Top Banner
Thesis for the degree of Doctor of Philosophy Mitochondrial DNA variation in B ritish House mice (Hus domesticus. Rut t y ) Catherine S Jones, B.Sc, (Hons) University College London, University of London, Gower S t r e e t , London, WC1E 6BT. July 1990
552

(Hus domesticus. Rut t y ) - UCL Discovery

May 07, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: (Hus domesticus. Rut t y ) - UCL Discovery

T hes is f o r th e degree o f D oc to r o f P h ilo so p h y

M ito c h o n d r ia l DNA v a r ia t io n in B r i t i s h House mice (Hus domesticus. Rut t y )

C a th e rin e S Jones, B .Sc, (Hons)

U n iv e rs ity C o lle g e London, U n iv e rs ity o f London,

Gower S t re e t , London, WC1E 6BT.

J u ly 1990

Page 2: (Hus domesticus. Rut t y ) - UCL Discovery

ProQuest Number: 10609393

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uestProQuest 10609393

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.789 East Eisenhower Parkway

P.O. Box 1346 Ann Arbor, Ml 48106- 1346

Page 3: (Hus domesticus. Rut t y ) - UCL Discovery

I would l i k e t o d e d ic a te t h i s t h e s i s w i t h a l l my lo v e t o my Mother and

F a th e r , o th e rw is e known as "T u tb u ry P os tm a s te r and m is t r e s s "

THE LINNE AN SOCIETY 1780 1900 Eiectropr*ores« o* House rnouao mt DNA

- I I -

Page 4: (Hus domesticus. Rut t y ) - UCL Discovery

ABSTRACT!

d i iQ E b ° D d C i^ i_ J T ^ _ v ir i ation_Jjx_thB _JjJJ:j^Jp__Hou5B_m pjasB __!M u5_dpjne5ticu5i

R y tty K .

M orphom etric , k a ry o lo g ic a l and h is t o r ic a l Bvidencs in d ic a te s th a t C a ith ne ss

and OrknBy Housb micB (M us_dgmesticus. R u tty ) arB g e n e t ic a l ly d i s t in c t -from

o th s r B r i t i s h m ice, suggB sting th e y a re descended -from in t r o d u c t io n s .

M ito c h o n d r ia l DNA is a s m a ll, r a p id ly E vo lv in g , m a te rn a lly in h e r i te d m o le cu le ;

hsncB Bach mtDNA m o lecu le c a r r is s in i t s sequence thB h is to r y o f i t s lin e a g e

unco m p lica ted by rB co m b ina tio n . Thus, mtDNA RFLPs can bs ussd fo r a n a ly s in g

p o s s ib lB p a tto rn s o f c o lo n is a t io n and gene flo w in thBSB p o p u la t io n s .

H ig h ly p u r i f ie d mtDNA was is o la te d from each mouse and mapped, u s in g th e h ig h

re s o lu t io n r e s t r i c t io n method, w ith re sp e c t to the p u b lis h e d sequence o f mouse

mtDNA. T h is a llo w e d th e type s and in c id e n ce o f m u ta tio n a l change by w hich

mtDNA e vo lve s in th e House mouse to be eva lua ted . A t o t a l o f 23 mtDNA

com pos ite geno types, assayed us ing 14 r e s t r ic t io n enzymes, were re co gn ise d

among th e B r i t is h mice examined and a gene tic "b re a k " observed between

in d iv id u a ls from th e n o rth o f B r i t a in (Orkney, Ire la n d and N.E. S c o tla n d ; N.W

lin e a g e ) and those from th e south ( B r i t is h mainland, sou th o f C a ith ne ss and

S u th e rla n d ; S.E lin e a g e ) . The approxim ate lo c a tio n o f t h i s "b re a k " co rresponds

w ith th e G reat Glen f a u l t , which marks a boundary between in h o s p ita b le

m oorland, occup ied by Apodemus. Geographic o r ie n ta t io n o f mtDNA v a r i a b i l i t y

i s conco rdan t w ith da ta from o th e r sources, in c lu d in g th e p a te rn a l Y -

chromosome DNA. The House mouse i s u n l ik e ly to have s u rv iv e d th e la s t

g la c ia t io n , d a t in g th e e a r l ie s t p o s s ib le B r i t is h c o lo n is a t io n to about 10,000

B.P. An in te g ra te d approach, us ing evidence from a n th ro p o lo g ic a l,

p a la e o n to lo g ic a l, g e n e tic a l and h is t o r ic a l sources, p e rm its th e p ro g re s s io n

o f th e house mouse to be fo llo w e d th rough Europe. These da ta in d ic a te th a t

Hus domesticus p ro b a b ly reached North-W est Europe and B r i t a in in th e Iro n

- I I I -

Page 5: (Hus domesticus. Rut t y ) - UCL Discovery

Age. Hence, d ive rg e n ce s o f such m agnitude between th e N.W and S.E lin e a g e s a re

in c o n s is te n t w ith s u b s t i tu t io n s accum la ting in situ s in c e t h e i r a r r i v a l ;

c o n s is te n t w ith th e N.W and S.E form s o r ig in a t in g from se p a ra te in t r o d u c t io n

e ven ts from d i f f e r e n t a n c e s tra l sources.

Such a d is t in c t "b re a k " cou ld have been m a in ta ined by a number o f e i th e r

e x t r in s ic (g e o g ra p h ica l b a r r ie r s ) and /o r in t r i n s ic fa c to r s in c lu d in g ,

m ain tenance o f t e r r i t o r i e s , and s p e c i f ic mate p re fe re n c e s . A p o p u la r v ie w i s

t h a t house m ice l i v e in b e h a v io u ra lly is o la te d t r ib e s o r demes o f between 4 -

6 in d iv id u a ls , w ith v e ry l i t t l e gene f lo w between them. I t i s b e lie v e d th a t

as a consequence o f t h i s r i g id s t r u c tu re , im m ig ran ts in t o an e s ta b lis e d

p o p u la t io n a re u n l ik e ly to be re p ro d u c t iv e ly s u c c e s s fu l, and g e n e tic d r i f t

w i l l become im p o r ta n t in shap ing t h e i r p o p u la tio n s t r u c tu r e . T h is concep t may

be to o i n f l e x ib l e , as v i r t u a l l y every lo n g itu d in a l s tu d y o f f e r a l m ice has

shown some p o p u la t io n m ix in g . The I s le o f May in t r o d u c t io n e xpe rim en t

in v e s t ig a te d th e r e la t i v e im po rtance o f these i n t r i n s i c fa c to r s . House m ice

from Eday (Orkney) re le a se d in t o an e s ta b lis h e d p o p u la tio n on th e I s le o f May

( F i r t h o f F o rth ) in A p r i l 19B2, subsequen tly bred w ith th e endemic m ice . The

r e la t i v e m a terna l and p a te rn a l c o n tr ib u t io n s to th e success o f t h i s

in t r o d u c t io n were s tu d ie d us in g mtDNA and Y-chromsome m arke rs . D i f f e r e n t ia l

in t r o g r e s s io n was observed : Eday Y-chromosome a p p a re n tly spread a t a s im i la r

r a te to th e autosom al genes, w h ile Eday mtDNA in c re a se d in in c id e n c e and

d is t r ib u t io n a t o n ly o n e - th ird th e ra te . The tem poral and s p a t ia l d is t r ib u t io n

o f Eday d e r iv e d DNA showed th a t males d isperse and in t r o g r e s s more r a p id ly

than Eday fem a les , and form a s ig n i f ic a n t ly h ighe r p ro p o r t io n o f th e m a ting

p o p u la t io n than May m ales. C le a r ly , th e re seems to be no s o c ia l b a r r ie r s to

gene f lo w in t h i s f e r a l p o p u la tio n . The Is le o f May in t r o d u c t io n has a llo w e d

e v a lu a t io n o f mtDNA as a g e n e tic m arker, d e s c r ib in g p o p u la t io n s t r u c tu r e and

m a t r i l in e a l k in s h ip on a m ic rogeog raph ica l sca le .

Page 6: (Hus domesticus. Rut t y ) - UCL Discovery

AcknowledgementSi

I would l i k e to thank my main s u p e rv is o r , P ro fe sso r R .J B e rry f o r

in t ro d u c in g me to th e a r t o f mouse c a tc h in g from co rn r i c k s (a r a th e r

co m ica l co m b in a tio n o f g o a l-k e e p in g s k i l l s and rugby ta c k le s ! ) and f o r

re a d in g a few d r a f t s o f t h i s th e s is . A d d it io n a l ly , i f th e m a jo r i t y o f th e

f ie ld w o r k had n o t been s itu a te d in th e Orkneys, I may neve r have d is c o v e re d

th e jo y s o f a rch a e o lo g y , th e Orkneys be ing p a r t i c u la r l y s tee p ed in

p r e h is to r y , w ith th e fa s c in a t in g r u in s o f Skara B rae , L in k s o f N o lt la n d ,

Knap o f Howar, Maes Howe and many, many m ore .. . . th a n k you Sam. I would

l i k e t o ex tend my tha n ks to my jo i n t s u p e rv is o r , Dr D avid Latchm an, f o r

making a v a i la b le f a c i l i t i e s in h is la b o ra to ry e s s e n t ia l f o r th e m a jo r i t y o f

th e s e s tu d ie s , and fo r p a t ie n t ly re a d in g through a few c h a p te rs (e s p e c ia l ly

c h a p te r 3 f o r which he deserves a m e d a l! ! ) . To a l l th e p e o p le in C5

la b o ra to ry f o r h e lp and a d v is e in th e r a p id ly expand ing f i e l d o f m o le c u la r

b io lo g y , in c lu d in g Lynne Kemp, Pam and Bernado V i l l e r e a l , te c h n ic a n John,

and "sperm " A lis o n , many th a n k s . Thanks to a l l my c o lle a g u e s and fe l lo w

in h a b ita n ts o f th e "F ly House" la b o ra to ry , fo r t h e i r h e lp and f r ie n d s h ip

th ro u g h o u t my th re e years research? in p a r t ic u la r V in c e n t Bauchau, Les

Cooper, Pat Edwards, Mo F in d la y , P e te r K ing, Les N ob le , Jo P em berton, Paul

S c r iv e n , and Paul Sunnocks.

I am g r e a t ly in d e b te d to Dr Hakan Tege ls trom fo r p a t ie n t l y te a c h in g me,

d u r in g my b r ie f v i s i t to U ppsa la , th e re c e n t ly deve loped s e n s i t iv e s i l v e r

s ta in in g v is u a l is a t io n te c h n iq u e s , which became a v e ry v a lu a b le and

im p o r ta n t method th ro u g h o u t my s tu d y . For h is e n th us iasm , s u p p o r t ,

s t im u la t in g d is c u s s io n s on MtDNA tech n iq ue s and a p p l ic a t io n s , and

f r ie n d s h ip I am e te r n a l ly g r a te fu l .

I am v e ry g r a te fu l to Helen McVeigh a t the Queens U n iv e r s i t y o f B e l fa s t ,

Page 7: (Hus domesticus. Rut t y ) - UCL Discovery

-for her - fr ie n d s h ip and encouragement; i t was a c o n s ta n t source o f co m fo rt

and in s p ir a t io n th a t I was no t a lone in th e f r u s t r a t in g , and a t tim e s

d ep re ss in g f i e l d o f m ito c h o n d ria l g e n e tic s in B r i t a in . I would a ls o l i k e to

thank Helen and Dr Montgomery f o r t h e i r g e n e ro s ity in a r r a n g in g /c o l le c t in g

some I r is h m ice fo r use in t h is s tu d y .

Thanks to a l l th e fa rm e rs , f r ie n d s and c o lle a g u e s , to o numerous to l i s t in

d e t a i l , who e ith e r p ro v id e d th e specimens to work on o r gave t h e i r

p e rm iss io n to c o l le c t o r t ra p on t h e i r la n d , bu t e s p e c ia l ly to : Dr Graham

T r ig g s fo r w ith o u t h is con tin u ed b ia n n u a l tra p p in g seasons on th e I s le o f

May and to a l l those th a t accompanied him th ro u g h o u t th e y e a rs , c h a p te r 6

c o u ld never have been w r i t te n ; Marcus from th e W estray, O rkney, who f e r r ie d

us back and fo r th from th e I s le o f F a ray , and fo r h is e x c e lle n t

h o s p i t a l i t y ; to th e d i f f e r e n t d o c to rs a t Trenaby House, W estray over th e

y e a rs , f o r t h e i r h e lp and accommodation; to D r’ s J im and Sandy M a lle t f o r a

mouse from t h e i r son’ s n u rs e ry ;, and to Dave C la rke and Paul P ie rc e -K e lle y

f o r m ice from th e in s e c t house, London Zoo. Thanks a ls o to Dr Jean-Marc

B oyle fo r encouragement in th e e a r ly days o f my th e s is and f o r a id in some

com puting .

The acknowlegements would not be com plete w ith o u t m en tion in g th e members o f

th e "p o p u la t io n G ene tic group" in th e G ene tic departm ent a t U n iv e rs ity

C o lle g e London, fo r comments and a d v is e , and in a p a r t ic u la r case, much

needed " d i r e c t io n " , my thanks to D r’ s S teve Jones, Jim M a lle t , N ick B a rto n ,

Shahin R ouhani, Les Noble, and C h r is t ia n Raboud, and to th e pHd s tu d e n ts

Dot C u r r ie , N e il Sanderson and C h ris Beaumont.

I cannot express s u f f ic e n t ly my u n l im ite d g r a t i tu d e to my bes t f r ie n d and

c o n f id e n t, Dr Les N oble, now a t G ene tics D epartm ent, O xford U n iv e rs ity , fo r

Page 8: (Hus domesticus. Rut t y ) - UCL Discovery

w ith o u t a doubt I would p ro b a b ly never have f in is h e d in t h i s decade w ith o u t

h is he lp (above and beyond the c a l l o f d u ty ) , never f a i l i n g encouragement

and " fo r ju s t be ing th e re " to gu ide me th ro u g h th e peaks and tro u g h s o f th e

u lt im a te t o r t u r e in v e n te d by mankind - " th e s is w r i t i n g ! " .

F in a l ly , bu t by no means le a s t , to th e p eop le who have ke p t me sane, w ith

t h e i r co n tin u e d su p p o rt and lo v e , n o t to m ention th e c o n s ta n t nagg ings to

ensure I f in is h e d th e p a in fu l p rocess o f w r i t in g up - my p a re n ts .

- 711

Page 9: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

IABLE_OF_CONIENISi

T i t l e p a g e ............. ........ ............................................................................................................I

D e d ic a t io n . ...................................................................... 11

A b s t ra c t .................... . . . . . . . . . . I l l

Acknowl edgements ......................... .V

C o n te n ts ................... ........ ...................... .............................................................. ............. .. VI11

L is t o f T a b le s . . . . . ............. . . . . . . X V

L is t o f F ig u re s ............................. . .X V I I I

L is t o f P la te s ............................................................................... XX II

QH0PTER_ONEl_Introduction

1.1 General In t r o d u c t io n .....................................................................................................1

1 .2 M ito c h o n d r ia l DNA - th e d e f in i t i v e g e n e tic marker o f p o p u la t io n and

e v o lu t io n a ry b io lo g y . ......... .......... ...................................................................... ...........4

1 .2 .1 General P ro p e r t ie s and m o lecu la r c h a r a c te r is t ic s o f mtDNA.. . . 4

1 .2 .2 mtDNA as a p h y lo g e n e tic t o o l . . ...................... 11

1 .3 The house mouse (Hus domesticusf R u tty ) - th e s tu d y o rg a n is m .. . . 16

1.4 General aims o f th e s t u d y . . ............... . . . . . 2 0

QHAPIER_IWOi_Material_and_Methgds

2.1 A b b re v ia t io n s . ............. 28

2 .2 M a te r ia ls ............................................................................. 28

2 .2 .1 Sam pling p ro ce d u re s ............................................ 28

2 .2 .2 R eagents........................................................ 29

2 .2 .3 M o le cu la r w e ig h t s ta n d a rd s ............................. .30

2 .3 L a b o ra to ry m e th o d s ...................... 30

- V I I I -

Page 10: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

2 .3 .1 M ito c h o n d r ia l DNA is o la t io n .................................. 31

2 .3 .1 .1 R a tio n a le o f m e tho d o log ie s ..................................................... . ...............31

2 .3 .1 .2 M o d if ie d phenol e x t r a c t io n method ................. . . . . . . . . . 3 3

2 .3 .1 .3 mtDNA is o la t io n u s in g u l t r a c e n t r i f u g a t io n .................. ..................36

2 .3 .1 .3 .1 Use o f a v e r t ic a l r o t o r . ............................................................. . .3 6

2 .3 .1 .3 .2 Use o f a sw in g -o u t r o t o r ................................. .38

2 .3 .1 .4 R e s t r ic t io n endonuclease d ig e s t io n s ......................... 39

2 .3 .1 .5 Gel e le c tro p h o re s is .................... . . . . . . 4 0

2 .3 .1 .6 M ito c h o n d r ia l v is u a l is a t io n te c h n iq u e s . . ......................................40

2 .3 .1 .6 .1 S i lv e r s ta in in g ............................... . . . 4 0

2 .3 .1 .6 .2 E th id iu m brom ide s ta in in g ................................ . . . . . . 4 1

2 .3 .1 .7 Q u a n t if ic a t io n o f mtDNA...................... 41

2 .3 .2 Y-Chromosome m e th o d o lo g ie s . . . . . . . ................ 43

2 .3 .2 .1 I s o la t io n o f t o t a l genomic DNA............... 43

2 .3 .2 .2 R e s t r ic t io n enzyme d ig e s t i o n s . . . . . . .................. . . . . . 4 3

2 .3 .2 .3 Agarose ge l e le c tro p h o re s is o f genomic DNA............................... 44

2 .3 .2 .4 DNA t r a n s f e r . . ............................... 44

2 .3 .2 .5 P r e - h y b r id iz a t io n .................. .46

2 .3 .2 .6 H y b r id iz a t io n ...................................... 46

2 .3 .2 .7 R e -h y b r id is a t io n ........................................................... 47

2 .3 .2 .8 C lones ...................................................................................................... ...........48

2 .3 .2 .9 P re p a ra tio n o f com petent c e l l s ........................................................... 48

2 .3 .2 .1 0 T ra n s fo rm a tio n ...................................... 49

2 .3 .2 .1 1 M in i-p re p a ra t io n o f p lasm id DNA.. ........... . . . . . . . . . 4 9

2 .3 .2 .1 2 D ig e s tio n o f p lasm id DNA & p u r i f i c a t io n o f th e i n s e r t . . 50

2 .3 .2 .1 3 01 ig o - la b e l in g r e a c t io n ........................................................................ 30

- I X -

Page 11: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

2 .3 .2 .1 4 S e p a ra tio n o-f u n in c o rp o ra te d n u c le o t id e s ..................... 51

2 .3 .2 .1 5 A u to ra d io g ra p h y . .................................................................. 52

2 .4 Data A n a ly s is and in t e r p r e t a t io n ....................... . .5 2

2 .4 .1 Com posite DNA g e n o ty p e s . . . ............................... . . . . . 5 2

2 .4 .2 Fragment m o le cu la r w e ig h t e s tim a te s and s i t e m apping.................. 53

2 .4 .3 E s tim a te s o f sequence d iv e r g e n c e . . . . . ....................................... . . . . . 5 5

2 .4 .4 T ree c o n s t r u c t io n . . . ............................... 58

CHAPTER THREEs M o le cu la r e v o lu t io n o f B r i t i s h house mouse (Hus

domesticus) m ito c h o n d r ia l DNA.

