Top Banner
HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3, • 22.15. Hint: 21.13: You may neglect the temperature drop across the tube wall. Suggested initial guess: Tw = 58 o C, Ti(out) = 36 o C. To be discussed during the week 29 Feb. - 4 March, 2016. By either volunteer or class list. Homework # 6 (Self-practice) WWWR # 21.17 Correction: “If eight tubes of the size designated in Problem WRF 20.7.” ID # 10.54
49

HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Jan 18, 2018

Download

Documents

Jacob Ferguson

Boiling Two basic types of boiling: Pool boiling –Occurs on heated surface submerged in a liquid pool which is not agitated Flow boiling –Occurs in flowing stream –Boiling surface may be a portion of flow passage –Flow of liquid and vapor important type of 2 phase flow
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

HW # 6 /Tutorial # 6WRF Chapter 20; WWWR Chapters 21 & 22

ID Chapters 10 & 11• Tutorial # 6• WRF#20.6; WWWR

#21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

• 22.15.• Hint: 21.13: You may neglect the

temperature drop across the tube wall. Suggested initial guess: Tw = 58oC, Ti(out) = 36oC.

• To be discussed during the week 29 Feb. - 4 March, 2016.

• By either volunteer or class list.

• Homework # 6 (Self-practice)

• WWWR # 21.17 Correction: “If eight tubes of the size designated in Problem WRF 20.7.”

• ID # 10.54

Page 2: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Boiling and Condensation

Page 3: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Boiling

Two basic types of boiling:• Pool boiling

– Occurs on heated surface submerged in a liquid pool which is not agitated

• Flow boiling– Occurs in flowing stream– Boiling surface may be a portion of flow passage– Flow of liquid and vapor important type of 2 phase

flow

Page 4: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Regimes of Boiling

Page 5: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Regime 1:• Wire surface temperature is only a few degrees

higher than the surrounding saturated liquid• Natural convection currents circulate the

superheated liquid• Evaporation occurs at the free liquid surface as the

superheated liquid reaches that position

Page 6: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Regime 2:• Increase in wire temperature is accompanied by

the formation of vapor bubbles on the wire surface• These bubbles form at certain surface sites, where

vapor bubble nuclei are present, break off and condense before reaching the free liquid surface

At a higher surface temperature, as in regime III, larger and more numerous bubbles form, break away from the wire surface, rise, and reach the free surface. Regimes II & III are associated with nucleate boiling.

Page 7: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Regime IV:• Beyond the peak of the curve the transition boiling

regime is entered.• A vapor film forms around the wire, and portions

of this film break off and rise, briefly exposing a portion of the wire surface

• This film collapse and reformation and this unstable nature of the film is characteristic of the transition regime.

• When present, the vapor film provides a considerable resistance to heat transfer, thus the heat flux decreases.

Page 8: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Correlations of Boiling Heat-Transfer Data

Page 9: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

( )L Vb

gD

Nub = Cfc Rebm PrL

n Refer to Appendix 6 for Detailed Derivation.

surface tension

Page 10: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 11: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 12: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 13: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

As confirmed by Cengel 2007

Page 14: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Condensation

• Occurs when a vapor contacts a surface which is at a temperature below the saturation temperature of the vapor.

• When the liquid condensate forms on the surface, it will flow under the influence of gravity.

Page 15: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

• Film Condensation•Normally the liquid wets the surface, spreads out and forms a film.

• Dropwise Condensation•If the surface is not wetted by the liquid, then droplets form and run down the surface, coalescing as they contact other condensate droplets.

Page 16: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 17: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 18: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 19: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 20: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Example 1

Page 21: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 22: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 23: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Film Condensation: Turbulent-Flow Analysis

• It is logical to expect the flow of the condensate film to become turbulent for relatively long surfaces or for high condensation rates.

• The criterion for turbulent flow is a Reynolds number for the condensate film.

• In terms of an equivalent diameter, the applicable Reynolds number is

Re = 4A L

P f

41 ; 1; 4

44Re L avg L avg

f f

AA PP

v vAP

Page 24: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 25: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

44Re L avgc

f f

V

Page 26: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

44Re L avgc

f f

V

Page 27: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 28: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 29: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,
Page 30: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Dropwise Condensation

Dropwise Condensation• Associated with higher heat-transfer

coefficients than filmwise condensation phenomenon.

• Attractive phenomenon for applications where extremely large heat-transfer rates are desired.

Page 31: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Heat Transfer Equipment

• Single-pass heat exchanger – fluid flows through only once.

• Parallel or Co-current flow – fluids flow in the same direction.

• Countercurrent flow or Counterflow - fluids flow in opposite directions.

• Crossflow – two fluids flow at right angles to one another.

Page 32: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Double pipe heat exchanger (A) and crossflow heat exchanger (B)

A B

Page 33: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Shell-and-tube Arrangement

• E.g. Tube-side fluid makes two passes, shell-side fluid makes one pass.

• Good mixing of the shell-side fluid makes one pass.

Page 34: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Log-Mean Temperature Difference

• Temperature profiles for single-pass double-pipe heat exchanger

Page 35: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Counterflow analysis

• Temperature vs. contact area

Page 36: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Log-Mean Temperature Difference (continued)

• First-law-of-thermodynamics

• Energy transfer between the two fluids

. .

p c p Hc H

q mC T mC T

. .

p c c c p H H Hc H

dq mC dT C dT mC dT C dT

( )( )

H C

H C H C

dq UdA T TT T T d T dT dT

Page 37: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Log-Mean Temperature Difference (continued)

Page 38: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Log-Mean Temperature Difference (continued)

q = U*T*dACH* (TH2-TH1) = q

Page 39: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Log-Mean Temperature Difference (continued)

Page 40: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Example #1

Page 41: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Example #1 (continued)

Page 42: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Shell-and-Tube Heat Exchanger (1)

Page 43: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Shell-and-Tube Heat Exchanger (2)

Page 44: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Shell-and-Tube Heat Exchanger (3)

Page 45: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Shell-and-Tube Heat Exchanger (4)

Page 46: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Cross Flow Heat Exchanger (1)

Page 47: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Cross Flow Heat Exchanger (2)

Page 48: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Cross Flow Heat Exchanger (3)

Page 49: HW # 6 /Tutorial # 6 WRF Chapter 20; WWWR Chapters 21 & 22 ID Chapters 10 & 11 Tutorial # 6 WRF#20.6; WWWR #21.13, 21.14; WRF#20.7; WWWR# 21.19. 22.3,

Example # 2

350

375

280 375

280 311.1

350 375

S, H, Water 280 -> 311.1

T, C, Oil 375-> 350