Top Banner
HW #3 /Tutorial # 3 WRF Chapter 17; WWWR Chapter 18 ID Chapter 5 Tutorial # 3 WWWR #18.12 (additional data: h = 6W/m 2 -K); WRF#17.1; WWWR#18.4; WRF#17.10 ; WRF#17.14. To be discussed during the week 1-5 Feb., 2016. By either volunteer or class list. Homework # 3 (Self practice) WRF #17.9; WRF#17.16. ID # 5.6, 5.9.
43

HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Jan 19, 2016

Download

Documents

Tutorial # 3 WWWR #18.12 (additional data: h = 6W/m 2 -K), 18.2, 18.4, 18.19, 18.15, 18.23. To be discussed during the week 3-7 Feb., 2014. By either volunteer or class list. Homework # 3 (Self practice) WWWR #18.18, 18.27. ID # 5.6, 5.9. HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

HW #3 /Tutorial # 3WRF Chapter 17; WWWR Chapter 18

ID Chapter 5

• Tutorial # 3• WWWR #18.12

(additional data: h = 6W/m2-K); WRF#17.1; WWWR#18.4; WRF#17.10 ; WRF#17.14.

• To be discussed during the week 1-5 Feb., 2016.

• By either volunteer or class list.

• Homework # 3 (Self practice)

• WRF #17.9; WRF#17.16.

• ID # 5.6, 5.9.

Page 2: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Unsteady-State Conduction

Page 3: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Transient Conduction Analysis

pC

qT

t

T

2

Page 4: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Spherical metallic specimen, initially at uniform temperature, T0

Energy balance requires

Page 5: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 6: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Large value of Bi •Indicates that the conductive resistance controls•There is more capacity for heat to leave the surface by convection than to reach it by conductionSmall value of Bi•Internal resistance is negligibly small•More capacity to transfer heat by conduction than by convection

Page 7: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 8: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Example 1 (WWWR Page 266)

• A long copper wire, 0.635cm in diameter, is exposed to an air stream at a temperature of 310K. After 30 s, the average temperature of the wire increased from 280K to 297K. Using this information, estimate the average surface conductance, h.

Page 9: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Example 1

Page 10: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Heating a Body Under Conditions of Negligible Surface Resistance

Page 11: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

BC (1) -> C1=0BC (2) -> = n/LFo = t/(L/2)2

IC -> Fourier expansion of Yo(x) …..> Equation (18-12) Engineering Mathematics: PDE

BC(1)

BC(2)

IC

V/A = (WHL)/(2WH)=L/2

x

Page 12: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 13: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Detailed Derivation for Equations 18-12, 18-13

Courtesy by all CN5 students, presented by Lim Zhi Hua, 2003-2004

Page 14: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Detailed Derivation for Equations 18-12, 18-13

Courtesy by all CN5 students, presented by Lim Zhi Hua, 2003-2004

Page 15: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 16: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 17: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Example 2

Page 18: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 19: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Heating a Body with Finite Surface and Internal Resistance

Page 20: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 21: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 22: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Heat Transfer to a Semi-Infinite Wall

Page 23: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 24: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 25: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 26: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 27: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 28: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 29: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Temperature-Time Charts for Simple Geometric Shapes

Page 30: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 31: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Example 3

Page 32: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

or Figure F.4

Page 33: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 34: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 35: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 36: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 37: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Example 4

Page 38: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 39: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 40: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5
Page 41: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

WWWR 18-12; 18-13

WWWR 18-16

(a) T=Ts @ x =0 WWWR 18-20

(b) -k dT/dx = h (T-T∞) @ x =0 WWWR 18-21

Page 42: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

Transient (Unsteady – State) Conduction Summary

i) Calculate Biot Modulus (Bi)

kA

VhBi

if Bi ≤ 0.1 → Lumped Parameter Analysis

TT

TT

tA

Vch op ln

if Bi ≥ 100 → There is temperature variation within the object. If the geometry of the solid objects falls into the 6 shapes given in Fig. 18.3 → Use figure 18.3 to calculate the temperature at the specific time.

Calculate

TT

TTo or 21x

t

And read off 21x

t or

TT

TTo

To find t or T if 0.1 ≤ Bi ≤ 100 → Use appendix F of W3R ( refer to examples 18.3 and 18.4)

Using Y =

oTT

TT X =

21x

t

n = 1x

x m =

1hx

k

Courtesy contribution by ChBE Year Representative, 2006.

Page 43: HW #3 /Tutorial # 3 WWWR Chapter 18 ID Chapter 5

ii) Slab Heating Heating of Body under negligible surface resistance. Check Bi no. and let m = 0. Heating a body with finite surface and internal resistance

0x

T (At centerline) and

TTk

h

x

T (At surface)

iii) Heat transfer into a semi – infinite wall Different from (ii) because there is no defined length scale Use Appendix L

For Heat transfer into a semi – infinite medium with negligible surface resistance

t

xerf

TT

TT

oS

S

2 or

t

xerf

TT

TT

oS

o

21

For Heat transfer into a semi – infinite medium with finite surface resistance

t

x

k

therf

k

th

k

hx

t

xerf

TT

TT

o

21exp

2 2

2

(18 – 21)