3 .1 I n t r o d u c t io n . ........................................... 91

3 .2 M a te r ia ls and m ethods.................................................. ........................................... . .9 3

3 .2 .1 O rd in a t io n o f d a t a . . . . . . . ............... . . . . . 9 5

3 .3 R e s u l t s . . ................................................................................................................................ 96

3 .3 .1 Fragment d ig e s t io n p r o f i l e s . . . . . . . . . . ................................ .96

3 .3 .2 C leavage m apping.............. ........................................................ ..............................97

3 .3 .3 A n a ly s is o f s i t e g a in s .............. ................................... 98

3 .3 .4 A n a ly s is o f s i t e l o s s e s . . . . . . . . .................... 101

3 .3 .5 Summary o f s i t e o c c u r re n c e s . . ...................... 101

3 .3 .5 .1 Genomic d is t r ib u t io n s o f c leavage s i t e s ................ . . . . . 1 0 1

3 .3 .5 .2 D is t r ib u t io n o f s i t e s w ith in and between gene r e g io n s . . . . 103

3 .3 .6 Gene v a r i a b i l i t y . ........................................................................................ . . . . . 1 0 5

3 .3 .7 D e s c r ip t io n o f s i t e d i f f e r e n c e s . . . . . . . . . . .............................................. 106

3 .3 .7 .1 H e xa n u c le o tid e r e s t r i c t io n e n z y m e s . . . . . . ...................... .106

3 .3 .7 . 1.1 H ind I I I (AAGCTT).................................................................................. 106

3 .3 .7 . 1 .2 Xba I (TCTAGA).......................................... 107

Page 12: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

3 .3 .7 .1 .3 H inc I I (GT CPuPy] AC)................................................................ . . .1 0 8

3 .3 .7 .1 .4 Acc I (GT CA/CI CG/T3 AC)................................................................108

3 .3 .7 .2 F iv e b a s e -c u t te r r e s t r ic t io n endonuc leases.................. 109

3 .3 .7 .2 .1 Ava I I (GG CA/T3 C O ........................................................................... 109

3 .3 .7 .3 T e tra n u c le o t id e r e s t r i c t io n endonucleases.................................... 110

3 .3 .7 .3 .1 Fnud I I (CGCG).........................................................................................110

3 .3 .7 .3 .2 Hpa I I (CCGG)......................................................................................... 110

3 .3 .7 .3 .3 Taq I (TCGA)............................................................................................I l l

3 .3 .7 .3 .4 Hae I I I (GGCC).........................................................................................I l l

3 .3 .7 .3 .5 H in t I (GA CN3 T C ) . . . . . .................................................................... 113

3 .3 .7 .3 .6 Mbo I (GATC)............................................................................................115

3 .3 .7 .3 .7 Rsa I (GTAC)............................................................................................115

3 .3 .7 .3 .8 A lu I (AGCT)............................................................................................117

3 .3 .7 .3 .9 Sau 961 (GG CN3 CC).............................................................. 119

3 .4 D is c u s s io n ............................................................................................................................. 120

3 .4 .1 DNA v a r ia t io n across th e m ito c h o n d ria l g e n o m e . . . . . . . ........... . . . . 1 2 0

3 .4 .2 Base sequence v a r ia t io n in animal mtDNA................................................. 121

3 .4 .2 .1 P ro te in -c o d in g g e n e s . . . ........... . . . . . . . 1 2 1

3 .4 .2 .2 Ribosomal genes .................... . . . . 1 2 3

3. 4 .2 .3 T ra n s fe r RNA...................................................................................................... 124

3 .4 .2 .4 The d isp lace m e n t lo o p ............................... .124

3 .4 .3 Rates and ty p e s o f change in animal m tD N A ... ...................... 129

3 .4 .4 R e s t r ic t io n mapping c o m p le x it ie s and c o m p lic a t io n s ............... . . . . 1 3 6

3 .4 .4 .1 D i f f e r e n t mtDNA v is u a l is a t io n m e t h o d s . . . . . . . . ............. . . . . . . 1 3 6

3 .4 .4 .2 Cases o f m ism apping.................................................................... 138

3 .5 Summary. ............. 138

Page 13: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE QF CONTENTS

C H A P TE R _FO yR i_P hylggeograB hic_Bgg iu la tign_5tructure_gf_B riti5h_hgu5e_(n ice

B Q Q yl§ tiQ D I_ i5sessed_by_m itgchgndria l_pN A i

4 .1 In t r o d u c t io n ............................................................................ . . . . . . . 2 3 0

4 .2 M a te r ia ls and m ethods......................................................................................................233

4 .2 .1 M ice .................................................. 233

4 .2 .2 L a b o ra to ry p ro ced u re s ................................................. .234

4 .2 .3 Data a n a ly s is .................................................................................................... . . . . 2 3 4

4 .3 Resul t s ............. 236

4 .3 .1 M ito c h o n d r ia l DNA v a r ia t io n in B r i t a in .........................................................236

4 .3 .2 M ito c h o n d r ia l DNA v a r ia t io n in Orkney and N.E. S c o t la n d . . . . . . . . 2 3 3

4 .3 .3 P h y lo g e n e tic c o n s id e ra t io n s ........................................ ................................... . .2 3 9

4 .3 .3 .1 M ic rog e og ra p h ic s t r u c tu r in g ................................ 239

4 .3 .3 .2 M acrogeograph ic s t r u c t u r in g . ............................................... . . . . . . . . 2 4 2

4 .4 Di scuss i o n ............................... 246

4 .4 .1 M ic rog e og ra p h ic s t r u c tu r in g in B r i t a in .........................................................246

4 .4 .2 M acrogeographic s t r u c tu r in g ! evidence from o th e r European mice in

th e search f o r a n c e s tra l p o p u la tio n s o f the B r i t is h house mouse............... 253

4 .4 .3 P a tte rn s o f c o lo n is a t io n suggested by mtDNA a n a ly s e s . . . . . . . . . . . 2 5 8

CHAPIER_FWE£_lntr a-sgeci_£ic_Y_chrgmg5gme_pNA_Yariat i_gn_i_n_t he_Bri_t i_sh

b 9yi§_!Dou5e_£ tfus jfpaest icusJRut t y

5 .1 In t r o d u c t io n ...................... . . . . 3 1 2

5 .2 M a te r ia ls and m ethods ......................................................................................315

5 .2 .1 Col l e c t io n s . ............... 315

5 .2 .2 D e s c r ip t io n o f th e Y -s p e c if ic probe, p Y C R 8 /B .... ............................. . .3 1 5

5 .2 .3 L a b o ra to ry p ro ce d u re s ................................. 316

Page 14: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

5 .2 .4 Data a n a ly s is ............................ . .3 1 7

5 .3 R e s u lts ................................................................................................................. .318

5 .3 .1 Y chromosome DNA r e s t r i c t io n fragm ent v a r i a t i o n . . . . . . ...................... 318

5 .3 .2 P h y lo g e n e tic a n a ly s e s ................................................................ 319

5 .4 Di scu ss i o n ................................................................................... 323

5 .4 .1 I n t r a - s p e c i f ic phy log e og ra p h ic c o n s id e r a t io n s . . . . .......................... . . 3 2 3

5 .4 .2 Y chromosome e v o l u t i o n . . . . . ................................................................................. 329

5 .4 .3 Y chromosome DNA v a r i a b i l i t y . ............... . . . . . . . 3 3 1

Q H A P IE R _S IX i_p iffe ren tia l_5B read_and_gene_ f lgw _gf_m itgchgndria l_D N A_and_Y

chromosome DNA in an is la n d p o p u la tio n o f th e house mouse (Hus dowesticus

R y t ty K

6 .1 I n t r o d u c t io n . ...................................................... .367

6 .1 .2 The I s le o f May s tudy a re a ........................................... 370

6 .2 M a te r ia ls and m ethods............................ 371

6 .2 .1 C o lle c t io n o f samples...............................................................................................371

6 .2 .2 M ito c h o n d r ia l DNA p re p a ra t io n s ...................................................... 372

6 .2 .3 Y chromosome p re p a ra t io n s ......................................................................................373

6 .3 R e s u lts ............... . . . . . . . . 3 7 4

6 .3 .1 M ito c h o n d r ia l DNA g e n e tic m arke rs ............................................... 374

6 .3 .2 The Y chromosome DNA g e n e tic m a rk e rs . . ................................................. . . . 3 7 6

6 .3 .3 M o n ito r in g o f the in tro d u c e d Eday genes us ing mtDNA and Y-chromosome

DNA....................................................................................................................................................... 377

6 .4 D is c u s s io n ............. . . .3 8 0

- X I I I

Page 15: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

CHAPIER_SEyENi_PISCUSSIONi

7 .1 : D is c u s s io n . ........................... .423

7 .1 . is Phylogeography o-f th e house mouses An in te g ra te d a p p ro a c h .. . . . . 423

7 .1 .2 s F o llo w in g gene f lo w w ith sex s p e c i f ic m arkers.................... . . . . . . . . . 4 3 6

7 .1 .3 : C o lo n is a t io n and sex s p e c i f ic m arkers........................................ . . . . . . . . 4 4 0

7 .1 .4 : L im ita t io n s o f mtDNA as a p h y lo g e n e tic m a r k e r . . . . ...............................44

7 .1 .5 : F u tu re s t u d ie s . . .................. 447

7 .2 : Summary......................................................................................... 451

BIBLIOGRAPHY.....................................................................................................................................453

APPENDIX..

A. Is An im proved ra p id method fo r c reen ing m ito c h o n d ria l DNA v a r ia t io n in

c lo s e ly r e la te d P o p u la tio n s - Jones e t e l - , (1989 )............. 493

A. 2 : The th e o r e t ic a l re la t io n s h ip s between the p ro p o r t io n o f shared DNA

fra gm en ts (F) and th e number o f n u c le o t id e s u b s t i tu t io n s per s i t e ( d ) , fo r

r e s t r i c t io n enzymes re c o g n is in g 4 ,5 and 6 basepa ir s e q u e n c e s ........................500

- X I V -

Page 16: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

LISI_OF_JABLESi

CHAPIiR.IWQi

2 .1 : A b b re v ia t io n s . ............. 60

2 .2 : Sampling s i t e s in B r i t a in and I re la n d .......................... 62

2 .3 : L is t o-f m ajor b u f fe r s , and s o lu t io n s .................. . . . . 6 6

2 .4 : C h a ra c te r is t ic s o f r e s t r i c t io n endonucleases used............................... 69

2 .5 : M o le cu la r w e ig h t s ta n d a rd s : fragm ent s iz e s and s i t e lo c a t io n s

re cogn ised in th e p u b lis h e d mouse m ito c h o n d ria l DNA re fe re n c e

sequence .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1

2 .6 : A d d it io n a l m o le cu la r w e igh t s ta n d a rd s . . .......................................................... 79

CHAPJER_IHREEi

3 .1 : M ito c h o n d r ia l DNA r e s t r i c t io n fragm ent d ig e s t io n p r o f i l e s ..................140

3 .2 : Summary o f r e s t r i c t i o n fragm ent d ig e s t io n p r o f i l e s ..................................155

3.3A -N : V a r ia b le r e s t r i c t io n s i t e s o f mouse mtDNA d e te c te d w ith each o f th e

fo u rte e n r e s t r i c t io n endonucleases................... 157

3 .4 : Summary o f lo c a t io n s o f r e s t r ic t io n s ite s fo r 14 enzymes in Mus

domesticus mtDNA...................................................................................... ................................. 169

3 .5 : S ite g a in s f o r s p e c i f ic s u b s t i tu t io n s ............................................................... 171

3 .6 : Base s u b s t i tu t io n s rs p o n s ib le fo r s i t e ga ins in mouse mtDNA.. . . . . 176

3 .7 : Summary o f a l l s i t e g a i n s . . . . . ........................................ . .1 7 8

3 .8 : Summary o f s i t e lo s s e s d e tec ted by each o f 14 enzymes ...........179

3 .9 : R egional v a r i a b i l i t y : gene s iz e and number o f s i t e s . . . ...................... .181

3 .1 0 : Regional v a r i a b i l i t y o f mtDNA..... in Mus dowesticus............... 182

3 .1 1 : Summary o f re g io n v a r ia t io n in Mus dowesticus m tD N A .. . . .................. 184

3 .1 2 : M ito c h o n d r ia l gene v a r ia b i l i t y comparison between mouse and man.185

Page 17: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

QHAPIER_FOyRi

4 .1 : The mtDNA com posite genotypes (mt c lones) observed among samples o f

B r i t i s h house mice (Mus domesticus) ............... 267

4 .2 : F requenc ies o f mtDNA c lones across B r i t a in ....................................................271

4 .3 : P h y lo g e n e t ic a lly in fo rm a tiv e r e s t r i c t io n s i te s in th e B r i t i s h house

mouse us ing 14 r e s t r i c t io n e n d o n u c le a s e s . . . . . ........................................................ 273

4 .4 : M a tr ix o f sequence d ive rgence e s tim a te s between mtDNA com posite

c lo n e s from the B r i t is h house mouse u s in g 14 enzymes.................... . . .2 7 5

4 .5 : P h y lo g e n e t ic a lly in fo rm a tiv e r e s t r i c t io n s i te s o f European house mice

u s in g 11 r e s t r i c t io n endonucleases............... 277

4 .6 : P h y lo g e n e t ic a lly in fo rm a tiv e r e s t r i c t io n s i te s from w o rld -w id e samples

o f th e house mouse us ing two r e s t r i c t io n edonucleases, Mbo I S< H in f 1.279

c h a p ie r _f w e i

5 .1 : The Y chromosome DNA com posite genotypes observed among th e samples o f

Mus domesticus from B r i t a in .................................................................................................335

5 .2 : Fragment s iz e s ( in b a s e -p a irs ) c h a ra c te r is in g th e r e s t r i c t io n p r o f i le s

o f Y chromosome DNA genotypes in th e B r i t is h house mouse, us ing e ig h t

r e s t r i c t io n endonucleases..................................................................................................... 337

5 .3 : M a tr ix o f p e rcen t n u c le o tid e d ive rgence e s tim a te s and p ro p o r t io n o f

shared Y chromosome DNA r e s t r i c t io n fragm ents (Nei & L i , 1979) fo r the

B r i t i s h house mouse (Mus domesticus)............................................................................ 340

5 .4 : P h y lo g e n e t ic a lly in fo rm a tiv e r e s t r i c t io n fragm en ts o f th e B r i t is h

house mouse (Mus domesticus) Y chromosome DNA us in g 8 r e s t r i c t io n

endonucl e a s e s . ............................................................... 342

Page 18: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

CHAPIER_SIXi

6 .1 : F requencies o f mtDNA com posite genotypes observed among N o rth e rn

Orkney Is le s ( in c lu d in g Eday) and p re - in t r o d u c t io n I s le o f May samples o f

house mice iMus domesticus)................................................................ . ............................ 390

6 .2 : Homerange and d is p e rs a l e s tim a te s in house mouse p o p u la t io n s . . . .3 9 2

Page 19: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

LISI_OF_FIGL)RESi

CHAPIER_ONEi

l . l : O rg a n is a tio n o f mouse m ito c h o n d ria l DNA......................................................... .2 5

1 .2 : D is t r ib u t io n and taxonomy o f th e house mouse................. .............................. 27

CHAPIER_IWQi

2 .1 : D is t r ib u t io n o f m ajor sam pling lo c a l i t ie s in s i t e s B r i t a in and

I r e la n d ............................................. ............................. ........................ ............... 81

2 .2 : Mouse id e n t i f i c a t io n m arking s c h e m e ................................. ..................................82

2 .3 : Graph to i l l u s t r a t e th e p r o b a b i l i t y o f not d e te c t in g sequence

d iv e rg e n c e s .................................................................................................................................... 84

2 .4 : DNA q u a n t i f ic a t io n , s tandard cu rve c a l ib r a t io n : 2. Graph p l o t . . . . 85

2 .5 : S ite mapping o f s in g le d ig e s ts : High re s o lu t io n sequence com parison

method ............................................... ................................................................................. 87

CHAPIER.IHREEL

3 .1 : S im p lif ie d is o la t io n and v is u a l is a t io n s teps o f m tD N A .......................187

3 .2 : Sequence com parison s i t e mapping method b* map lo c a t io n s ....................189

3 .3 : D is t r ib u t io n s o f t r a n s i t io n s S< tra n s v e rs io n s in Mus domesticus

DNA genome. ................................................................................................. 192

3 .4A : L o c a tio n s o f c leavage s i t e s and fu n c t io n a l re g io n s in Mus

domesticus mtDNA d e te c te d w ith 11 r e s t r ic t io n e nd o n u c le a se s .. . . . . . . . . . 194

3.4B (OVERLAY): L o c a tio n s o f c leavage s i te s and fu n c t io n a l re g io n s in th e

B r i t i s h house mouse us ing th re e a d d it io n a l r e s t r i c t io n e n d o n u c le a se s ..197

3 .5 : D is t r ib u t io n o f a l l c leavage s i te s (co n s ta n t and v a r ia b le ) a c ro ss the

mtDNA genome w ith each o f 14 e n z y m e s ..................... ..................................................... 198

3 .6 : D is t r ib u t io n o f c leavage s i te s among mouse mtDNA gene r e g io n s . . . .2 0 0

3 .7 : D is t r ib u t io n o f v a r ia b le s i te s w ith in mouse mt genes .............. 203

- X V I I I -

Page 20: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

3.8s O rg a n is a tio n o f th e D -loop c o n ta in in g re g io n in m ice ............................. 205

3 .9 : S u b s t i tu t io n ra te m a tr ic e s ............................................. . . . . . 2 0 7

CHAPTER FOUR:

4 .1 : L o c a tio n o f sample s i te s in Orkney and th e n e ig h b o u rin g m ain land

c o u n tie s o f C a ithness and S u th e r la n d . . . . . ...................................... 281

4 .2 : D is t r ib u t io n o f t ra p s i te s fo r th e is la n d census on F a ra y , Orkney

a rc h i p e l a g o . .................. 283

4 .3 : D is t r ib u t io n o f t ra p s i te s fo r an is la n d census, on Skskholm , on th e

Pem brokesh ire c o a s t, in autumn 1986............................................................... . . . . . . . 2 8 5

4 .4 : P h y lo g e n e tic netw orks fo r r e s t r ic t io n morphs o f each o f th e 14 enzymes

em ployed................ 287

4 .5 : Geographic d is t r ib u t io n o f r e s t r ic t io n d ig e s t io n p a t te rn morphs f o r

each v a r ia b le r e s t r i c t io n enzymes........................................................... 289

4 .6 : G eographic d is t r ib u t io n o f mtDNA com posite geno types in B r i t a i n . . 292

4 .7 : Adams consensus t r e e o f B r t is h sam ples.................................. 294

4 .8 ; Phenogram d e riv e d from a UPGMA c lu s te r a n a ly s is o f 23 mtDNA c lo n e s in

th e B r i t i s h house mouse, based on 14 enzym es..,................................... . . . . . . . . 2 9 6

4 .9 : Adams consensus t re e o f mtDNA com posite genotypes u s in g 11 enzymes

among European sam ples............................................................................................................298

4 .1 0 : Geographic d is t r ib u t io n o f mtDNA c lones in Europe................ ..................300

4 .1 1 : Parsim ony ne tw orks in te rc o n n e c tin g the com pos ite mtDNA gentypes o f

Mus domesticus u s in g a) 14 b) 11 r e s t r ic t io n enzym es.. . . . . . . . . . . . . . . . . 302

4 .1 2 : S t r i c t consensus t re e o f mtDNA com posite genotypes u s in g 2 enzymes

among w o rld -w id e sam ples................................................ .. ......................................... . . . . 3 0 5

4 .1 3 : G eographic d is t r ib u t io n o f mtDNA c lones among w o rld w id e samples u s in g

two r e s t r i c t io n enzymes............... 307

- X I X -

Page 21: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

4 .1 4 : Map o f B r i t a in showing th e e x te n t of the ic e d u r in g maximum

g la c ia t io n and d u r in g th e la te la s t g la c ia t io n ...................................... . ..............309

4 .1 5 : D is t r ib u t io n o f mtDNA com posite genotypes from among a) Orkney & N.E.

