/ngsflow

NGSflow is the flow solver add-on to NGSolve.It includes:

I The presented Navier Stokes Solver

I A package solving for heat (density) driven flow

Page 29: Hybrid Discontinuous Galerkin methods for incompressible ...

Examples

2D Driven Cavity (utop = 0.25, ν = 10−3)

Page 30: Hybrid Discontinuous Galerkin methods for incompressible ...

Examples

2D laminar flow around a disk (Re=100):

3D laminar flow around a cylinder (Re=100):

Page 31: Hybrid Discontinuous Galerkin methods for incompressible ...

Heat driven flowchanges in density are small:

I incompressibility model is still acceptable

I changes in density just cause some buoyancy forces

Boussinesq-Approximation:

Incompressible Navier Stokes Equations are just modified at the forceterm:

f = g → (1− β(T − T0))g β : heat expansion coefficient

Convection-Diffusion-Equation for the temperature

∂T

∂t+ div(−λ∇T + u · T ) = q

I Discretization of Convection Diffusion Equation with HDG method

I Weak coupling of unsteady Navier Stokes Equation and unsteadyConvection Diffusion Equation

I Higher Order (p ∈ 1, .., 5) in time with IMEX schemes

Page 32: Hybrid Discontinuous Galerkin methods for incompressible ...

Examples

Benard-Rayleigh example:Top temperature: constant 20CBottom temperature: constant 20.5C

Initial mesh and initial condition (p = 5):

Page 33: Hybrid Discontinuous Galerkin methods for incompressible ...

Conclusion and ongoing work

Conclusion:efficient methods for

I scalar convection diffusion equations

I Navier Stokes Equations

using

I Hybrid DG

I H(div)-conforming Finite Elements

I reduced basis

related/future work:

I heat driven flow (Boussinesq Equations)

I time integration (IMEX schemes, ...)

I 3D Solvers (Preconditioners, ...)

Page 34: Hybrid Discontinuous Galerkin methods for incompressible ...

Thank you for your attention!