S co tla n d b) Ire la n d & I s le o f Man, in the N-W g e n e tic assem blage in

B r i t a in ...................................................................... .310

CHAPTER_FIVEi

5 .1 : The lo c a l is a t io n and proposed o r ig in s o f the s x r re g io n o f th e mouse Y

chromosome, c o n ta in in g th e se x -d e te rm in in g g e n e s ............................................... 344

5 .2 : Southern b lo t a n a ly s is o f Y chromosome DNA RFLPs.................................... 346

5 .3 : D iagram m atic re p re s e n ta t io n o f a l l Y chromosome DNA r e s t r i c t i o n

fragm ent d ig e s t io n p r o f i le s observed in the 91 samples o f B r i t i s h house

m ice , c leaved w ith B r e s t r i c t io n endonuclease us ing th e Y - s p e c i f ic p robe ,

pYB....................................................................................................................................................... 348

5 .4 : G eographic d is t r ib u t io n o f v a r ia b le (Taq I , Hae I I I , Mbo I and H in f I )

Y chromosome genotypes in th e B r i t is h house mouse....................................... . . . . 3 5 0

5 .5 : Three e q u a lly p a rs im on ious t r e e s . . . . . . . . . . . . . . . . . ......................... . . . . . 3 5 1

5 .6 : S t r i c t consensus t re e fo r a l l tre e s of equal le n g th ............................... 353

5 .7 : A phenogram o f th e 12 Y DNA co lnes in B r i t is h house m ice by UPGMA

c lu s te r a n a ly s is o f sequence d ive rgence e s t im a te s . . ...........................................355

5 .8 : G eographic d is t r ib u t io n o f com posite DNA type s (mtDNA/ Y) across

Br i t a i n gen o typ e s ................................................................................................. 357

5 .9 : Comparison o f mtDNA and Y lin e a g e s in B r i t is h house m ice in c lu d in g A)

d iv e r s i t y o f mtDNA and Y DNA lin e a g e s estim a ted by nuc leon d iv e r s i t y B)

number o f c lo n e s per m ajor r e g io n . . . ...................... 358

CHAPIER_SIXI

6 .1 : D is t r ib u t io n o f t ra p s d u r in g an is la n d census on th e I s le o f May.394

Page 22: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

6 .2 : S in g le r e s t r i c t i o n enzyme parsim ony netw orks c h a ra c te r is in g p re ­

in t r o d u c t io n Eday and I s le o f May m ice........................................ 396

6 .3 : D is t r ib u t io n o f in tro d u c e d Eday nmtDNA on th e I s le o f May from

September 1985 to September 1987.................. 398

6 .4 : The tem pora l and s p a t ia l spread o f in tro d u c e d Eday gene fre q u e n c ie s

a c ro ss th e I s le o f May in Sept* 1985, 1986, and 1987: I . mtDNA I I . Y

chromosome DNA. ........................ 400

6 .5 : O v e ra ll f re q u e n c ie s o f in tro d u c e d EDay genes in September 1985, 1986 St

1987; I . mtDNA St Y chromosome DNA I I . com posite genotypes (mtDNA/Y). . .4 0 2

6 .6 : D is t r ib u t io n o f m ito c h o n d ria l DNA and Y chromosome com posites

(mtDNA/Y) a c ro ss th e I s le o f May from September 1985 to 1 9 8 7 . . . . . . . . . . 4 0 4

6 .7 : F requenc ise o f each o f the com posites (mtDNA/Y chromosome DNA) in th e

fo u r a r b i t r u a r y re g io n s o f th e is la n d (A-D) from Sept* 1985, 1986 and 1987,

d is p la y e d g r a p h ic a l ly ...................... .406

6 .8 : The d is t r ib u t io n o f mice across th e I s le o f May in September 1982 I .

and I I . O r ig in a l p re - in t ro d u c t io n mice re c a p tu re s (m ale and fem a les ,

r e s p e c t iv e ly ) , I I I . ’ H y b rid s " (as m on ito red by a llo zym e d a ta ) ....................408

CHAPIER_SEVENi

7 .1 : What i s an O r c a d ia n ? . . . . . ........................ 452

- X X I -

Page 23: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

LISI_OF_PLATESSi

CHAPJER_JWOi

2 .1 : DNA q u a n t i f ic a t io n , S tandard cu rve c a l ib r a t io n : 1. ge l photograph 89

CHAPTER THREE:

3 .1

3 .2

3 .3

3 .4

Gel pho tograph i l l u s t r a t i n g sequence com parison s i t e m apping 209

Hind I I I r e s t r i c t io n d ig e s ts o f B r i t i s h Mus domesticus mtDNA.. . . .211

Xba I " ” 214

Hpa I I " " 216

o .o : Taq I " " 218

3 .6 : Hae I I I " " " 220

3 .7 : H in f I " " 222

3 .8 : Mbo I ” " " 224

3 .9 : Rsa I " ” .226

3 .1 0 : A lu I " ” 228

c h a p ie r _f i v e i

5 .1 : Southern b lo t a n a ly s is o f a) Eco RI b) both Hae I I I & H in f I d ig e s te d

house mouse DNA from v a r io u s B r i t i s h lo c a l i t i e s u s in g th e s x r Y -s p e c if ic

p robe , p Y 8 . ............. 360

5 .2 : Southern b lo t a n a ly s is o f a) Taq I and b) Rsa I - r e s t r i c t e d house mouse

DNA us ing th e Y -s p e c if ic probe pY8................................................. .363

5 .3 : H y b r id is a t io n o f Mbo I - d ig e s te d house mouse DNAs w ith th e Y -s p e c if ic

p robe , pY8........................... 365

CHAPIER_SIXI

6 .1 : H in f I r e s t r i c t io n fragm ent d ig e s ts o f I s le o f May & Orkney house mice

(Mus domesticus) ........................... . . . . . . . . 4 1 0

- X X I I -

Page 24: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE OF CONTENTS

6 .2 : A lu I r e s t r i c t i o n fragm ent d ig e s ts o f Is le o f May and Orkney Mus

domesticus mtDNA. ................................................... 412

6 .3 : Taq I and Mbo I mtDNA r e s t r ic t io n fragm ent p r o f i l e s o f May and Eday

house m ic e . ............................................................ .414

6 .4 : Rsa I and Hae I I I r e s t r i c t io n fragm ent p r o f i le s o f genomic DNA, probed

w ith a Y -s p e c if ic sequence from house mice from th e I s le s o f May and

Eday....................................................................................................................................................... 417

6 .5 : Hae I I I r e s t r i c t i o n fragm ent p a tte rn s produced by s o u th e rn b lo t

a n a ly s is and probed w ith a Y -s p e c if ic sequence from p o s t - in t r o d u c t io n I s le

o f May house mice from September 1986........................................................................ .417

6 .6 : Hae I I I r e s t r i c t i o n fragm ent p a tte rn s produced by s o u th e rn b lo t

a n a ly s is and probed w ith a Y -s p e c if ic sequence from p o s t - in t r o d u c t io n I s le

o f May house mice from September 1987.......................................... ............................. 421

- X X I I I -

Page 25: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPIER_ONEi_INIRODUCIigNi

l i l i _ G e n e ra l_ iD tro d u c tio n i

E v o lu t io n a ry s tu d ie s ( th e s tu d y o f "descen t w ith m o d if ic a t io n " - Darw in,

1859) have t r a d i t i o n a l l y focused on two m ajor a spe c ts , th e re c o n s tru c t io n

o f th e e v o lu t io n a ry h is t o r ie s o f o rgan ism s from s tu d y o f t h e i r e x ta n t

d is t r ib u t io n s , and th e e lu c id a t io n o f th e u n d e r ly in g mechanisms o f

e v o lu t io n (N e i, 1987).

The f i r s t o b je c t iv e , was o r ig in a l l y s tu d ie d by s y s te m a t is ts and

p a la e o n to lo g is ts , who c o n s tru c te d e v o lu t io n a ry t re e s o f o rgan ism s u s in g

w e ll p rese rved f o s s i l ev idence o r , where t h i s was fra g m e n ta ry ,

m o rp h o lo g ica l c h a ra c te rs . In t h i s way th e y were a b le to id e n t i f y th e m ajor

e v o lu t io n a ry tre n d s (m a c ro e v o lu t io n ) . However, th e c o m p le x ity o f the

e v o lu t io n a ry changes d e fin e d by th e se m o rp h o lo g ica l c h a ra c te rs a re

re f le c te d in th e o fte n c o n tro v e rs a l e v o lu t io n a ry t re e s d e r iv e d from these

d a ta (Hennig, 1966).

The advent o f im m uno log ica l te c h n iq u e s , n u c le ic a c id h y b r id is a t io n , and

p ro te in sequencing, enabled s y s te m a t is ts to compare th e accum u la tio n o f

m u ta tio n s between d is t a n t ly re la te d e x ta n t groups (above th e sp e c ie s

le v e l ) , p e rm it in g c a lc u la t io n o f e v o lu t io n a ry ra te s and t im e s c a le s ( th e

"m o le c u la r c lo c k " ) (M a rg o lia sh , 1963; F itc h 8c M a rg o lia sh , 1967; W ilson et

a i . , 1977; C arlson e t al•, 1978). C o n ve rse ly , e a r ly p o p u la t io n g e n e t ic is ts

(F o rd , 1930; W rig h t, 1931; Haldane, 1932) were in te n t on fo rm u la t in g an

e m p ir ic a l b a s is f o r th e mechanism o f e v o lu t io n by n a tu ra l s e le c t io n

Page 26: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

fo l lo w in g D arw in ’ s o r ig in a l th o u g h ts (D arw in , 1859), b u t th e re was l im ite d

e xpe rim en ta l v e r i f i c a t io n o f th e se th e o r ie s .

P ro te in e le c tro p h o re s is produced some common ground fo r th e se sepa ra te

approaches to e v o lu t io n a ry s tu d ie s . However, w ith th e d is c o v e ry (Lew ontin

and Hubby, 1966; H a r r is , 1966) o f s u r p r is in g ly la rg e amounts o f g e n e tic

v a r ia t io n a t th e p ro te in le v e l , w orke rs became p reoccup ied w ith th e e x te n t

and m aintenance o f t h i s v a r ia t io n in c lo s e ly re la te d groups (below th e

sp e c ie s le v e l ) . They m a in ly concerned them se lves w ith m easuring a l le le

fre q u e n c ie s o f a n c e s tra l p o p u la tio n s , e v a lu a t in g how th e se were a ffe c te d by

th e processes o f n a tu ra l s e le c t io n , g e n e tic d r i f t , gene f lo w , and changes

in p o p u la tio n s iz e (m ic ro e v o lu t io n a ry e v e n ts ) , and w ith th e un reso lved

" n e u t r a l i t y - s e le c t io n " c o n tro v e rs y (L ew on tin , 1974; Kimura & Crow, 1964;

K im ura, 1983a, 1983b). However, a lth o u g h p ro te in e le c tro p h o re s is i s q u ick

and cheap, making i t r e a d i ly a p p lic a b le to la rg e p o p u la t io n s tu d ie s , i t has

g e n e ra lly been employed in th e d e te c t io n o f n u c le a r polym orph ism s. These

genes segrega te and recom bine d u r in g sexual re p ro d u c t io n , c o m p lic a tin g and

b lu r r in g th e o v e r a l l e v o lu t io n a ry in te r p r e ta t io n . A d d i t io n a l ly , a llozym es

a re m u lt i s ta te t r a i t s (a number o f a l le le s a t each lo c u s ) and as such do

no t form g e n e t ic a l ly d is c re te da ta ( ra th e r gene f re q u e n c ie s ) , thu s

p h y lo g e n e tic o rd e r cannot be c o n f id e n t ly in fe r r e d from o bse rva b le

d if fe re n c e s in e le c tr o p h o r e t ic m o b i l i t y .

A r e c o n c i l ia t io n o f th e se d is p a ra te approaches to e v o lu t io n a ry s tu d ie s was

ach ieved o n ly when m o le cu la r b io lo g ic a l te ch n iq u e s (c lo n in g and sequencing)

became more w id e ly a v a i la b le . Indeed, th e u n i f i c a t io n o f th e two

Page 27: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

d is c ip l in e s o f m o le cu la r e v o lu t io n and p o p u la t io n g e n e tic s has become known

as "m o le c u la r e v o lu t io n a ry g e n e tic s " (N e i, 1987). DNA sequences are much

more in fo rm a t iv e than t h e i r p ro te in c o u n te rp a r ts because a la rg e p ro p o r t io n

o f th e DNA sequences a re no t encoded in t o p ro te in sequences and th e g e n e tic

code i s degene ra te . These advantages a re o f f s e t by th e te c h n ic a l

d i f f i c u l t i e s in h e ra n t in c lo n in g and sequenc ing , im posing re a l l im i t a t io n s

on th e numbers o f in d iv id u a ls and p o p u la t io n s th a t can be examined. Some o f

th e s e problem s a re re s o lv e d by te ch n iq u e s w hich employ th e r e la t i v e l y

re c e n t d is c o v e ry and p u r i f i c a t io n o f r e s t r i c t io n endonucleases (Zabeau St

R o b e rts , 1979). However, a l l th e above m entioned te ch n iq u e s have

c o n tr ib u te d g r e a t ly t o th e comprehension o f th e e v o lu t io n a ry re la t io n s h ip s

between groups o f o rgan ism s, and p o p u la t io n s , y e t each te c h n iq u e i s l im ite d

in i t s u s e fu ln e s s , a p p ro p r ia te o n ly f o r a c e r ta in range o f d ive rgence

t im e s .

The e x te n t to which m ic ro e v o lu tio n a ry p rocesses among c o n s p e c if ic s can be

extended t o e x p la in m a c ro e vo lu tio n a ry e ven ts among sp ec ies has been a

re c u r r in g and c o n tro v e rs a l is su e (Dobzhansky, 1937; E ld redge Sc Gould, 1972;

G ould, 1980; Mayr, 1982). However, i t seems l i k e l y th a t by exam ining th e

h is to r y o f p a r t ic u la r genes, mechanisms common to bo th modes o f e v o lu t io n

may become apparen t (F e ls e n s te in , 1982; A v ise et al,, 1987a; A v ise , 1989).

Com parative s tu d ie s o f m ito c h o n d ria l DNA (mtDNA), a t and below th e sp e c ie s

le v e l , p e rm its fo c u s in g o f bo th m ic ro - and m a c ro e v o lu tio n a ry approaches

(A v ise et al,, 1979; A v ise and Lansman, 1983). Indeed, fo r many v e r te b ra te

ta x a , mtDNA has been s ty le d " th e d e f in i t i v e m o le cu la r m arker" (A v ise ,

1986, 1987, 1989; A v ise et aim, 1987a; W ilson et aim, 1985; H a rr is o n , 1989).

Page 28: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

In t h i s s tu d y I hope to e v a lu a te some o-f th e c la im s made -for t h i s

" d e f in i t i v e m a rke r", and use i t t o in v e s t ig a te th e p o p u la tio n g e n e tic s and

e v o lu t io n a ry b io lo g y o f th e B r i t i s h house mouse (Mus dowesticus) , w ith

s p e c ia l re fe re n c e to p o p u la tio n s in Orkney and N.E. S co tla n d . The f i r s t

s e c t io n o f t h i s ch ap te r d iscu sses th e m o le cu la r fe a tu re s and p ro p e r t ie s o f

mtDNA, and th e n ex t i t s use as a to o l in in t r a s p e c i f ic p hy log e og ra p h ic

s tu d ie s , p e r t in e n t to th e R oden tia . The s tu d y sp ec ies Hus dowesticus w i l l

be d e s c r ib e d n e x t; a sp ec ies used e x te n s iv e ly in many a spec ts o f s c ie n t i f i c

re s e a rc h , p ro b a b ly one o f th e b e s t known genomes, w ith th e p o s s ib le

e x c e p tio n o f D ro s o p h ila o r Man. F in a l ly I s h a l l o u t l in e th e main o b je c t iv e s

o f t h i s s tu d y .

ljL 2 j,_ M ito ch p n d ria l DNA - th e d e f i n i t i v e g e n e tic marker of__pgpul_atign_and

e v o lu t io n a ry b io lo o y ?

In th e fo l lo w in g s e c tio n s I w i l l b r i e f l y o u t l in e th e m o le cu la r s t r u c tu r e ,

o rg a n is a t io n and fu n c t io n o f mtDNA and then go on to d is c u s s tho se

p ro p e r t ie s which make mtDNA th e id e a l p o p u la tio n g e n e tic m arker. F in a l ly I

w i l l m ention th e l im i t a t io n s o-f a p p ly in g mtDNA ana lyses as a g e n e tic m arker

in s tu d y in g house mouse p o p u la tio n s .

i i ? i ! i _G eQ era l_ fea tu re5_and_m g lecu la r_cha rac te ris tics_Q f_m tD N A L

Animal mtDNA is amongst th e bes t known and c h a ra c te r is e d re g io n s o f th e

e u k a ry o t ic genome. Here I s h a l l d is c u s s th e m o le cu la r d e ta i ls p e r t in e n t to

t h i s s tud y o f mouse mtDNA (many o f w hich a re genera l to most v e r te b ra te s ) ,

f u l l e r e x p la n a tio n s o f th e m o le cu la r b io lo g y o f th e m ito ch o n d rio n a re g ive n

in s e ve ra l re c e n t re ve iw s (W olstenholm e and C la ry , 1985; C la y to n , 1982,

Page 29: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

1984; A t ta r d i , 1985; Brown, 1985; C a n ta to rre and Saccone, 1987).

Much o f th e in fo rm a tio n about th e m itochondrion comes from com p le te

sequence d a ta from human, mouse, b ov ine , Xenopus and Drosophila yakuba

(Anderson et aim, 1981; B ibb et aim, 1981; Anderson e t aim, 1982; De B r u i jn

e t aim, 1983; Roe e t aim, 1985; C la ry and W olstenholme, 1985), and la rg e

p a r ts o f r a t (Pepe e t aim, 1983) and Drosophila welanogaster (G aresse,

1988) sequences. S m a lle r segments o f the genome from a v a r ie t y o f o th e r

o rgan ism s (humans - W alberg and C la y to n , 1981; 6reenberg e t aim, 1983; r a t s

- Brown e t aim, 1981; Saccone e t aim, 1981; Brown and Simpson, 1982; K o ike

e t aim, 1982; p rim a te s -Brown e t aim, 1982) have a ls o been sequenced. In

a d d it io n , c o n s id e ra b le in fo rm a tio n has come from r e s t r i c t i o n s i t e mapping

and RFLP s tu d ie s (For re v ie w s se e - A v ise & Lansman, 1983; Brown, 1983;

W ilson e t aim, 1985; A v ise , 1986).

The house mouse m ito c h o n d ria l genome is a sm a ll, c lo s e d , c i r c u la r dup lex o f

DNA o f 16,295 b a se p a irs (B ibb e t aim, 1981) (rang ing from 16 .3 to 19.2

k ilo b a s e s in most v e r te b ra te s - Anderson e t aim, 1982; Brown, 1981. 19B3,

1985; A t ta r d i , 1985). A p p ro x im a te ly 947. o f the m ito c h o n d r ia l genome

encodes fu n c t io n a l RNA, in c lu d in g , 13 messenger RNA’ s (mRNA’ s ) , 22 t r a n s fe r

RNA’ s (tRNA’ s) and 2 ribosom al RNA’ s ( la rg e C16S3 and sm a ll C12S3). F ig u re

1.1 i l l u s t r a t e s th e g e n e tic s t r u c tu re and fu n c tio n o f mouse mtDNA. Sequence

a n a ly s is o f th e mRNA genes re ve a le d 13 reading fram es w hich code fo r known

m ito c h o n d r ia l p ro d u c ts , one o f which is coded fo r on th e l i g h t s tra n d (L -

s t ra n d ) , and th e re s t on th e heavy s tra nd (H -s tra n d ). Toge ther th e y fo rm

th e s u b u n its o f th e m ito c h o n d r ia l in n e r membrane p ro te in s , im p o rta n t in th e

e le c tro n t ra n s p o r t system , o r in p ro te in s in vo lved in th e s y n th e s is o f ATP;

Page 30: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

th e y a re s u b u n its I , I I and I I I D-f cytochrom e o x idase (complex IV ) , th e

a p o p ro te in o-f cytochrom e b (complex I I I ) , 7 s u b u n its o-f th e NADH-

dehydrogenase (-fo rm erly " u n id e n t i f ie d re a d in g fram es" CURF’ sD 1 -6 , and 4L -

Chomyn et aim, 1985) and s u b u n its 6 and 8 ( fo rm e r ly URF A6L) o f ATPase

(complex V I ) .

The arrangement o f m ito c h o n d r ia l genes i s conserved a c ro ss taxonom ic groups

and i s p r a c t i c a l l y id e n t ic a l among v e r te b ra te s (Brown, 1981, 1985). The

o n ly sequences which do n o t code f o r e i th e r RNA o r p ro te in a re th e 879

n u c le o t id e s o f th e d isp lacem en t loop (D -loop - formed by th e s y n th e s is o f a

s h o r t p ie ce o f DNA, com plem entary to th e L -s tra n d , which d is p la c e s th e H-

s tra n d ) and th e o r ig in o f l i g h t s tra n d r e p l ic a t io n (0L ) . The D -loop i s

o fte n re fe r re d to as th e "c o n tro l re g io n " because i t c o n ta in s sequences

th a t a re in v o lv e d in th e i n i t i a t i o n o f r e p l ic a t io n and t r a n s c r ip t io n

(C a n ta to rre and Saccone, 19B7; A t ta r d i , 1985? C la y to n , 1984). The

r e p l ic a t io n o f anim al mtDNA i s u n id ir e c t io n a l and h ig h ly a sy m e tr ic

(C la y to n , 1982? M o ritz et aim, 1987). I t s u n u s u a lly buoyant d e n s ity , h ig h

copy number, and c o m p a rtm e n ta lis a tio n in a d is t in c t o rg a n e lle , make

m ito c h o n d r ia l DNA r e la t i v e l y easy to is o la te and p u r i f y .

In summary, th e s iz e , c o n te n t and gene o rg a n is a t io n (Brown, 1981, 1983,

1985) o f th e m ito c h o n d r ia l genome i s h ig h ly conserved . I t possesses no

in t r o n s o r r e p e t i t i v e sequences, has tRNA genes in te rs p e rs e d between rRNA

and p ro te in -c o d in g genes w ith e i th e r few o r no non -cod ing n u c le o t id e s

between cod ing sequences. D e sp ite t h i s "extrem e example o f g e n e tic economy"

( A t ta r d i , 1985), mammalian mtDNA has a r a p id ly e v o lv in g p r im a ry sequence,

Page 31: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

w ith a s u b s t i t u t io n r a te 5-10 tim e s th a t o-f s in g le copy n u c le a r DNA (Brown

et aim, 1979; Brown, 1983). E ith e r h ig h m u ta tio n ra te s , o r re la x a t io n o f

fu n c t io n a l c o n s t r a in ts , have been invoked to account f o r th e ra p id ra te o f

s u b s t i tu t io n in a genome t i g h t l y packed w ith fu n c t io n a l genes (A v ise and

Lansman, 1983; Brown, 1983, 1985; Cann & W ilson , 1983; Cann et a im , 19B4).

Base s u b s t i t u t io n appears to be b iased in fa v o u r o f t r a n s i t io n s , over

tra n s v e rs io n s , in bo th cod ing and noncoding re g io n s . Yet th e g re a te r th e

d ive rge n ce between m ito c h o n d r ia l genomes th e more t h i s b ia s decreases

(Brown et a im , 1982). There are g e n e ra lly no la rg e conserved b lo c k s w ith in

th e m ito c h o n d r ia l genome, a ltho u gh c e r ta in re g io n s appear t o e vo lve fa s te r

than o th e rs (Aquadro et a im , 1984; F e r r is et a im , 1983; B ibb e t a im , 1981).

D ivergence w ith in mtDNA i s ve ry ra p id among c lo s e ly re la te d in d iv id u a ls ; a

mean ra te o f a p p ro x im a te ly two p e rce n t sequence d ive rg e n ce per m i l l io n

ye a rs (Brown et a im , 1979; H iguch i et a im , 1984; W ilson et a im , 19B5;

G y lle n s te n & W ilson , 1987b; S h ie ld s & W ilson , 1987). However, beyond 5 -10

m i l l io n ye a rs , th e base s u b s t i tu t io n r a te d e c lin e s , as th e more r a p id ly

e v o lv in g p o s i t io n s in th e genome become s a tu ra te d (Brown et a im , 1979).

M ito c h o n d r ia l DNA appears to be s t r i c t l y m a te rn a lly in h e r i te d in h ig h e r

a n im a ls (Dawid and B la c k le r , 1972; H u tch ison et a im , 1974; Hayashi et a im ,

1978; G ile s et a im , 1980). D esp ite th e fa c t th a t th e m idp iece o f th e sperm

does e n te r th e egg a t f e r t i l i s a t i o n ( S te fa n in i , e t a im , 1969), th e p a te rn a l

m ito c h o n d ria appears to be lo s t ; t h i s i s th o u g h t t o occur by e ith e r a lo s s

o f fu n c t io n o r by a c t iv e removal on th e p a r t o f th e egg (Hecht e t a im ,

1984). P a te rn a l leakage o f m ito c h o n d ria th rou g h th e sperm i s an e x tre m e ly

ra re even t, w ith no more than one p a te rn a l genome per thousand m aterna l

Page 32: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

genomes (G y lle n s te n et a im , 1985; Lansman e t a im , 1983b; A v ise and

V r ije n h o e k , 1987). Thus f a r , re co m b in a tio n between mtDNA m o lecu les has no t

been re p o r te d , w ith th e m ajor e x c e p tio n o f th e D -loop in c a t t le ( O l iv io e t

a im , 1983). Hence i f s t r i c t in d iv id u a l homoplasmy and m aterna l in h e r i ta n c e

a p p ly , then in d iv d u a ls would be e f f e c t iv e ly h a p lo id and c a r ry unambiguous

in fo rm a tio n about t h e i r m aterna l lin e a g e , g iv in g r i s e to m a tr ia rc h ie s

ana logous to th e "m ale surname e v o lu t io n " seen in human s o c ie t ie s (Chapman

e t a im , 1982). Hence, mtDNA seems to be th e id e a l g e n e tic m arker.

However, i t i s u n l ik e ly th a t any one m o le cu la r m arker w i l l be th e p e r fe c t

to o l f o r p h y lo g e n e tic s tu d ie s . M ajor l im i t a t io n s may in c lu d e he te rop lasm y

(where a t le a s t two mtDNA genomes d i f f e r i n g in s iz e c o e x is t w ith in an

in d iv id u a l ) , le n g th m u ta tio n s , re v e rs a ls o r conve rgen t e v o lu t io n

(homoplasmy) and n e u t r a l i t y o f th e mtDNA (a d is c u s s io n o f th e l a t t e r two

p o in ts , d e a lt w ith in depth by A v ise and c o lle a g u e s , 1987, w i l l be d e fe rre d

to ch a p te r 7 ) .

Much in t r a s p e c i f ic mtDNA v a r ia t io n i s due to base s u b s t i tu t io n s o r to sm a ll

(o n ly a few base p a ir s ) a d d it io n s o r d e le t io n s (Cann St W ilson , 1983;

Aquadro St G reenberg, 1983). Large s c a le d if fe re n c e s in mtDNA s iz e a re known

to occur between c lo s e ly re la te d sp e c ie s ( G o r i l la and o th e r p r im a te s -

F e r r is et a im , 1981; among Drosophila sp e c ie s - Fauron St W olstenholm e,

1980). However, genome s iz e i s g e n e ra lly v e ry s ta b le w ith in a sp ec ies

(Brown, 1983, 1985) and most in d iv id u a ls a re homoplasmic w ith re s p e c t to

mtDNA, th a t i s th e y c o n ta in a s in g le mtDNA genotype (A v ise St Lansman,

1983). There a re , however, e x c e p tio n s to th e se gene ra l r u le s , both

Page 33: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

he te rop lasm y and la rg e s c a le s iz e m u ta tio n s a re common among c o n s p e c if ic

in v e r te b ra te s (H a rr iso n et aim, 1985; Rand St H a rr is o n , 1986; S o lig n a c e t

a im , 1983; C la rk S< Lyckegaard, 1988) and low er v e r te b ra te s in c lu d in g

Cnemidophorus l iz a r d s (Densmore et a im , 1985), f ro g s (M onnerot e t a im ,

1984), S c a llo p s (Snyder e t a im , 1987), newts (W a ll is , 1987) and f is h

(Bermingham e t a im , 1985; Bentzen e t a l . , 1988; Buroker e t a im , 1990).

H e terop lasm y has been cons ide red an e s s e n t ia l bu t t r a n s ie n t phase in th e

e v o lu t io n o f th e m ito ch o n d ia l genome. How la rg e a problem he te rop lasm y

p re s e n ts depends upon how long th e h e te ro p la sm ic s ta te p e r s is ts and whether

mammalian ta xa are s e v e re ly a f fe c te d . The m a jo r ity o f he te rop lasm ys a re

caused by le n g th (Hale & S ingh , 1986; M o ritz e t a im , 1987) ra th e r than

p o in t m u ta tio n s , indeed th e re i s o n ly one w e ll documented case o f th e

l a t t e r in cows (H ausw irth & L a ip is , 1982), a s ta te which e x is te d fo r o n ly a

few g e n e ra tio n s , whereas hete rop lasm y fo r le n g th v a r ia t io n p e r s is ts th rough

many g e n e ra tio n s (S o lig n a c et a im , 1987; Rand & H a rr is o n , 1989). A lthough a

few is o la te d cases have been reco rded in cows (H ausw irth et a im , 1984),

humans (Greenberg et a im , 1983; Monnat & Leob, 1985), r a t (Brown &

D e s ro s ie rs , 1983) and mouse (B ourso t et a im , 1987), th e l a t t e r v a r ia n t

be ing fu n c t io n a l ly d e fe c t iv e , he te rop lasm y i s r a r e ly found in mammals and

th u s has l i t t l e im pact on ro u t in e su rveys o f anim al mtDNA (W ilson e t a im ,

1985; A v ise e t a im , 1987).

To summarise, these genera l p ro p e r t ie s (m a te rn a l, nonrecom bin ing mode o f

in h e r i ta n c e , h a p lo id y , ra p id r a te o f base sequence e v o lu t io n , e x te n s iv e

in t r a s p e c i f ic polym orphism s and ease o f is o la t io n ) make mtDNA a superb to o l

f o r s tu d ie s o f p o p u la tio n g e n e tic s as p o p u la tio n s exchange in t a c t mtDNA

Page 34: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

which c a r r ie s a lin e a g e ’ s h is to r y uncom p lica ted by re c o m b in a tio n .

T h e re fo re , an in d iv id u a l ’ s mtDNA genotype can be co n s id e re d an o p e ra tio n a l

taxonom ic u n i t (OTU) and used in m a tr ia rc h ia l p h y lo g e n e tic re c o n s tru c t io n s .

There are g e n e ra lly two b a s ic approaches to th e s tu d y o f mtDNA

polym orphism s. Comparison o f e i th e r sequences from sm a ll c lo n ed re g io n s o r

o f r e s t r i c t io n enzyme c leavage s i t e s in th e e n t i r e mtDNA genome. The fo rm er

approach, a ltho u gh th e most in fo rm a tiv e method, i s tim e -consum ing and

c o s t ly , th u s o n ly a few in d iv id u a ls may be screened f o r r e la t i v e l y t in y

re g io n s , and any m u ta tio n a l changes observed may n o t be e n t i r e ly

re p re s e n ta t iv e o f th e whole genome. A l t e r n a t iv e ly , by u s in g a s e r ie s o f

ty p e I I r e s t r i c t io n endonucleases to c le a ve th e mtDNA m o le cu les th e

fragm ents can be sepa ra ted by e i th e r agarose o r p o ly a c ry la m id e gel

e le c tro p h o re s is , and v is u a lis e d by a v a r ie ty o f te c h n iq u e s ; such as e i th e r

d i r e c t s i l v e r o r e th id iu m brom ide s ta in in g o r by in d i r e c t ra d io a c t iv e end-

la b e l l in g o r so u th e rn b lo t t in g m e thodo log ies (W ilson et el., 1985;

G y lle n s te n 8c W ilson , 1987b). Using a s e t o f r e s t r i c t io n endonucleases to

assay mtDNA in t h i s manner means many in d iv id u a ls can be screened , a t a

f r a c t io n o f th e t im e o r co s t o f th e c lo n in g te c h n iq u e . D if fe re n c e s in

fragm ent s iz e s so o b ta in e d r e f le c t sequence d if fe re n c e s in re c o g n it io n

s i t e s , and these can be used to e s tim a te n u c le o t id e sequence d iv e r s i t y . In

t h i s way a mtDNA phy logeny , re p re s e n tin g th e proposed h is t o r ic a l

r e la t io n s h ip s among genotypes, can be c o n s tru c te d u s in g e i th e r th e numbers

o f m u ta tio n a l changes as c h a ra c te r s ta te s (p re se n t o r a b s e n t) , o r p e rcen t

sequence d ive rge n ce e s tim a te s ( fo r fu r th e r d e ta i ls see m a te r ia ls and

methods ch a p te r and th e re le v a n t s e c tio n s in th e r e s u l t s c h a p te rs ) .

10

Page 35: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

l i 2i 2£_M tDNA_as_a_Ph^logeograBhic_togl£

Over th e la s t decade m ito c h o n d r ia l DNA has proved to be e s p e c ia l ly u s e fu l

■for e v o lu t io n a ry in fe re n c e s among c lo s e ly re la te d ta x a (W ilson et el.,

1985; A v ise , 1986; B ir le y Sc C ro f t , 1986). In p a r t i c u la r , t h i s m o lecu le has

p ro v id e d im p o rta n t in s ig h ts in t o phy logeny, h is t o r ic a l zoogeography

( in c lu d in g h y b r id is in g ta x a ) , p o p u la tio n s t r u c tu r e , m a t r i l in e a l gene f lo w

and c o lo n is a t io n (For re c e n t re v ie w s see - M o ritz e t a l« , 1987; H a rr is o n ,

1989). In th e p re v io u s s e c tio n (1 .2 .1 ) I d iscussed th e p ro p e r t ie s and

c h a r a c te r is t ic s o f anim al mtDNA which have made i t p a r t i c u la r l y u s e fu l fo r

such s tu d ie s . However, in t h i s s e c tio n I w i l l b r i e f l y re v ie w se ve ra l

e a r l ie r s tu d ie s in which mtDNA polym orphism s were used to examine

r e la t io n s h ip s among c o n s p e c if ic p o p u la tio n s .

The c h a lle n g e o f e x p la in in g a ta x o n 's p re sen t d is t r ib u t io n has long

fa s c in a te d s c ie n t is t s (Hooker, 1853). H is to r ic a l b iogeography i s

t r a d i t i o n a l l y d iv id e d in t o e c o lo g ic a l ( d is p e r s io n a l is t model; D a r lin g to n ,

1957) and h is t o r ic a l b iogeography (v ic a r ia n c e model; C ro iz a t e t a i . , 1974).

The d is p e r s io n a l is t model i s concerned w ith th e movement o f ta x a across and

around e x is t in g b a r r ie r s and i s o fte n termed " c o lo n ia l i s t i c b iogeography"

as i t im p lie s th a t ta x a a lways o r ig in a te in Dne a rea and then c o lo n is e

o th e r a reas. The v ic a r ia n c e model emphasizes th e s p l i t t i n g o r d iv is io n o f

b io ta s th rough th e developm ent o f b a r r ie r s , which does n o t deny the

e x is te n c e o f d is p e rs a l, ra th e r i t q u e s tio n s i t ' s im p o rta nce in e x p la in in g

th e p resen t d is t r ib u t io n o f b io ta s (P a tte rs o n , 1981). G e n e ra lly , th e main

aim i s no t to f in d which i s th e c o r re c t model, b u t to examine endemic ta xa

to e s ta b lis h a shared d is t r ib u t io n p a tte rn (P la tn ic k Sc N e lson, 1978; Rosen,

11

Page 36: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

1978). The re c o g n it io n o f congruence between th e p h y lo g e n e tic

re c o n s tru c t io n s and g e o lo g ic a l h is to r y o f th e re g io n encompassed by th e

p a t te rn , suggests th a t th e two p a tte rn s a re c lo s e ly l in k e d and a causa l

r e la t io n s h ip can be fo rg e d . Thus, h is t o r ic a l e ven ts can p ro v id e an

e x p la n a tio n o f th e observed b io lo g ic a l p a t te rn s (P a tte rs o n , 1980). The

m a jo r i ty o f b io g e o g ra p h ica l s tu d ie s have concerned in t e r - s p e c i f ic

com parisons, however, i t has been suggested th a t c o n s p e c if ic p o p u la t io n s

may a ls o p ro v id e h is t o r ic a l in fo rm a tio n about a re g io n (Rosen, 1978).

I n t r a - s p e c i f ic mtDNA v a r i a b i l i t y can p ro v id e v a lu a b le in fo rm a tio n in two

m a jo r ways, f i r s t l y about th e m agnitude and p a t te rn o f p h y lo g e n e tic

v a r ia t io n among mtDNA genotypes and se co n d ly , on th e geog raph ic o r ie n ta t io n

o f th e mtDNA p h y lo g e n e tic assemblages. The convergence o f th e se two m ajor

p o in ts c o n s t i tu te s a new f i e l d which has been termed " mtDNA in t r a s p e c i f ic

p hy logeog raphy" (A v ise e t a i . , 1987; A v is e , 1989); t h i s d is c ip l in e a tte m p ts

t o c o n s o lid a te approaches from both p h y lo g e n e tic s y s te m a tic s and p o p u la tio n

g e n e tic s , w ith mtDNA as th e m e d ia to r. A v ise and c o lle a g u e s (1987)

fo rm u la te d se ve ra l th e o re t ic a l c a te g o r ie s o f p o s s ib le p h y lo g e n e tic outcomes

f o r any g ive n sp e c ie s . I n t r a s p e c i f ic sequence d ive rge n ces between mtDNA

genotypes may be la rg e , combined w ith s tro n g (C a tegory I ) , o r weak

(C a tegory I I ) geog ra ph ica l s t r u c tu r in g o f mtDNA c lu s te r s . A l t e r n a t iv e ly ,

sequence d ive rge n ce may be sm all between mtDNA genotypes, in c o n ju n c t io n

w ith mtDNA p h y lo g e n ie s which d is p la y m ajor geograph ic b reaks (c a te g o ry I I I )

o r u n ifo rm (ca te g o ry IV) o r nested (c a te g o ry V; in te rm e d ia te s i t u a t io n )

d is t r ib u t io n s . E m p ir ic a l examples o f a l l p o s tu la te d groups have been

documented, in c lu d in g some cases o f o v e r la p , w ith th e m ajor e x c e p tio n o f

12

Page 37: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

c a te g o ry I I (mtDNA p hy log e n ie s sepa ra ted by la rg e sequence d ive rg e n ce s

w h ich co -o ccu r g e o g ra p h ic a lly ) .

The m a jo r ity o f sp e c ie s , examined th u s f a r , f a l l in t o th e f i r s t c a te g o ry ,

in which p o p u la t io n s w ith in a sp e c ie s a re c h a ra c te r is e d by p h y lo g e n e tic

d i f f e r e n t ia t io n (mean sequence d ive rge n ces o f 27. between mtDNA c la d e s )

w ith a d is t in c t geograph ic o r ie n ta t io n . P o s s ib le e x p la n a tio n s o f such

d is t r ib u t io n p a tte rn s in c lu d e long te rm h is t o r ic a l e x t r in s ic (b io g e o g ra p h ic )

b a r r ie r s t o gene exchange, such th a t c o n s p e c if ic p o p u la tio n s c lu s te r in t o

d is t in c t mtDNA assemblages on an in t r a s p e c i f ic t r e e . C o n ve rse ly ,

in te rm e d ia te genotypes in a w id e ly d is t r ib u te d sp ec ies w ith l im ite d

d is p e rs a l c a p a b i l i t ie s may become e x t in c t . A good example o f c a te g o ry I

in c lu d e s th e d e s e rt t o r t o is e iXerobates agassizi), in which th e mtDNA

genotypes were p a r t i t io n e d in to th re e m ajor p h y lo g e n e tic assem blages, each

w ith a s t r i k in g geograph ic o r ie n ta t io n (Lamb et al., 1989). Each assemblage

d i f f e r s from each o th e r by a t le a s t 17 assayed mtDNA m u ta tio n a l s te p s , w ith

p e rc e n t sequence d ive rge n ces o f between 4 .2 - 5 .6 7 . The g e o lo g ic h is to r y o f

th e C o lorado R iv e r area (which in c lu d e s e x te n s iv e m arine in c lu s io n s ) may

accoun t f o r th e marked mtDNA d ive rge n ce between e a s te rn and w estern X.

agassizi assem blages. O ther ta x a which f a l l in to t h i s ca te g o ry in c lu d e

in v e r te b ra te s iLiwulus polyphemus - Saunders e t a l 1986), ro d e n ts

(Geomys pinetis - A v ise e t a i . , 1979; Perowyscus maniculatus - Lansman e t

a l 19B3; Perowyscus leucopus - A v ise e t a l 1983), and fre s h w a te r f is h e s

iLepowis spp. - Bermingham St A v ise , 1986).

Page 38: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

S eve ra l assayed sp ec ies f a l l w ith in group I I I , where th e mean sequence

d ive rg e n ce between mtDNA assemblages i s ra th e r low , much le s s than IX .

D e s p ite t h i s , th e mtDNA typ e s s t i l l rem ain g e o g ra p h ic a lly s e p a ra te as has

been dem onstra ted in th e to a d f is h e s iOpsanus tau) found a long th e A t la n t ic

c o a s t, where d is t in c t i v e mtDNA c la d e s , d is t in g u is h e d by o n ly 0 .5X sequence

d ive rg e n ce s (o n ly 1-2 assayed r e s t r i c t io n s i t e d i f fe r e n c e s ) , s t i l l tended

t o be g e o g ra p h ic a lly is o la te d in t o n o rth e rn and so u th e rn g e n e tic fo rm s

(A v is e et a l 1987b). In s ta n ce s o f such mtDNA d i f f e r e n t ia t io n have been

shown to be c o r re la te d w ith environmental im pediem nts to d is p e rs a l such as

th e long re cogn ised boundary between warm -tem perate and t r o p ic a l m arine

fa u n a . O ther n o ta b le sp e c ie s in c lu d e d in group I I I a re diamondback

te r r a p in s , and s l id e r t u r t l e s (Lamb & A v is e , in p re p ) . A v ise & c o lle a g u e s

(1987) suggested th a t most l i k e l y e x p la n a tio n fo r th e geog raph ic

o r ie n ta t io n o f such mtDNA genotypes, in th e absence o f m ajor p h y lo g e n e tic

d is c o n t in u i t ie s , in v o lv e s h is t o r i c a l l y l im i te d gene f lo w between

p o p u la tio n s which a re no t su b d iv id e d by lo n g te rm , f i r m b io g e o g ra p h ic

b a r r ie r s to d is p e rs a l.

So, i t g e n e ra lly appears th a t gene f lo w and d is p e rs a l have n o t o v e rr id d e n

h is t o r ic a l in f lu e n c e s on p o p u la tio n s u b d iv is io n s as re v e a le d by th e mtDNA

r e s t r i c t io n s i t e da ta re c o n s tru c t io n s in th e above m entioned c a te g o r ie s .

However, not o n ly a re th e sequence d ive rge n ces between genotypes ve ry sm a ll

in th e fo u r th c a te g o ry , th e re i s no, o r ve ry l i t t l e , g eog raph ic s t r u c tu r in g

o f p o p u la tio n s . M arine taxa are a ty p ic a l example ( fo r a re v ie w see A v ise ,

1987 - f i s h s to ck id e n t i f i c a t io n w orkshop), and in c lu d e th e American e e l,

Anguilla rostrata (A v ise e t al., 1986), c a t f is h e s , A r i id a e (A v is e , Reeb 8c

14

Page 39: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

Saunders, 1987b), and S k ip ja c k tuna (Graves e t a l., 1984). The d iv is io n s o f

p h y lo g e n e tic groups a re somewhat a rb itu a ry , and i t m igh t be expected th a t

some sp e c ie s are in c lu d e d in s e v e ra l. For exam ple, some s p e c ie s e x h ib i t low

o v e r a l l sequence d ive rg e n ce s between mtDNA c la d e s b u t th e re i s some degree

o f g e o g ra p h ica l s t r u c tu r in g , as i s th e case in w o rld -w id e su rve ys o f man

(Brown, 1980? Cann e t al., 1984? Cann e t al., 1987) o r in b ir d s (G reat t i t s ,

Parus major - T e ge ls tro m , 1987b? Redwinged b la c k b ird s , Agelaius

phoeniceus - B a ll e t al., 1988? fo r re v ie w s see -K e s s le r 8c A v is e , 1984,

1985). Lack o f s u b s ta n t iv e d i f f e r e n t ia t io n o f mtDNA among p o p u la tio n s is

th o u g h t to r e f le c t e i th e r re c e n t p o p u la tio n and range expans ions o r

e x te n s iv e d is p e rs a l c a p a b i l i t ie s .

The geograph ic d is t r ib u t io n o f mtDNA genotypes and sequence d ive rge n ces in

deer mice from th e C a li fo rn ia n Channel Is la n d s and th e a d ja c e n t m ain land

(A sh ley & W i l ls , 1 9 8 7 ) , Columbian ground s q u i r r e ls (M acNeil 8c S trob e ck ,

1 9 8 7 ) , and Swedish house mice (G y lle n s te n 8c W ilson , 1 9 8 7 ) , a l l p ro v id e not

o n ly phy log e og ra p h ic e v idence , bu t a ls o , bo th th e t im e s and p o s s ib le

c o lo n is a t io n ro u te s in th e P le is to c e n e o r p o s t-P le is to c e n e . S o lig n a c et

al., H 9 8 6 ) u s in g mtDNA d iv e r s i t ie s i l l u s t r a t e d th a t In d o -P a c if ic i s th e

o r ig in a l home o f Drosophila simulans and i t s p re se n t w o rld w id e

d is t r ib u t io n was o n ly a tta in e d r e la t i v e ly r e c e n t ly .

Page 40: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

1.3? The House mouse (Hus dowesticus. Ru t t y ) - th e s tu d y organ ism .

House mice a re th e most w id e ly used e xp e rim e n ta l a n im a ls , as a consequence

p ro b a b ly more i s known about them than any o th e r mammal w ith th e p o s s ib le

e x c e p tio n o-f man. The la b o ra to ry mouse i s p ro b a b ly so p o p u la r because i t i s

s m a ll, easy to han d le , has a good re p ro d u c t iv e perfo rm ance (average l i t t e r

s iz e s between 6 -8 ) , w ith a s h o rt g e n e ra tio n t im e ( f i r s t l i t t e r s a t th e age

o f 6 -8 weeks and fem ales breed every month th e r e a f te r ) and th e re a re a w ide

range o f r e a d i ly a v a i la b le g e n e t ic a l ly d e fin e d s t r a in s and m utants (F e s tin g

& L o v e l l , 1981). However, s tu d ie s o f w ild p o p u la t io n s o f th e house mouse

a re e q u a lly im p o r ta n t, no t o n ly fo r p ro v id in g new sou rces o f in h e r i te d

v a r ia t io n , b u t a ls o as an a id in in te r p r e t in g r e s u l t s o b ta in e d in th e

u n n a tu ra l env irom en t o f th e la b o ra to ry .

House mice a re found in an e x tre m e ly w ide range o f h a b ita ts (B e rry , 1981b»

Sage, 1981), in bo th fe r a l and commensal s i t u a t io n s . They e x h ib i t extrem e

re p ro d u c t iv e a d a p ta b i l i t y (Bronson, 1984) a llo w in g them to rep roduce in a

trem endous range o f env ironm ents . Mice a re a b le to t o le r a t e a w ide range o f

c o n d it io n s , and p o p u la tio n s in h a b it in g v e ry d i f f e r e n t h a b ita ts e x h ib i t

marked c h a r a c te r is t ic s . Mice p ro b a b ly owe t h e i r rem arkab le success to bo th

t h e i r commensal c o e x is te n c e a lo n g s id e man, and to t h e i r o ccup a tion o f

r e s t r ic t e d n ich e s which o th e r sm all mammals cannot f i l l . Most mouse

p o p u la tio n s can be lo o s e ly c la s s i f ie d as e i t h e r commensal, c h a ra c te r is e d by

h ig h p o p u la tio n d e n s it ie s w ith a s ta b le food s u p p ly , o r f e r a l , which

e x h ib i t low d e n s ity p o p u la tio n s s u b s is t in g on u n s ta b le , sparse food

re so u rce s (Bronson, 1979). In commensal h a b ita ts , m ice have become a

s ig n i f ic a n t p e s t, e s p e c ia lly in h igh d e n s ity in d o o r in fe s ta t io n s (S ou the rn ,

16

Page 41: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

1954). The p e s t s ta tu s o-f t h i s sp ec ies i s aggrava ted n o t o n ly by problem s

in v o lv e d in th e c le a ra n ce o f p e rs is te n t p o p u la t io n s , b u t a ls o by th e ra p id

c o lo n is a t io n o r re - c o lo n is a t io n o f h a b ita ts ; s tu d ie s o f p es t c o n t ro l

i n i t i a t e d s c ie n t i f i c research on t h i s s p e c ie s .

However, d e s p ite th e e x te n s iv e use o f th e house mouse, i t s s y te m a tic s i s

c o n t ro v e rs ia l and p o o r ly re s o lv e d , i t s nom enc la tu re be ing f a r from

s ta n d a rd is e d ( f o r re v ie w s on house mouse taxonomy see - B e rry , 1981;

Bonhomme, 1986; Bonhomme et al., 1987; Bonhomme & Guenet, in p re s s ) .

Schwarz Sc Schwarz (1943) s im p l i f ie d th e o r ig in a l 133 d e sc rib e d fo rm s

(E lle rm a n , 1941) in to 15 subspecies o f m ice o f Old w o rld o r ig in . They

ass igned European house mice to two s u b s p e c if ic g roups , th e Hagneri group

in c lu d in g H. w. dowesticus and H. w. brevirostris, and th e Spicilegus

group in c lu d in g H. m. wusculus and ft. w. spicilegus. U n fo r tu n a te ly , t h i s

c la s s i f i c a t io n i s unw orkab le , as shown by s tu d ie s made in th e la s t decade

u s in g m orphology and a llozym e v a r ia t io n (Sage, 19B1; M a rs h a ll, 1981;

M a rsh a ll Sc Sage, 1981; T h a le r et al., 1981; Bonhomme et al., 1984),

k a ry o ty p ic v a r ia t io n (Gropp e t al., 1982; Capanna, 1982; Said et al., 1985;

W ink in g , 1986), m ajor h is to c o m p a t ib i l i t y (MHC) H-2 h a p lo typ e s and th e T / t

complex (K le in et al., 1981; Nadeau et al., 1981; K le in et al., 1986).

A d d i t io n a l ly , mtDNA been used to in f e r p h y lo g e n e tic r e la t io n s h ip s w ith in

th e genus Hus (Yonewaki et al., 1981; F e r r is et al., 1982; F e r r is et al.,

1983; B ou rso t et al., 1984; F o rt et al., 1984; B ou rso t et al., 1985; M oriw aki

et al., 1986; Yonewaki et al., 1986, 1988), as has r e p e t i t i v e DNA sequences

in c lu d in g th e Y chromosome (N is h io k a , 1988, 1989; N is k io k a S< Lamothe, 1986,

1987a, b; B o u rso t, et al., 1989).

Page 42: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

Y e t, d e s p ite these numerous s tu d ie s , th e taxonom ic s ta tu s (su b spe c ie s ,

s e m i-sp e c ie s o r sp ec ies ) o f th e house mouse sp ec ies complex i s s t i l l

deba ted ; th u s th e use Df th e l a t i n b in o m ia l o r t r in o m ia l rem a ins

c o n t ro v e rs ia l (T h a le r et a l 1981 -s e m i-s p e c ie s ; M a rsh a ll & Sage, 1981;

Sage, 1981; Sage e t a l., 1986 - id e n t i f ie d a t le a s t 7 m o rp h o lo g ica l groups

term ed f u l l s p e c ie s ) . As a consequence, Bonhomme *t c o lle a g u e s (1978, 1984)

have p r o v is io n a l ly p re fe r re d n o t to make any n o m e n c la to r ia l ch o ice bu t

re p o r te d th a t th e re a re fo u r d is t in c t b io chem ica l g roups in th e Old World

(F ig u re 1 .2 a ); a u s e fu l compromise in v iew o f th e ongoing c o n tro v e rs a y .

However, r e c e n t ly these a u th o rs have dec ided th a t th e subspec ies c a te g o ry

shou ld be g iven a w ide r meaning (Bonhomme, 1986a, b ; Bonhomme it Guenet, in

p re s s ) . However, f o r conven ience I w i l l use th e b in o m ia l f o r th e European

house mouse th ro u g h o u t t h i s th e s is ; hence th e B r i t i s h fo rm becomes Hus

dowesticus (R u tty , 1772).

In g e n e ra l, th e commensal mice o f Europe a re now th o u g h t to be d iv is ib le

in t o two c lo s e ly re la te d sp ec ies w ith no s ig n i f ic a n t h y b r id is a t io n in

n a tu re . The Hus dowesticus (da rk b e l l ie d , long t a i le d - M a rsh a ll it Sage,

1981) form in c lu d e s th e common in b re d la b o ra to ry s t r a in s and w ild

p o p u la t io n s g e n e ra lly in h a b it in g Western Europe and th e M e d ite rran e an ,

fo rm e r ly c la s s i f ie d as the subspecies H. ■ . dowesticus, H. w brevirostris

and H . * . praetextus. T h is sp ec ies d i f f e r s s u b s ta n t ia l ly from Hus wusculus

(L in na e us , 1758) ( l i g h t b e l l ie d , s h o r t t a i le d mouse, w ith a b row nish y e llo w

la t e r a l l i n e ) , which in h a b its E aste rn Europe and most o f S cand inav ia

( fo rm e r ly known as th e subspecies H , » . wusculus), in m orphology, p ro te in

v a r ia t io n and behav iou r (M a rsh a ll it Sage, 1981; M a rs h a ll, 1981; Sage, 1981;

18

Page 43: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

Sage et al., 1986), and mtDNA ( F e r r is e t al., 1983). F u r th e r , th e two

sp e c ie s a re la r g e ly is o la te d from each o th e r on accoun t o f t h e i r

g eo g ra ph ica l d is t r ib u t io n and male s t e r i l i t y fa c to r s ( F o re jt Sc Iv a n y i,

1974; F o r e jt , 19B1). However, a t th e h y b r id zone, d e fin e d by U rs in , (1952)

and Hunt & S e lande r, (1973) ( f o r p o s i t io n see f i g . 1 .2 ) , f e r t i l e h y b r id

fem a les a re o fte n produced, which is why th e y a re sometimes re fe re d to as

semi sp e c ie s . Y e t, th e In te rn a t io n a l Code o f Z o o lo g ic a l Nom enclature (ICZN)

g iv e s no c le a r way o f naming sem ispec ies as d is t in c t from subspec ies ,

w ith o u t caus ing c o n fu s io n between th e two in th e l i t e r a t u r e .

O ther re la te d sp ec ies a re found in sym patry w ith re p re s e n ta t iv e s o f Hus

a us cuius’, Bonhomme Sc c o lle a g u e s (1984) have shown th a t th re e o f these

a d d it io n a l sp e c ie s e x is t in Europe, nam ely, Hus spretus, Hus spicilegus,

and Hus spretoides ( th e l a t t e r two a re a l t e r n a t iv e ly named Hus hortulanus

and Hus abottif r e s p e c t iv e ly , by M a rsha ll St Sage, 1981). The geograph ic

d is t r ib u t io n o f th e f i v e taxa re fe ra b le to th e genus Hus ( f o r conven ience

term ed groups 1 -3 , 4A Sc 4B - Bonhomme et al., 1984) a re i l l u s t r a t e d in

f ig u r e 1.2B.

The e c o lo g ic a l and p o p u la tio n g e n e tic s o-f house mouse p o p u la t io n s from bo th

m ain land B r i t a in and a s s o c ia te d is la n d s have been in te n s iv e ly s tu d ie d fo r

th e la s t th re e decades (B e rry , 1964, 1968, 1978, 1983; Nash et al., 1983;

fo r re v ie w s see B e rry 1981, 1986, 1986b). B e rry (1970) concluded from

m ic rogeog raph ic s tu d ie s th a t most o f th e n o rth e rn is la n d m ice d e r iv e from

sm all fo u n d lin g p o p u la t io n s a c c id e n t ly in tro d u c e d to empty h a b ita ts by man

w ith in a p p ro x im a te ly th e la s t thousand ye a rs . On th e b a s is o f m orphom etric

19

Page 44: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

e v idence , D av is (1983) has shown th e m a jo r i ty o f th e c ir c u m - B r i t is h is la n d

house mice (from th e O rkneys, S he tlands , F a roes, and H ebrides) to be q u i te

d is t in c t from th e B r i t is h m ain land ones. He concluded th a t t h i s was

p ro b a b ly due to t h e i r o r ig in o u ts id e o f B r i t a in . A d d i t io n a l ly , m orphom etric

and g e n e tic ana lyse s suggested th a t C a ithness m ice were d is c re te from those

fa r th e r s o u th , be ing more c lo s e ly re la te d to Orkney and S he tland

p o p u la t io n s , in d ic a t in g th a t th e y to o a re descendents o f in tro d u c e d

specimens from a source o th e r than th a t o f th e so u th e rn m ain land

p o p u la tio n s (Nash et aim, 1983; D av is , 1983). B rooker (1982), u s in g

k a ro ty p ic d a ta , a ls o p o s tu la te d C a ithness and th e Orkney m ice p o p u la tio n s

to have had a common a n c e s to r. I t i s these p o p u la t io n s and B r i t i s h house

mice in gene ra l th a t a re th e s u b je c t o f t h i s th e s is .

1.4s Genera l aims o f th e s tu d y*

The broad purpose o f t h i s th e s is i s to beg in a d e ta i le d c h a ra c te r is a t io n o f

m ito c h o n d r ia l DNA v a r i a b i l i t y and d i f f e r e n t ia t io n among p o p u la tio n s o f th e

house mouse (Hus dowesticus R u tty ) in th e B r i t i s h I s le s . I t has been

p o s tu la te d th a t a b e t te r u nde rs tand ing o f th e e v o lu t io n a ry p rocesses w ith in

a sp ec ies w i l l come from d e ta ile d s tu d ie s u s in g an in te g ra te d approach,

u t i l i z i n g th e most a p p ro p r ia te m ethodo log ies c u r r e n t ly and p r a c t ic a l l y

a v a i la b le . A c o n s id e ra b le body o f da ta and u n d e rs ta n d in g o f th e p o p u la tio n

g e n e tic s o f th e B r i t i s h house mouse a lre a d y e x is ts from autosomal m arkers,

th u s I hope to complement these s tu d ie s w ith those from h a p lo id , m a te rn a lly

in h e r i te d mtDNA m arkers.

The fo l lo w in g approach was adopted in th e p u r s u it o f these aims*

20

Page 45: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

F i r s t l y , I hoped to e v a lu a te th e re s o lv in g power o f th e m ito c h o n d r ia l DNA

m o lecu le f o r com parisons below th e s p e c ie s le v e l . The mtDNA m o lecu le

e v o lv e s v e ry r a p id ly , ten tim e s th a t o f n u c le a r DNA and u s u a lly e x h ib i t s

e x te n s iv e in t r a s p e c i f ic r e s t r i c t io n s i t e po lym orph ism s, making i t p o s s ib le

to d is t in g u is h between c o n s p e c if ic p o p u la t io n s . However, p o p u la tio n s o f

house m ice a re a t an e a r ly s tage o f d iv e rg e n c e , th u s th e maximum sequence

d ive rg e n ce between c o n s p e c if ic s i s expected to be m in im a l. E x is t in g

m e thodo log ies a t t h i s le v e l o f re s o lu t io n n e c e s s ita te th e use o f f re q u e n t ly

c u t t in g te t r a n u c le o t id e r e s t r i c t io n endonucleases, la rg e t is s u e samples and

la b o r io u s DNA p u r i f i c a t io n p rocedures in v o lv in g expens ive in s tru m e n ta tio n

and le n g th y u l t r a c e n t r i f u g a t io n . Thus, I aim to im prove and m od ify e x is t in g

te ch n iq u e s fo r mtDNA com parisons, making them more am eniab le to p o p u la tio n

su rve ys between c lo s e ly re la te d in d iv id u a ls , u s in g r e la t i v e l y sm a ll amounts

o f t is s u e (ch a p te r tw o , s e c tio n 2 .3 .1 .2 » f o r f u l l e r d e ta i ls see Appendix 1,

Jones et al., 1988).

S econd ly , I in te n d to in v e s t ig a te th e m o le cu la r mechanisms by which mtDNA

e vo lve s in th e house mouse and to a s c e r ta in w hether i t i s t y p ic a l o f

v e r te b ra te mtDNA. One o f the p rim a ry o b je c t iv e s o f m o le cu la r g e n e tic

re se a rch i s to g iv e an a ccu ra te d e s c r ip t io n o f how th e DNA sequence changes

w ith tim e . T h is re q u ire s an assessment o f th e k in d s o f m u ta tio n a l changes

th a t occur and an a c c u ra te e s tim a te o f th e fre qu e ncy w ith which each typ e

o ccu rs . To the se ends, I in te n d to make f u l l use o f th e com plete known

mtDNA base sequence (KBS) o f th e house mouse to p e rm it th e use o f h ig h

re s o lu t io n sequence com parison r e s t r i c t i o n mapping te c h n iq u e (ch a p te r 3 ) .

R e s t r ic t io n mapping, as opposed to th e c o l le c t io n o f r e s t r i c t io n fragm ent

21

Page 46: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

d a ta , n o t o n ly p ro v id e s in s ig h ts in to th e n a tu re o-f th e e v o lu t io n a ry change

th a t mtDNA undergoes, bu t a ls o g r e a t ly im proves th e accuracy w ith which

e s tim a te s o-f th e e x te n t o-f sequence d ive rge n ce can be c a lc u la te d and

g e n e a lo g ic a l t re e s b u i l t . I hope to compare th e r e s u l t s o f r e s t r i c t io n

mapping B r i t i s h house mice w ith those o b ta in e d from a b roade r b u t le s s

in te n s iv e w o rld w id e survey o f house m ice (F e r r is e t al., 1983), made u s in g

a d i f f e r e n t mtDNA v is u a l is a t io n te c h n iq u e .

T h ir d ly , w ith in th e co n ce p tio n a l fram ework as o u t l in e d by A v ise &

c o lle a g u e s (1987 ), I hope to e v a lu a te th e use o f mtDNA as a p h y lo g e o g ra p h ic

to o l f o r re c o n s tru c t in g th e e v o lu t io n a ry h is to r y o f th e B r i t i s h house mouse

(c h p a te r 4 ) . C o n s p e c if ic p o p u la tio n s o f t e r r e s t i a l and fre s h w a te r

v e r te b ra te s u s u a lly e x h ib i t c o n s id e ra b le geograph ic d i f f e r e n t ia t io n in

mtDNA. The house mouse has been documented as an e x c e p tio n to t h i s g ene ra l

r u le . However, F e r r is and c o lle a g u e s (1983) concluded from a w o rld w id e

su rve y o f mtDNA v a r ia t io n o f th e house mouse th a t a lth o u g h th e re was no

m acrogeographic s t r u c tu r in g , (p ro b a b ly th e r e s u l t o f re c e n t and e x te n s iv e

range e xp a n s io n ), th e re was s u b s ta n t ia l s t r u c tu r in g a t th e m ic rog e og ra p h ic

le v e l . M ito c h o n d r ia l DNA has been proved t o be a v a lu a b le to o l f o r t r a c in g

p a t te rn s o f c o lo n is a t io n and gene f lo w ; c lo n a l tra n s m is s io n o f mtDNA

p ro v id e s a more d e f in i t i v e m arker o f m a terna l phylogeny than does th e

s e x u a lly recom b in ing n u c le a r genome. Indeed, a llozym e da ta a re no t

e s p e c ia l ly in fo rm a tiv e w ith re g a rd to th e e v o lu t io n a ry r e la t io n s h ip s among

B r i t i s h house mouse p o p u la tio n s . However, a p a r t ic u la r aim was to use th e

d a ta a v a i la b le from n u c le a r m arkers combined w ith th a t from mtDNA to

re c o n s tru c t th e most l i k e l y e v o lu t io n a ry h is to r y f o r th e Orkney and

22

Page 47: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

C a ithness m ice. An im p o rta n t is s u e th a t th e mtDNA d a ta w i l l address is

whether th e Orkney is la n d mice a re th e r e s u l t o f a s in g le i n i t i a l

c o lo n is a t io n event (m o n o p h y le tic ) o r w hether th e re have been m u lt ip le

c o lo n is a t io n even ts from se ve ra l a n c e s tra l sou rces .

M ito c h o n d ria l DNA i s m a te rn a lly in h e r i te d , hence i t i s a marker o f fem a le

d is p e rs a l o n ly . T h e re fo re , I sought to com plim ent t h i s by in v e s t ig a t in g

B r i t i s h house mouse r e la t io n s h ip s u s ing th e p a te r n a l ly in h e r i te d Y

chromosome, a com parable marker (ch a p te r 5 ) . L ik e mtDNA, th e Y chromosome

i s e f f e c t iv e ly t ra n s m it te d v ia one sex, does n o t undergo any a p p re c ia b le

re co m b ina tio n and has a r e la t i v e l y h ig h r a te o f sequence e v o lu t io n . Hence,

as th e p o te n t ia l e x is t s fo r u t i l i s i n g Y -s p e c i f ic sequences in a s im i la r

manner to mtDNA i t was my in te n t io n to screen f o r any r e s t r i c t i o n fragm ent

le n g th polym orphism s (RFLPs) w ith in B r i t i s h mouse p o p u la t io n s , u s in g a Y -

s p e c i f ic sequence as a probe w ith th e aim o f assay ing th e e x te n t and

d is t r ib u t io n o f Y chromosomal DNA v a r ia t io n , and u l t im a te ly exam ining

p a t r ia r c h ia l r e la t io n s h ip s .

Phylogeography i s o f te n d e fin e d as a fu n c t io n o f i n t r i n s i c ( l i f e h is to r y ,

d is p e rs a l and s o c ia l o rg a n is a t io n ) and e x t r in s ic (e c o lo g ic a l and

b io g e o g ra p h ic a l b a r r ie r s ) fa c to r s in f lu e n c in g th e h is t o r ic a l p a t te rn o f

gene f lo w . I n t r in s i c b a r r ie r s to gene f lo w have o fte n been a t t r ib u te d to

th e demic s t r u c tu r e and s o c ia l o rg a n is a t io n o f house mouse p o p u la tio n s , and

i t i s g e n e ra lly b e lie v e d th a t im m ig ran ts in t o an e s ta b lis h e d p o p u la tio n a re

u n l ik e ly to be re p ro d u c t iv e !y su cce ss fu l (Reimer and P e tra s , 1967). I f so

then t h i s o b s e rv a tio n may be p e r t in e n t to th e h is t o r ic a l c o lo n is a t io n o f

Page 48: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER ONE

th e B r i t i s h I s le s by th e house mouse.

To t e s t t h i s h y p o th e s is a lo n g itu d in a l m ic rog e og ra p h ic s tu d y known as “ th e

I s le o-f May In t r o d u c t io n E xperim en t" was i n i t i a t e d (c h a p te r 6 ) . M ice from

Eday, in th e O rkneys, were in tro d u c e d to an endemic p o p u la t io n o f m ice on

th e I s le D f May, in th e F ir th o f F o rth . In t h i s way m ice from d i s t i n c t l y

d i f f e r e n t demes were b rough t in to c o n ta c t in a n a tu ra l h a b i ta t , where t h e i r

r e la t iv e re p ro d u c t iv e success co u ld be c lo s e ly fo l lo w e d u s in g a v a r ie ty o f

g e n e tic m arkers; bo th th e Y and mtDNA m arkers a re p a r t i c u la r l y v a lu a b le f o r

in v e s t ig a t in g th e male and fem ale c o n t r ib u t io n s . Com parisons o f p a t te rn s o f

v a r ia t io n u s in g mtDNA w ith tho se o f autosom al a n d /o r p a te r n a l ly t ra n s m it te d

genes (th e Y-chromosome) have th e p o te n t ia l to re v e a l d if fe re n c e s in fem a le

and male p o p u la tio n s t r u c tu r e , which m igh t suggest d if fe re n c e s between th e

sexes in th e spec ies* eco logy (d is p e rs a l and p o p u la t io n dynam ics) and

beh a v io u r h i t h e r t o unobserved (H a rr is o n , 1989).

F in a l ly , th e fra g m e n ta ry f o s s i l evidence makes i t d i f f i c u l t t o make any

f i r m s ta te m e n ts about c o lo n is a t io n p a tte rn s o f th e house mouse in Europe.

However, I aim to in te g r a te a g e n e tic approach to t h i s p rob lem w ith

ev idence from a n th ro p o lo g ic a l (as th e house mouse i s a commensal o f man),

p a la e o n to lo g ic a l and h is t o r ic a l sources in an a tte m p t to re c o n c i le these

d is p a ra te s tu d ie s o f th e e v o lu t io n a ry h is to r y o f th e house mouse (ch a p te r

7 ) .

24

Page 49: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 1. i s O rg a n is a tio n o-f mouse m ito c h o n d r ia l DNA.

The g e n e tic o rg a n is a t io n , s t ru c tu re and fu n c t io n o f house mouse

m ito c h o n d r ia l DNA genome is p o r tra y e d . The v e r t ic a l a rrow marked 0 „ a t th e

to p in d ic a te th e o r ig in o f r e p l ic a t io n o f th e H -s tra n d s y n th e s is , s itu a te d

in th e D -loop re g io n ; th e arrow marked 0U in d ic a te s th e o r ig in o f th e L -

s tra n d s y n th e s is . L e f t and r ig h t a rrow s in d ic a te th e d ir e c t io n o f H and L

s tra n d t r a n s c r ip t io n re s p e c t iv e ly . A l l th e p ro te in cod ing genes a re H-

s tra n d encoded as i l l u s t r a t e d in th e o u te r c i r c l e (w ith c o u n te rc lo c k w is e

p o la r i t y ) , w ith th e e xce p tio n o f ND 6 , w hich i s L -s tra n d encoded as

in d ic a te d in th e in n e r c i r c le . D is ta n ces in k ilo b a s e s (kb) a re shown in s id e

th e in n e r c i r c l e , co rre sp on d ing th e th e num bering o f th e p u b lis h e d l i g h t

s tra n d sequence (B ibb e t a im , 1981) which b eg in s a t th e f i r s t 5* n u c le o t id e

o f tRNA PHe and proceeds th rough th e rRNA genes w ith in c re a s in g numbers.

The 13 p ro te in cod ing genes a re as fo l lo w s ; ND1, ND2, ND3, ND4, ND4L, ND5,

and ND6 d e p ic t s u b u n its o f NADH dehydrogenase; CO I , CO I I , and CO I I I , a re

th e s u b u n its o f I , I I and I I I o f cytochrom e o x id a se ; ATPase 6 and ATPase 8

a re th e s u b u n its 6 and 8 o f th e Fo H"* -ATPase; c y t . b i s th e cytochrom e b

gene. The genes fo r th e sm all (12S rRNA) and la rg e (16S rRNA) ribosom a l RNA

a re shown. The tRNA genes c lo ckw ise from 0M, a re fo r th e amino a c id s

p r o l in e (P ), th re o n in e (T ) , g lu ta m ic a c id (E ), le u c in e (L ) , s e r in e (S ),

h is t id in e (H ), a rg in in e (R ), g ly c in e (G ), ly s in e (K ), a s p a r t ic a c id (D ),

s e r in e (S ) , ty ro s in e (Y ), c y s te in e (C ), aspa ra g ine (N ), a la n in e (A ),

try p to p h a n (M ), m e th io n in e (M), g lu ta m in e (Q ), is o le u c in e ( I ) , le u c in e ( L ) ,

v a l in e (V ), and p h e n y la la n in e (F ) . The tRNA genes a re la b e le d on th e in n e r

o r o u te r c i r c le s ( re p re s e n tin g th e l i g h t and heavy s tra n d , r e s p e c t iv e ly ) ,

d e p ic t in g where t h e i r cod ing sequences o c c u r.

25

Page 50: (Hus domesticus. Rut t y ) - UCL Discovery

oH

MOUSE mtDNA ro

,c q

26

Page 51: (Hus domesticus. Rut t y ) - UCL Discovery

Figur*

1. 2

I*><

onom^_

of_tbf

Page 52: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

CHAPIER_IWOi_MAIERIALS_AND_MEIHgDSJL

2iii_ABBREyiAII0NSi

A l l th e a b b re v ia t io n s used in t h i s th e s is t o d e s c r ib e th e ch e m ica ls ,

s u p p lie rs , s o lu t io n s , and re a g e n ts a re l i s t e d in T ab le 2 .1 .

2i2_MAIERIALSi

2i 2i li_SAMPLING_PRgCEDURESi

The m ice were c o lle c te d in se ve ra l ways depending on lo c a t io n .

A p p ro x im a te ly hal-f o f th e p o p u la tio n s were caught by 1 iv e - t r a p p in g us ing

" lo n g w o rth t ra p s " ( C h it ty & Kempson, 1949). The t ra p s were p la ced on th e

n a tu ra l runs o-f - f r e e - l iv in g fe r a l a n im a ls (eg . I s le o f May, Skokholm, and

Faray) o r in and around dom estic b u i ld in g s and fa rm s fo r commensal

p o p u la t io n s . Set near p ro ba b le mouse t r a c k s , u s u a lly e v id e n t by t r a i l s D-f

fae ce s ( fo r example B u rto n -o n -T re n t p o p u la t io n s ) th e t ra p s were b a ite d w ith

peanut b u t te r (o r any o th e r s tro n g s m e llin g fo o d ) , l in e d w ith p le n ty o-f

bedd ing s tra w and an a d d it io n a l food source (o a ts ) . The t ra p s were a lw ays

checked e a r ly in th e m orning o f th e n e x t day so as m ice were never kep t in

th e t ra p s f o r more than 24 hou rs .

As an a l te r n a t iv e to t ra p p in g , m ice were caught by hand from c o r n - r ic k s

(S outhern & L a u r ie , 1946) when th e y were d ism a n tle d fo r th re s h in g in

S p rin g (eg W estray, Eday, and Taunton p o p u la tio n s ) o r by s im p ly moving food

c o n ta in e rs a t p ig farm s (eg. N u t f ie ld ) , and c o l le c t in g th e d is tu rb e d m ice

in sacks.

28

Page 53: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

T ab le 2 .2 l i s t s a l l m ice used in t h i s s tud y (c a te g o r is e d by C o u n ty /Is la n d

where the y were c a u g h t) , method and da te o-f c a p tu re , number caught and

N a tio n a l G rid re fe re n c e in m ain land B r i t a in (o r th e th re e m ile per in c h AA

map re fe re n c e fo r I r i s h sam p les). F ig u re 2.1 i l l u s t r a t e s th e m ajor

d is t r ib u t io n o f th e se samples in B r i t a in and I re la n d ( th e numbers in th e

c i r c le s re p re s e n t th e m ajor lo c a t io n s co rre sp o n d in g to th e co un ty

c a te o rg is a t io n s in ta b le 2 .2 ) . A t o t a l o f 601 mice were examined in t h i s

s tu d y from 42 B r i t i s h and I r i s h l o c a l i t i e s .

Each mouse was marked f o r la t e r id e n t i f i c a t io n u s in g a co m b in a tio n o f

e a rc lip p in g (B e rry , 1970) and to e - c l ip p in g (Tw igg, 1975),

F ig u re 2 .2 i l l u s t r a t e s th e scheme used. A l l m ice caugh t were se n t back to

th e la b o ra to ry , k i l l e d by c e rv ic a l d is lo c a t io n and s to re d a t -70 °C u n t i l

th e t is s u e s were re q u ire d .

2i 2i 2^_REAGENISi

A l l chem ical re a g e n ts used were o f s tanda rd a n a ly t ic a l g rade . Table 2 .3

summarises a l l th e re a g e n ts , chem ical s o lu t io n s and b u f fe r s used in t h i s

s tu d y .

R a d io a c t iv e ly la b e lle d d e o x y r ib o n u c le o tid e s were purchased from Amersham.

The s p e c i f ic n u c le o t id e s used were th e d e o x y r ib o n u c le o s id e o f c y to s in e and

thym ine la b e lle d w ith 32P in th e a lpha p o s i t io n .

The r e s t r i c t io n endonucleases were o b ta in e d from N o rth um bria b io lo g ic a ls

l im ite d (NBL), Bethesada rese a rch la b o ra to r ie s (BRL) and o c c a s io n a lly New

29

Page 54: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

England B io la b s (NEB). Table 2 .4 l i s t s a l l th e 18 enzymes used, t h e i r

re c o g n it io n sequences, th e in c u b a tio n te m p e ra tu re s , s p e c i f ic s a l t b u f fe rs

and in d ic a te s what each enzyme was used f o r .

2i2i3i_M0LECyLAR_WEIGHI_SIANDARDSi

The a b s o lu te s iz e o f th e r e s t r ic t io n fra g m e n ts produced by ge l

e le c tro p h o re s is was e s tim a te d by com paring m o b i l i t y o f s tan d a rd s e ts o f

fra gm en ts produced by c leavage o f th e known m ito c h o n d r ia l DNA sequence o f

th e house mouse ( k . b . s . ) (B ibb e t a i . , 1981) which can be found l i s t e d in

Table 2 .5 to g e th e r w ith th e r e s t r i c t io n s i t e lo c a t io n s . Marker fragm en ts

were u s u a lly run in th e end lanes o f th e g e l , e i th e r s id e o f th e

e xp e rim e n ta l sam ples, and v is u a lis e d in th e same way as th e DNA (by e i th e r

s i l v e r o r e th id iu m brom ide s ta in in g ) . In a d d it io n m o le cu la r w e igh t m arkers

were gene ra ted by c leavage o f lambda DNA w ith H ind I I I , and lambda w ith Bgl

I o r use was made o f th e com m erc ia lly a v a i la b le 1KB la d d e r (BRL); the s iz e s

o f a l l o f th e se m arkers are l is t e d on Tab le 2 .6 .

2i 3_LAB0RAIDRY_MEIH0DSi

These can be c o n v e n ie n t ly s p l i t in to two s e c t io n s a t th e r is k o f some

o v e r la p . They in c lu d e p ro to c o ls in v o lv in g * 1. M ito c h o n d r ia l DNA is o la t io n

and v is u a l is a t io n te ch n iq u e s and 2. Y-Chromosome DNA m e thodo log ies .

Page 55: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

2i 3i l_MIIOCHONDRIAL_pNA_ISOLAIIONi

2i 3i l i i_ R a tio n a le _ g f_ M e th g d g lg g ie s JL

P o p u la tio n s tu d ie s re q u ire a s im p le and in e x p e n s iv e method o-f is o la t in g

mtDNA from many in d iv id u a ls . E x is t in g methods use le n g th y u l t ra c e n t r i- fu g e

te c h n iq u e s (Lansman e t a i . , 1981) o r ra p id b u t e xpens ive bench -top u l t r a -

h igh -speed c e n t r i fu g e s (C arr St G r i f f i t h , 1987) and c o s t ly cesium c h lo r id e

g ra d ie n ts t o p u r i f y crude mtDNA f r a c t io n s and a re th u s n o t e n t i r e ly

s a t is fa c to r y . Techniques in v o lv in g r a d io la b e l l in g o f is o la te d DNA (Brown,

1980) a ls o have some d isadvan tages fo r p o p u la t io n s c re e n in g .

The phenol e x t r a c t io n p rocedu re , d esc ribe d by Pow ell Sc Zuniga (1983 ),

f u l l f i l s most o f th e c r i t e r i a f o r use in p o p u la t io n s tu d ie s , bu t i s l im i t e d

by th e low s e n s i t i v i t y o f e th id iu m brom ide s ta in in g used t o v is u a l is e th e

la rg e mtDNA fra gm en ts produced by d ig e s t io n w ith h e x a n u c le o tid e r e s t r i c t io n

endonucleases. R e s o lu tio n i s poor w ith t h i s method and a more s e n s i t iv e

d e te c t io n method i s necessary , one which p e rm its th e use o f more f re q u e n t ly

c u t t in g te t r a n u c le o t id e r e s t r i c t io n endonucleases, t o gen e ra te th e many

sm a ll fra gm en ts re q u ire d .

The advantages o f in c re a s in g th e number o f fra gm en ts in a d ig e s t i s shown

g r a p h ic a l ly in f ig u r e 2 .3 . T h is shows a p lo t o f th e p r o b a b i l i t y o f no t

d e te c t in g d if fe re n c e s between in d iv id u a ls a g a in s t th e number o f base p a ir s

which must be examined fo r d i f f e r e n t le v e ls o f pe rcen tage sequence

d ive rge n ce (d). The average d va lu e s between two in d iv id u a ls o f th e same

sp e c ie s i s u s u a lly between 0 .1 - 1.0% ie . Hus domesticus = 0.77%, Hus

Page 56: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

musculus = 0.927. ( F e r r is et a l . , 1983). The d va lu e s w i l l p ro b a b ly be

c o n s id e ra b ly s m a lle r when c o n s id e r in g c o n s p e c if ic s from th e same is la n d ,

where th e sm a ll e f f e c t iv e p o p u la tio n s iz e s and s to c h a s t ic e ven ts w i l l

reduce th e number o f mtDNA typ e s p re s e n t. F ig u re 2 .3 dem onstra tes th a t a t

th e 0.057. p r o b a b i l i t y le v e l an in c re a s in g ly la rg e number o f base p a ir s

needs to be ana lysed to d e te c t low er le v e ls o f d iv e rg e n c e . T h is

n e c e s s ita te s th e use o f s e n s i t iv e s i l v e r s ta in in g p ro to c o ls (T e g e ls trom ,

1986), to d e te c t th e sm a ll fragm en ts o f mtDNA from s in g le in d iv id u a ls .

The h ig h s e n s i t i v i t y o f s i lv e r s ta in in g re q u ire s th a t th e mtDNA be

r e la t i v e l y f r e e from n u c le a r c o n ta m in a tio n . C ru c ia l m o d if ic a t io n s o f th e

o r ig in a l Pow ell and Zuniga e x tr a c t io n p rocedu re (Jones e t al», 1988J see

enclosed paper in Appendix 1) p e rm it th e r e q u is i te co m b ina tio n o f p u r i t y

and s e n s i t i v i t y w ith o u t th e need fo r u l t r a c e n t r i f u g a t io n .

L iv e r t is s u e seemed to be e s p e c ia lly s e n s i t iv e to s to ra g e c o n d it io n s

( f r e e z in g ) , g iv in g n o t o n ly poor mtDNA y ie ld s b u t samples s e v e re ly

contam ina ted w ith n u c le a r DNA. T h is was avo ided i f e i t h e r , f re s h l i v e r

t is s u e was a v a i la b le ( th e m a jo r ity o f th e samples had a lre a d y been s to re d

a t -7 0 °C ) , o r o n ly h e a r t and k idney t is s u e s were used. As a consequence o f

th e s m a lle r amount o f t is s u e u t i l i s e d mtDNA y ie ld s were reduced.

U n fo r tu n a te ly c h a r a c te r iz a t io n o f th e s tu d y p o p u la t io n mtDNA genotypes

re q u ire s la rg e amounts o f u lt r a - p u r e DNA.

32

Page 57: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

The optimum s tra te g y seemed to be (-Fo llow ing Tegel s tro m , 1986) th e use o-F

d i f f e r e n t mtDNA is o la t io n te ch n iq u e s depending upon s to ra g e c o n d it io n s ,

t is s u e a v a i l a b i l i t y , and mtDNA y ie ld re q u ire d . In each case , th e DNA was

r o u t in e ly v is u a l is e d by s i l v e r s ta in in g , and o n ly in a sm a ll number o f

cases by e th id iu m brom ide s ta in in g .

Hence, d u r in g th e i n i t i a l phase o f sc re e n in g th e p o p u la t io n s w ith s u ita b le

r e s t r i c t io n enzymes to d e te c t th e g e n e tic v a r ia t io n , mtDNA was is o la te d by

u l t r a c e n t r i fu g a to n (Lansman e t 1981; M a n ia t is e t a i . , 1982) g iv in g good

y ie ld s o f h ig h ly p u r i f ie d mtDNA. Once th e mtDNA c lo n e s were c h a ra c te r iz e d

th e m o d if ie d phenol e x t r a c t io n p rocedure (Jones e t al.f 1988) was employed

to r a p id ly p rocess la rg e numbers o f in d iv id u a ls . D e ta i ls o f b o th p rocedu res

a re d e sc r ib e d below .

2i 3i l i 2_IHE_M0DIFIED_PHEN0L_EXIRACIigN^PR0CEDyRE_F0R_MIDNA_IS0LAII0N_lJones

e t aim, 1988; see appendix 1 ).

E a r l ie r e x tr a c t io n p rocedures f o r m ito c h o n d r ia l is o la t io n produced crude

f r a c t io n s con tam ina ted w ith n u c le i and o th e r c e l lu la r com ponents. The

i n i t i a l hom ogen iza tion s tep s in th e is o la t io n p rocedu re were c r i t i c a l i f

th e m ito c h o n d r ia l p e l le t s were to be r e la t i v e l y p u re . To t h i s end th e hand

Dounce hom ogenizer used by Pow ell & Zuniga (1983) was re p la c e d w ith a

m o to r-d r iv e n g la s s T e flo n hom ogenizer (Lansman et a i . , 1981). F a c to rs

c r i t i c a l f o r s u cce ss fu l hom ogen isa tion were, (a) th e c le a ra n c e between th e

p e s t le and th e tube - th e optimum appeared to be about 0.2mm ( ie . no t

t i g h t - f i t t i n g ) , a llo w in g th e p e s t le to s l id e s lo w ly and e a s i ly a long th e

33

Page 58: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

tube* (b) th e number o-f s tro k e s o-f th e p e s t le - g e n e ra lly th e minimum

number o-f s tro k e s necessary to a llo w th e p e s t le to reach th e bo ttom o-f th e

tu b e (5 -8 s t ro k e s ) ; (c) th e hom ogen isa tion speed - a low speed,

a p p rx im a te ly 200 rpm were used; and (d) la rg e volumes o f hom ogenising

b u f fe r was a lw ays used where p o s s ib le .

The e x t r a c t io n p rocedu re was as fo l lo w s :

1. The t is s u e (0 .3 grams) was f in e l y chopped in c h i l le d d i s t i l l e d w a te r t o

remove any f a t t y d e p o s its o r b lo o d . The t is s u e was t ra n s fe r re d to

hom ogenizing tubes w ith a t le a s t 10ml o f p re -c h i l ie d H o m o g e n iz in g -b u ffe r.

2. The hom ogen iza tion was c a r r ie d o u t as d e s c r ib e d above.

3. The homogenate was spun a t l,0 0 0 g a t 4 °C fo r 15 m inu tes (Beckman

c e n t r i fu g e JA 2 0 .1 ). The supe rna ten t was c a r e fu l ly p ip e t te d o f f (a v o id in g

th e n u c le a r p e l le t ) and cooled on ic e .

4 . The n u c le a r p e l le t was suspended in 5 ml o f f re s h b u f fe r and respun a t

l,3 0 0 g f o r 10 m in. The supe rna ten t was p ip e t te d o f f and added to th e

o r ig in a l and spun aga in a t l,3 0 0 g f o r a n o th e r 10 m in . These s p in s were

repea ted on th e su p e rn a te n t u n t i l no n u c le a r p e l le t rem ained.

5. The f i n a l su p e rn a te n t was spun a t 15 ,000g a t 4 °C f o r 30 m inu tes to

p e l le t th e m ito c h o n d ria (Beckman c e n t r i fu g e JA 20 .1 ).

6. The s u p e rn a te n t was d isca rded and th e mt p e l le t was resuspended in 2 ml

STE b u f fe r , and warmed to 37 °C p r io r t o use.

7. A sm a ll amount o f 25% sodium dodecyl s u lp h a te (SDS) s o lu t io n was added

u n t i l th e su p e rn a te n t c le a re d , in d ic a t in g com p le te l y s i s o f th e

m ito c h o n d ria (25-50 pi fo r h e a r t /k id n e y s , 100 ^1 f o r l i v e r ) .

Page 59: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

8. 30 p i o f RNase A (20 mg/ml s o lu t io n , D N ase -free , i e . , p re b o ile d fo r 10

m inu tes and coo led on ic e ) was added to th e ly s a te and in cu b a te d fo r 30

m inu tes a t 37 °C.

9. To t h i s 20 p i o f p ro te in a s e K (20 mg/ml s o lu t io n ) was added then

in cu b a te d f o r 30 m inu tes a t 37 °C.

10. The ly s a te was shaken w ith an equal volume o f T r is - e q u i l ib r a te d phenol

(M a n ia t is e t a i - , 1982) and c e n tr ifu g e d fo r 30 m in u tes a t 20 ,000g ( t h is

s tep was more e f f e c t iv e th e lo n ge r and h a rde r th e ly s a te was spun ).

11. The aqueous s u p e rn a te n t was p ip e t te d in t o a c le a n c e n t r i fu g e tub e ,

mixed w ith an equal volume o f p h e n o l-c h lo ro fo rm m ix tu re , then spun a t

12,000g fo r 20 m in u tes . T h is s tep was repea ted u n t i l th e re was no lo n g e r

any w h ite p ro te in in te rp h a s e between th e ly s a te and th e p he n o l.

12. The s u p e rn a te n t was e x tra c te d tw ic e w ith an equal volume o f c h lo ro fo rm

and tw ic e w ith an equal volume o f e th e r . The tu b e was shaken u n t i l th e

in te rp h a s e between th e e th e r and th e s u p e rn a te n t was sharp ( ie . no bubb les

o r opaque la y e r ) .

13. The e th e r was d isca rd e d and any re s id u a l e th e r a llo w e d to evapo ra te fo r

a t le a s t 15 m inu tes .

14. I f necessa ry , d i s t i l l e d w ater was added to th e s u p e rn a te n t t o b r in g th e

volume up to 2 ml ( t h is ensured th e same amount o f aqueous s o lu t io n in each

sample and low ered th e s a l t c o n c e n tra t io n ) . A b so lu te e th a n o l was added to

a p p ro x im a te ly th re e tim e s th e volume o f th e s u p e rn a te n t, th e tubes were

covered w ith p a ra f i lm and mixed by in v e rs io n , then s to re d a t -70 °C fo r a t

le a s t 2 hou rs o r o v e rn ig h t .

35

Page 60: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

15. The sample was removed from -70 °C and a llo w e d t o s ta n d u n t i l i t

reached room te m p e ra tu re and mixed aga in ( i f any s a l t s had been

p r e c ip i ta te d th e y were re d is s o lv e d ) . The tubes were spun f o r 30 m inu tes a t

20 ,000g a t 4 °C to p r e c ip i ta t e th e DNA.

16. The su p e rn a te n t was d isca rd e d and th e mtDNA p e l le t vacuum d r ie d , then

d is s o lv e d in 50 ^ il o f TE b u f fe r and t ra n s fe r re d to a s t e r i l e eppendorf tube

fo r s to ra g e a t -20 °C.

The average y ie ld s o f mtDNA were 0 .5 - 1 ^ig per 0 .5 gram o f t is s u e ( f o r a

s in g le mouse).

2i 3i l i 3_intDNA_ISgLAII0N_ySING_yLIRACENIRIFyGATI0Ni

The p ro to c o ls v a r ie d s l i g h t l y depending on which r o to r was a v a i la b le f o r

u l t r a c e n t r i f u g a t io n o f th e cesium c h lo r id e g ra d ie n ts . A s w in g -o u t r o to r was

p re fe ra b le as t h i s made th e mtDNA band in th e g ra d ie n t c le a r ly v is a b le , and

hence easy to e x t r a c t . When th e v e r t ic a l r o to r had t o be used a c o n tro l

tube was spun a long s id e th e sample tu b e s . The c o n t ro l c o n ta in e d mtDNA

e x tra c te d from a fem a le la b o ra to ry mouse and her l i t t e r poo led to g e th e r .

T h is in c re ase d t is s u e w e ig h t (from 0 .5 g to 1 .5 - 2 .0 g) gave a g re a te r

y ie ld o f mtDNA and a c le a r ly marked th e mtDNA band in th e v e r t ic a l

g ra d ie n t , in d ic a t in g th e p o s i t io n o f th e f a in t o r i n v i s ib le mtDNA bands in

th e sample tub e s .

2JL3i l i 3i l_ySE_0F_A_yERIICAL_Rgi0Ri

The p ro to c o l was e s s e n t ia l ly th e same as th a t d e s c r ib e d f o r th e m o d ifie d

phenol e x tra c t io n method up to s te p 1 0 ., which produces a sem i-c rude

36

Page 61: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

m ito c h o n d r ia l DNA f r a c t io n ready fo r u l t r a c e n t r i f u g a t io n a f t e r o n ly one

phenol e x t r a c t io n . F o llo w in g t h i s :

1. The volume o f th e su p e rn a te n t c o n ta in in g th e c rude mtDNA f r a c t io n was

measured. For every m i l l i l i t r e measured e x a c t ly one gram o f s o l id CsCl was

added and th e s o lu t io n mixed u n t i l a l l th e s a l t had d is s v o lv e d .

2. For every 10 ml o f CsCl s o lu t io n 0 .8 ml o f a 10 mg/ml s to c k s o lu t io n o f

e th id iu m brom ide was added. T h is gave a f i n a l d e n s ity o f 1 .55 g /m l

(p = 1 .386) and a f i n a l c o n c e n tra t io n o f e th id iu m brom ide o f 600 ^ug/ml

(M a n ia t is et a i . , 1982).

3. T h is s o lu t io n was t ra n s fe r re d to a p o ly a llo m e r q u ic k -s e a l tu b e s u ita b le

f o r c e n t r i fu g a t io n in a Beckman Type V t i 6 5 .2 r o to r .

4. The rem ainder o f th e tube was f i l l e d w ith a s tock s o lu t io n o f 1 .0 g /m l

CsCl/ 600 ^ig/ml e th id iu m brom ide.

5. A l l th e tubes were balanced to w ith in 0 .1 gram o f each o th e r and loaded

o n to th e r o to r a f te r th e top s had been sea led (Beckman s e a le r ) .

6. A l l th e tubes were spun a t 55 ,000 rpm fo r 14 hours a t 20 °C.

7. The g ra d ie n ts were v is u a lis e d under UV l i g h t . The c o v a le n t ly c losed

c i r c u la r mtDNA was seen as a v e ry f a in t band a p p ro x im a te ly 0 .5 cm below a

v a r ia b le s iz e d upper band which co n ta in e d th e n u c le a r DNA. The tub e was

p unc tu red a t th e top t o re le a s e th e p re s s u re . The lo w e r mtDNA band was

c o l le c te d (a p p ro x im a te ly 200 -7 0 0^u l) by s id e p u n c tu re im m e d ia te ly below th e

band w ith a 1 ml hypoderm ic s y r in g e and need le (th e need le was in s e r te d

w ith th e beve l uppe rm ost).

8. The sample was e x tra c te d two t o th re e tim e s w ith an equal volume o f 2 -

b u ta n o l s a tu ra te d w ith a s o lu t io n o f 5M NaCl in a 0.05M T ris -H C L b u f fe r pH

37

Page 62: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

7 .5 .

9 . D is t i l l e d w ater was added to d i lu t e th e su p e rn a te n t to tw ic e th e

o r ig in a l volum e. The mtDNA was recovered by e th a n o l p r e c ip i t a t io n and

s to re d a t -2 0 °C as d e sc rib e d p re v io u s ly (p o in ts 14-16 ! s e c tio n 2 .3 . 1 .2 . ) .

2i 3i I i 3i 2_i_ySE_0F_A_SWING=0yi_R0I0Ri

A c rude mtDNA - f ra c t io n was p repared a c c o rd in g to Jones et a l 1988 up to

s te p 7. o-f th e e x tr a c t io n p rocedure ( ie . th e re was no need fo r th e RNase A,

p ro te in a s e K, o r phenol tre a tm e n ts ) . A f te r w h ich !

1. The volume o f th e crude DNA s o lu t io n was measured and 1.1 g /m l o f s o l id

CsCl was added, and s im i la r ly , e th id iu m brom ide a t a c o n c e n tra t io n o f 0 .8

ml per 10 ml o f s o lu t io n . T h is s o lu t io n was t r a n s fe r re d to a 2 .2 ml

u l t r a c e n t r i f u g e tu b e s u ita b le f o r th e TLA-55 sw in g -o u t r o to r f o r use on th e

b ench -top TLA-100 u l t r a c e n t r i f u g e ; tubes were ba lanced w ith a s to ck

s o lu t io n o f C s C l/e th id u im brom ide (1 .1 g per ml / 600 p i pe r m l) .

2 . The tubes were spun fo r 30 m inu tes a t 30 ,000 rpm, removed and th e

" p ro te in cap" (da rk p u rp le aggregate a t th e to p o f th e tu b e s ) was taken

o f f . The tu b e s were the n r e - e q u i l ib r a te d , re -b a la n c e d and spun a t 36,000

rpm fo r 42 h ou rs .

3. The low er mtDNA band v is u a lis e d by UV l i g h t was c o l le c te d by a need le

and 1 ml s y r in g e from th e top o f th e open tu b e . Again th e s o lu t io n was

b u ta n o l e x tra c te d , e th a no l p re c ip i ta te d and s to re d as p re v io u s ly d e s c r ib e d .

As an a l t e r n a t iv e t o e thano l p r e c ip i ta t io n th e mtDNA co u ld be recovered by

d ia ly s is . A lthough t h i s i s a more t im e consuming p rocedu re i t y ie ld s pure

mtDNA uncontam ina ted by s a lts which may p rove to be a problem d u r in g

33

Page 63: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

r e s t r i c t i o n enzyme d ig e s t io n s (e s p e c ia l ly when u s in g th o s e enzymes

s e n s i t iv e t o s a l t c o n c e n tra t io n s eg Rsa I ) .

The mtDNA s o lu t io n was d ia ly s e d as fo l lo w s :

The s o lu t io n was p la ce d in d ia ly s is bags and d ia ly s e d a g a in s t

1 M NaCl/TE in a c o ld room o v e rn ig h t (a t le a s t 24 h o u rs ) on a m agnetic

s t i r r e r s e t on a s lo w speed. The d ia ly s is l i q u id was changed e ve ry 12

h o u rs . The d ia ly s is bags were then d ia ly s e d a g a in s t TE b u f fe r f o r o n ly 2 -6

hours (o r o v e rn ig h t w ith a change o f s o lu t io n e v e ry 12 h o u rs ) . The d ia ly s e d

mtDNA was t r a n s fe r r e d to s t e r i l e m ic ro fu g e tu b e s and s to re d a t -2 0 °C u n t i l

re q u ire d .

2i 3i l i 4_RESIRICII0N_END0NyCLEASE_DI6ESII0NSi

The enzyme d ig e s t io n s were c a r r ie d ou t in 10 ^ i l r e a c t io n m ix tu re s in 1.5m l

m ic ro fu g e tu b e s w ith th e a p p ro p r ia te b u f fe r (see ta b le 2 .4 ) a c c o rd in g to

s u p p lie rs d i r e c t io n s . When s i l v e r s ta in in g was used a p p ro x im a te ly 10-40 ng

(4 -5 / jiI o f th e 50 /J l /g o f i n i t i a l t is s u e w e ig h t; s e c t io n 2 .3 .1 .7 DNA

q u a n t i f i c a t io n ) o f mtDNA was d ig e s te d w ith 1 u n i t o f enzyme (a lth o u g h t h i s

was g r e a t ly in excess o f th e th e o r e t ic a l re q u ire m e n ts w h ich i s 1 u n i t

enzyme/ 15 m in u tes / I / jg o f DNA, p ro lon g ed d ig e s t io n seems to enhance

d ig e s t io n , th e re b y a v o id in g p a r t ia l d ig e s ts ) . When e th id iu m brom ide was

used a t le a s t 100-200 ng D f mtDNA was d ig e s te d in a 20 / j I re a c t io n volum e.

A l l d ig e s t io n s were c a r r ie d o u t a t 37 °C , w ith th e e x c e p tio n o f Taq I w hich

was used a t 65 °C. The re a c t io n was l e f t o v e rn ig h t a f t e r w hich 1-2 ^ il o f

lo a d in g b u f fe r was added and th e sample im m e d ia te ly s to re d a t -2 0 °C.

39

Page 64: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

2i 3i l i 5_GEL_ELECIR0PH0RESISi

The d ig e s te d samples were sepa ra ted on 1.27. submerged h o r iz o n ta l agarose

g e ls (24 cm long x 16 cm w ide x 0 .2 cm th ic k ; see s e c t io n 2 .3 .2 .3 fo r

se tup d e ta i ls ) o r 57. v e r t ic a l p o ly a c ry la m id e g e ls (19cm lo n g x 19.5cm w ide

x 0.07cm th ic k : BRL v e r t ic a l ge l equ ipm ent, model V16) depending on th e

s iz e s o-f fragm en ts to be sepa ra ted ( fo r s iz e s 16000 - 1000 b a s e p a irs ,

u s u a lly produced by c leavage w ith s ix b a s e -c u tte r enzymes, agarose g e ls

were used; f o r 1000 -1 0 0 , b a se p a irs produced by fo u r b a s e -c u t te r enzymes,

a c ry la m id e was u sed ). The a c ry la m id e g e ls were c a s t on g la s s p la te s

p re v io u s ly s i lan e and re p e l s i la n e coated (T ege ls trom & W yoni, 1986), a

tre a tm e n t necessary f o r easy removal o f th e to p g la s s p la te and h a n d lin g o f

th e ge l d u r in g s ta in in g . B e ls were run us in g 1 x TBE b u f f e r , pH 8 .3 fo r

about 3 h ou rs , a t a p p ro x im a te ly 220 v o l t s (35 mA).

The agarose g e ls , u s u a lly run to se p a ra te la rg e fra gm en ts produced from

h e x a n u c le o tid e enzymes, were run on a TAE b u f fe r , pH 7 .4 f o r 3 -4 hours a t

80 v o l t s . S tocks o f 10 x b u f fe r c o n c e n tra t io n s were made up and s to re d a t

room tem pe ra tu re u n t i l re q u ire d , whereupon th e y were d i lu te d to normal

ru n n in g c o n c e n tra t io n s im m e d ia te ly b e fo re use.

2 i3 i l i 6_MIIOCHONDRIAL_DNA_yiSyALISAIIQN_PROCEDyRESi

2i3ili6il_SILyER_SIAININGiThe s i l v e r s ta in in g p ro to c o l (G u ille m e tte & Lew is , 1983) i s used p r im a r i ly

t o v is u a l is e th e mtDNA in p o ly a c ry la m id e g e ls y e t a v o id s th e la b o r io u s

p rocedures o f fragm ent e n d - la b e l l in g o r h y b r id is a t io n w ith s p e c i f ic p robes.

The cover p la te was removed and th e ge l im m e d ia te ly p la ced in 0.1%

40

Page 65: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

c e ty l t r im e th y l ammonium brom ide (CTAB, Sigma) fo r 20 m in u te s . The ge l was

then r in s e d in d i s t i l l e d w ater -for a f u r th e r 20 m inu tes and n e x t p laced in

0.3X ammonia s o lu t io n f o r 15 m in u te s , the n 15 m inu tes in ammoniacal s i l v e r

s o lu t io n ( ta b le 2 .3 ) (0 .4g o f s i l v e r n i t r a t e d is s o lv e d in 2 ml o f d i s t i l l e d

w a te r was added to 248 ml o f d i s t i l l e d w a te r p r io r t o th e a d d it io n o f 1 ml

D f f r e s h ly p repared 1 M NaOH and 1 ml o f 255C ammonia, in t h i s o rd e r ) . The

ge l was developed fo r 10-15 m inu tes in 27. sodium ca rb on a te w ith 0 .0 27.

fo rm a ldehyde . A f te r d e v e lo p in g , th e ge l was soaked in a 27. g ly c e ro l

s o lu t io n fo r 30 m in u tes , then a llo w e d to d ry .

The d ry s i l v e r s ta in e d g e ls were r o u t in e ly pho tographed.

2i 3i l i 6i 2_ETHIDIUM_BR0MIDE_SIAININGi

E th id iu m brom ide was added to th e b o ile d agarose (from a s to c k s o lu t io n o f

10 mg/ml in d i s t i l l e d w a te r) to a f i n a l c o n c e n tra t io n o f 0 .5 ^ J l/m l. A f te r

e le c tro p h o re s is th e DNA fragm en ts can be v is u a lis e d d i r e c t l y u s in g a UV

l i g h t t r a n s i l lu m in a to r and photographed u s in g a P o la ro id ty p e 55

p o s i t iv e /n e g a t iv e f i lm . A l t e r n a t iv e ly th e g e ls cou ld be s ta in e d a f t e r th e

run by 0 .05 ^jg/m l o f e th id iu m brom ide in 1 x TBE b u f fe r f o r 15 m inu tes and

r in s e d tw ic e w ith d i s t i l l e d w a te r. The fragm en ts were v is u a l is e d w ith UV

l i g h t and photographed as b e fo re .

2jL3iliZ_0yANIIEIQAIION_gF_MIIOCHONDRIAL_DNAiThe amount o f mtDNA from each mouse was q u a n t i f ie d by ta k in g i n i t i a l

s p e c tro p h o to m e tr ic re a d in g s a t w ave leng ths o f 260nm and 280nm. A pure

p re p a ra t io n o f mtDNA shou ld have an o p t ic a l d e n s ity 0D2AO / 0D2OO o f

41

Page 66: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

a p p ro x im a te ly 1 .8 . A va lu e o-f 1 f o r 260nm re a d in g co rresponds to a

c o n c e n tra t io n o f about 50ug/ml o f DNA (M a n ia t is et a i . , 1982).

However, t h i s method can o n ly be used when la rg e amounts o f h ig h ly p u r i f ie d

t is s u e a re used. More r o u t in e ly th e amount o f mtDNA per sample was

e s tim a te d from th e in t e n s i t y o f f lu o re s c e n c e e m itte d by e th id iu m b rom ide.

The amount o f f lu o re s c e n c e i s p ro p o r t io n a l to th e t o t a l mass o f DNA,

co n se q ue n tly th e q u a n t i ty o f DNA in th e sample co u ld be e s tim a te d by

com paring th e f lu o re s c e n t y ie ld s o f each uncu t mtDNA sample w ith th a t o f a

s e r ie s o f known s ta n d a rd s (uncut lambda o r lambda d ig e s te d w ith H ind 111)

u s in g th e m in ig e l method (M a n ia tis e t alr 1982).

Q u a n tify in g th e mtDNA enabled a p p ro x im a te ly th e same amount o f DNA to be

d ig e s te d and a p p lie d pe r gel t r a c k , a v o id in g c o m p lic a tio n s o f ge l

in te r p r e ta t io n caused by under o r over— lo a d in g . T y p ic a l ly 10-40ng o f mtDNA

were used per d ig e s t , th e usual y ie ld be ing a p p ro x im a te ly 400ng /0 .5 g o f

wet w e igh t t is s u e (T e g e ls trom , 1987c).

42

Page 67: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

2i 2i 3_Yr CHR0M0S0ME_MEIH0D0L0GIESi

2i3i2il_ISOLAIION_OF_igiAL_GENOMIC_DNAi

1. 700 ^ i l o-f t o t a l genomic b u f fe r were added to a p p ro x im a te ly 0 .7 cm3 o f

t a i l s k in t is s u e in a 1 .5 ml m ic ro fu g e tub e and th e t is s u e m acerated w ith a

p a ir o-f s c is s o rs .

2 . To t h i s s o lu t io n 35 pi o f p ro te in a s e K (10 mg/ml s to c k s o lu t io n ) were

added, th e tu b e shaken and incuba ted a t 55 °C o v e rn ig h t .

3. Any u n d ig e s te d t is s u e was p e lle te d a t 10,000 rpm in a m ic ro fu g e fo r 5

m inu tes .

4. The su pe rn a ta n t was removed w ith a w ide-m outhed p ip e t te ( to avo id

s h e a rin g th e DNA) and t ra n s fe r re d to a new s t e r i l e tu b e c o n ta in in g 25 ^j1 o f

10 mg/ml b o i le d RNase A. F o llo w in g in c u b a tio n a t 37 °C f o r 2 h ou rs , th e

s o lu t io n was e x tra c te d w ith an equal volume o f T r is - e q u i l ib r a te d pheno l.

5. The s o lu t io n was e x tra c te d tw ic e w ith c h lo ro fo rm and th e aqueous phase

t ra n s fe r re d to a f re s h tub e and the DNA p r e c ip i ta te d by a d d it io n o f

is o p ro p a n o l.

6. The DNA was spoo led o n to a sea led g la s s c a p i l la r y tu b e , d ipped in t o 70V.

(V/V) e th a no l and the n in t o 1007. e th a n o l, d r ie d and re -d is s o lv e d in 500 pi

TE, pH 7 .4 .

2i 3i 2i 2_RESIRICII0N_ENZYME_DIGESTIQNSi

D ig e s ts o f genomic DNA were incuba ted o v e rn ig h t w ith 2 -5 f o ld excess o f

enzyme as p re v io u s ly d e s c r ib e d . D ig e s ts were stopped by th e a d d it io n o f 0 .1

volumes o f 0 .5 M EDTA o r by the a d d it io n o f 0.1 volume o f lo a d in g b u f fe r .

43

Page 68: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

2i 3i 2i 3_AGAR0SE_GEL_ELECIR0PH0RESIS_0F_GEN0MIC_pNA.

Agarose (a t f in a l ge l c o n c e n tra t io n s o f 0 .75 -1 .27 . w /v) was d is s o lv e d in 1 x

TBE by b o i l in g , th e s o lu t io n a llow ed to cool to about 50 °C and e th id iu m

brom ide added to 0 .5 ^ ig /m l. The g e ls were formed in a a p la s t i c t r a y , th e

edges o f which were sea led w ith a u to c la v e tap e to p roduce a mould (M a n ia t is

e t al; 1782). The warm agarose s o lu t io n was poured in t o th e mould and th e

comb im m ed ia te ly clamped in to p o s i t io n near th e end o f th e g e l. The te e th

o f th e comb produce th e sample w e lls in t o which th e DNA, mixed w ith lo a d in g

b u f fe r , i s p ip e t te d when th e gel has s e t.

A f te r th e samples were loaded , e le c tro p h o re s is was pe rfo rm ed in 1 x TBE pH

8 .3 c o n ta in in g 0 .5 ^»g/ml e th id u im brom ide fo r 4 hours a t 80-90 v o l t s (16

v o l t s /c m . ) .

The DNA fragm en ts were v is u a lis e d under a longwave (3&5nm.) UV lamp and

photographed as d e s c r ib e d in p re v io u s s e c tio n s in o rd e r t o re c o rd the

p o s i t io n o f th e m o le cu la r w e igh t s ta n d a rd s .

2-.3i 2i 4_DNA_IRANSFERi

’’S outhern b lo t t in g " o r DNA t ra n s fe r was c a r r ie d ou t as d e s c r ib e d by

Southern (1975 ). The main o b je c t iv e was to t r a n s fe r DNA o u t o f th e agarose

ge l and b in d i t to a more conven ien t m a tr ix on which v a r io u s assays cou ld

be perfo rm ed . The DNA t r a n s fe r was perform ed as fo l lo w s :

1. The gel was in cu ba ted in d e n a tu rin g b u f fe r f o r 30 m in u tes a t room

tem pe ra tu re w ith g e n t le a g i ta t io n .

2 . The gel was then in cu b a te d in n e u t r a l iz in g b u f fe r f o r 30 m inu tes a t room

te m p e ra tu re .

Page 69: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

3. W earing g lo v e s , th e GeneScreen P lu s membrane (NEN Research p ro d u c ts ) was

c u t t o th e s iz e o f th e ge l and a mark was p laced on th e B s id e . The

GeneScreen membrane has two s id e s o f which s id e B i s used f o r DNA

h y b r id is a t io n s , hence i t was im p o rta n t to use th e c o r re c t s id e . T h is was

id e n t i f ie d by th e n a tu ra l c u r l o f th e membrane when d ry <the uppermost

concave s id e was s id e B ) .

4. The cu t membrane was w e tted in d i s t i l l e d w a te r.

5 . I t was then soaked in 10 x SSC s o lu t io n fo r 15 m inu tes .

6. One l i t r e o f t r a n s fe r b u f fe r (10 x SSC) was p laced in a bak ing d is h , and

a g la s s p la te p o s it io n e d over i t to fo rm a su pp o rt s h e lf f o r th e m oistened

w ick o f Whatman 3MM pape r. The ge l was p laced on top o f t h i s w ic k , extrem e

ca re was taken to a vo id t ra p p in g any b u b b le s . The soaked membrane was

p la ce d on to p o f th e ge l so th a t s id e B was in c o n ta c t w ith th e g e l, aga in

b ubb les were c a r e fu l ly exc luded . A second la y e r o f Whatman paper was added

and th e sandwich was com ple te w ith a 2 -3 in c h s ta ck o f d ry paper to w e l l in g

(w h ich draws the b u f fe r from th e re s e rv o ir th rou g h th e w ick and g e l,

c a r ry in g th e DNA fra gm en ts in t o th e membrane where th e y become tra p p e d ) . A

sm a ll w e igh t was p la ced on top o f th e paper to w e ls and th e t r a n s fe r was

a llo w e d to proceed fo r a t le a s t 12 hou rs bu t was u s u a lly l e f t o v e rn ig h t .

The paper to w e l l in g was changed as n ecessa ry .

7. A t th e end o f th e t r a n s fe r , th e to w e ls and f i l t e r paper were c a r e fu l ly

removed, w ith o u t d is tu r b in g th e membrane.

8. The membrane was c a r e fu l ly l i f t e d away from th e ge l and immersed in an

excess o f 0 .4 M NaOH f o r 30-60 seconds to ensure com ple te d e n a tu ra t io n o f

th e im m o b ilize d DNA.

45

Page 70: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

9. The membrane was then immersed in an excess o f 0 .2 M T ris -H C L , pH 7 .5 , 2

x SSC.

10. The membrane w ith th e t ra n s fe r re d DNA fa c e up was p laced Dn a p ie ce o f

f i l t e r paper and a llo w e d to d ry a t room te m p e ra tu re ( th e re was no need to

oven bake GeneScreen membrane to f i x th e DNA; see s u p p lie rs in s t r u c t io n s ) .

11. A f te r d ry in g , th e membrane was u n c u rle d a t one end and p laced in a

p la s t i c bag.

2i 3i 2i 5_PRE=HYBRIDIZAIIQNi

The membrane was p re -h y b r id iz e d by t r e a t in g i t in 10 ml o f th e fo l lo w in g

s o lu t io n : 507. form am ide (d e io n iz e d ) , 17. SDS, 1 M NaCl and 10% d ex tra n

s u lp h a te (T ab le 2 .3 s o lu t io n and b u f fe r s f o r p re p a ra t io n d e t a i ls ) .

The s o lu t io n was added t o a p la s t i c bag c o n ta in in g th e membrane. T h is was

sea led and in cu ba ted w ith co n s ta n t a g i ta t io n fo r a t le a s t 6 hours a t 42 °C.

2i 3i 2i 6_HYBRipiZATIDNi

W h ils t th e membrane was p re -h y b r id iz in g , th e probe to be used was ra d io ­

la b e l le d (s e c t io n 2 .3 .2 .1 1 fo r 01ig o - la b e l l in g and probe p r e p a ra t io n ) .

A f te r th e a d d it io n o f 300 ^1 o f Salmon sperm DNA (> 1 00 /ug /m l) to the

r a d io a c t iv e p robe , th e s o lu t io n was dena tu red by h e a tin g a t 90-100 °C fo r

10 m in u te s , then co o led on ic e f o r 5 m inu tes and f i n a l l y added to th e bag

c o n ta in in g th e p r e -h y b r id iz a t io n b u f fe r and membrane. The f in a l

c o n c e n tra t io n o f th e probe in th e bag shou ld be le s s than o r equal to

lOng/m l (10° dmp/ml) f o r optimum s ig n a l to background r a t io .

Page 71: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

The bag was re se a le d and in cu ba ted w ith c o n s ta n t a g i ta t io n fo r 6-24 hou rs

a t 42 °C. The membrane was removed from th e h y b r id iz a t io n s o lu t io n and

washed as fo l lo w s :

a. 2 x 100 ml Df 2 x SSC at room temperature for 5 minutes with constant

a g ita tio n .

b. 2 x 200 ml o f a s o lu t io n c o n ta in in g 2 x SSC, 17. SDS a t 65 °C fo r 30

m inu tes w ith c o n s ta n t a g i ta t io n .

c . 2 x 100 ml o f 0 .1 x SSC a t room te m p e ra tu re f o r 30 m inu tes aga in w ith

co n s ta n t a g i ta t io n .

Tha washed membrane was p laced w ith th e DNA fa c e up on a shee t o f f i l t e r

paper and a llo w e d to d ry a t room te m p e ra tu re ( th e membrane was no t dryed

c o m p le te ly i f r e - h y b r id iz a t io n was p lanned as i r r e v e r s ib le b in d in g o f th e

probe may o c c u r; s e c t io n 2 .3 .2 .7 ) . The membrane was exposed and th e

a u to ra d io g ra p h developed as d esc rib e d in s e c tio n 2 .3 .2 .1 3 .

2i 3i 2i 7_RE-HYBRIpiZAII0N i

I f r e - h y b r id iz a t io n o f DNA was necessary th e Genescreen p lu s membrane was

in cu ba ted in 100-200 m l. o f 0 .4 M NaOH fo r 30 m in u te s , and g e n t ly a g ita te d .

I t was then in cu b a te d in 200 m l. D f 0 .1 x SSC, 0.1/C SDS, 0.2M T ris -H C l

(p .H . 7 .5 ) a t 42 °C f o r 30 m inu tes w ith g e n t le a g i ta t io n . The membrane was

then b lo t te d between paper to w e ls to remove excess s o lu t io n and

a u to ra d iog ra p he d to ensure th a t most o f th e probe had been removed (s e c t io n

2 .3 .2 .1 3 ) . The membrane can then be p re -h y b r id iz e d and h y b r id iz e d a g a in , as

p re v io u s ly d e s c r ib e d .

Page 72: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

^ ^ ^ C L O N E S i .

The c lo n e pYCR/S (w hich a r r iv e d s to re d in e th a n o l) was k in d ly p ro v id e d by

C o lin B ishop from th e P asteu r I n s t i t u t e , P a r is . The DNA c lo n e was spun down

in a 1 .5 ml m ic ro fu g e tub e a t 12,000 g -for 15 m in u te s . The DNA p e l le t was

washed once in 70X e th a no l and vacuum dryed fo r one h o u r. T h is d ry p e l le t

was resuspended in 50 j i l o f d i s t i l l e d w a te r.

2i 3i 2i 9_PREPARAII0N_0F_C0MPEIENI_CELLSJL

E.coli s t r a in JM101 were s tre a k e d , from a fro z e n s to c k , o n to an L -aga r

p la te , grown a t 37 °C o v e rn ig h t . A s in g le co lo n y was used t o in o c u la te 10ml

o f L -b ro th and p laced in a shak ing in c u b a to r a t 37 °C o v e rn ig h t , to th e

m id - lo g phase. 1ml D f th e c u ltu r e was t ra n s fe r re d t o f re s h 100ml L -b ro th

(pre-warm ed to 37 °C) in a 500ml f la s k and grown t o an a pp rox im a te o p t ic a l

d e n s ity o f 0 .2 a t 650 nm. The c u ltu r e s were c h i l le d on ic e f o r te n m inu tes .

The c e l ls were p e l le te d by c e n t r i fu g a t io n a t 3500 rpm a t 4 °C f o r 10

m in u tes . The su p e rn a ta n t was d isca rd e d and th e p e l le t was resuspended in

0 .5 X volume o f c o ld 50 mM CaCl2 and l e f t on ic e f o r 20 m in u te s . The c e l ls

were respun and th e p e l le t resuspended in 0 .1 X volume o f 50 mM CaCl2 and

kep t on ic e u n t i l ready f o r use. A l t e r n a t iv e ly , 15% (V /V) g ly c e ro l was

added and 20(jul a l iq u o ts were d ispensed in t o 1.5ml e pp e nd o rfs on ic e , q u ick

fro z e n on d ry ic e and s to re d a t -7 0 °C u n t i l re q u ire d . By p re p a r in g

com petent c e l ls fo l lo w in g t h i s p ro to c o l, a p p ro x im a te ly 10* tra n s fo rm a n ts

per m icrogram o f s u p e rc o ile d p lasm id DNA were o b ta in e d .

48

Page 73: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

2i 3i 2i 10_IRANSF0RMAII0Ni

The tra n s -fo rm a tio n was c a r r ie d o u t by add ing 1 j i l o-f p robe DNA to 5 0 ^ i l o f

f r e s h ly p repared com petent c e l ls (o r a 200j.il a l iq u o t thawed on ic e from th e

-7 0 °C s to c k s ) , mixed and in cu b a te d f o r 20 m inu tes on ic e , the n a t room

te m p e ra tu re fo r a f u r th e r 10 m in u te s . A p p ro x im a te ly 100 pi o f L -b ro th was

added and in cu b a te d a t 37 °C f o r 30-40 m in u tes . The c o n te n ts o f th e tu b e

were p la te d o n to aga r, spread w ith a s t e r i l e g la s s sp reade r and in cu b a te d

o v e rn ig h t a t 37 °C in a dark room.

A f te r in c u b a tio n one co lo n y was p icke d ou t w ith a s t e r i l e to o th p ic k and

mixed w ith 1ml L -b ro th and l^ il a m p ic i l l i n in a 1 .5 ml m ic ro fu g e and p laced

on a d a isy -w h ee l a t 37 °C in th e dark f o r se ve ra l h o u rs . T h is s o lu t io n p lu s

an equal volume o f g ly c e ro l was mixed and s to re d a t -7 0 °C as a s to ck o f

pYCR/8 DNA c e l ls .

2i 3i 2i l l_ M IN I=PREPARAIION_OF_PLASMID_pNAi

1. F iv e ^j1 o f th e pYCR/8 DNA c e l ls from th e -70 °C f re e z e r was added to 10

ml o f L -b ro th w ith 5 yul o f a m p ic i l l in in a s t e r i l e g la s s u n iv e r s a l, and

in cu b a te d on a shaker a t 37 °C o v e rn ig h t .

2 . The c e l l s were spun a t 3000 rpm fo r 5 -10 m inu tes a t 5 °C . The

s u p e rn a te n t poured o f f and th e p e l le t was d is s o lv e d in 200 yul o f 25mM T r is -

HCL, pH 8, 50 mM g lu c o s e , 10 mM EDTA in a 1 .5 ml m ic ro fu g e tu b e .

3. To t h i s , 400 pi o f 17. SDS, 0 .2 M NaOH s o lu t io n were added and 200 yul o f

K0AC pH 4 .8 (3M potass ium a c e ta te d is s o lv e d in h a l f th e volume o f w a ter and

g la c ia l a c e t ic a c id was added t o pH 4 .8 , to make up th e vo lum e).

49

Page 74: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

4. The tu b e was vo rte xe d and spun a t 10,000 rpm in a m icro-fuge fo r 10

m in u tes . The aqueous su pe rn a te n t was c o l le c te d (a p p ro x im a te ly 800 ^ i l ) and

0 .6 x volume o-f is o p ro p a n o l added, m ixed , then l e f t a t room te m p e ra tu re f o r

15-30 m in u tes . T h is was then spun fo r 5 m in u tes to p e l le t th e DNA.

5. The p e l le t was washed w ith 70X e th a n o l, vacuum dryed and th e p e l le t

d is s o lv e d in 20 pi o f d i s t i l l e d w a te r, the n s to re d a t -2 0 °C.

2i 3i 2U2i_piGESIIQN_0F_PLASMID_DNA_AND_PyRIFICAIIDN_0F_^INSERI"i

Two ja l o f t h i s p lasm id DNA c o n ta in in g pYCR/8 were d ig e s te d w ith Eco RI

r e s t r i c t i o n enzyme as desc ribe d in p re v io u s s e c tio n s 2 .3 .2 .2 . and 3. The

fra gm en ts were sepa ra ted on a 1.27. low m e lt in g p o in t agarose ge l c o n ta in in g

5 yul o f e th id iu m brom ide (10 mg/ml s to c k s o lu t io n ) , by e le c tro p h o re s is

u s in g a TAE b u f fe r . The gel was i l lu m in a te d under UV l i g h t and th e d e s ire d

band (2 .0 kb Eco RI fragm ent in th e case o f pYCR/8) c le a n ly e xc ised and

p laced in t o a prew eighed 1.5 ml m ic ro fu g e tu b e . D is t i l l e d w a te r was added

in th e r a t i o o f 3 ml w ater per gram o f g e l. The tu b e was p laced in a

w a te rba th and b o i le d fo r 10 m inu tes to d is s o lv e th e ge l and dena tu re th e

DNA. T h is was s to re d a t -20 °C u n t i l re q u ire d . P r io r to la b e l l in g i t was

necessary t o r e b o i l th e DNA fo r a few m in u tes and in c u b a te i t a t 37 °C f o r

30 m in u tes .

2 i3 i 2i i3_OLIGO-LABELLING_REACIIONi

The DNA was la b e lle d fo r use as a probe f o r h y b r id iz a t io n . The la b e l l in g

re a c t io n was c a r r ie d ou t acco rd ing to F e in b e rg St V o g e ls te in , (1984) a t room

te m p e ra tu re by th e a d d it io n o f th e fo l lo w in g in th e s ta te d o rd e r :

50

Page 75: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

1. D is t i l l e d w a te r ( to a t o t a l volume o f 50 ^ 1 ) .

2. 10 jxl o f o l ig D - la b e l l in g b u f fe r (OLE b u f fe r : ta b le 2 .3 ) .

3. 2 jlx\ o f 10 mg/ml b o v in e serum albumim.

4. A p p ro x im a te ly 20 ng DNA in agarose ie . about 10-20 yu l.

5. 3 ^1 o f a lpha 32P-dCTP (3000 c i / mmol, 10 u c i / ^ 1 ) .

6. 0 .5 ^j1 o f "K lenow " enzyme (2 u n i ts o f la rg e fragm en t o f Escherichia

coli DNA polym erase I from BRL s u p p l ie r s ) .

T h is re a c t io n was in cu b a te d o v e rn ig h t a t room te m p e ra tu re in a lead p o t.

2i 3i 2i 14_SEPARAIIQN_0F_UNI!^0RP0RAIED_NyCLE0IIDES.

The u n in c o rp o ra te d n u c le o t id e s were removed from th e la b e l le d probe by th e

spun-colum n p rocedu re d e sc rib e d by M a n ia t is e t al., 1982.

The bottom o f a 1 ml d is p o s a b le s y r in g e was p lugged w ith a sm a ll amount o f

s t e r i l e g la s s w oo l. The s y r in g e was f i l l e d w ith Sephedex G-50 s a tu ra te d

w ith 2 x SSC. T h is was p laced in a c e n t r i fu g e tub e and spun a t 1600 g f o r 4

m inu tes to pack th e sephedex. Sephedex was added and c e n t r i fu g a t io n

co n tin u e d u n t i l th e packed volume was 0 .9 m l. 200 ^ i l o f 2 x SSC was added

to th e la b e lle d DNA and t h i s s o lu t io n was p ip e t te d o n to th e sephedex column

and spun as above, c o l le c t in g o n ly th e in c o rp o ra te d n u c le o t id e s in a f re s h

c e n t r i fu g e tu b e ( th e u n in c o rp o ra te d n u c le o t id e s rem ain in th e sephedex,

which can be d is c a rd e d ) .

The probe was ready a t t h i s s tage to add to th e h y b r id iz a t io n bag as

d iscussed in s e c tio n 2 .3 .2 .6 .

51

Page 76: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

ijL^iii^AyiORADIOGRAPHY^

The washed ra d io a c t iv e membranes were taped by th e edges t o f i l t e r pape r,

then covered w ith Saran wrap (o r c l in g f i lm ) and p la ce d in th e in te n s i f y in g

screen c a s s e tte s . In th e dark room Kodax X-Omat RP f i lm was c u t to s iz e and

p la ced on top o f th e membrane* th e c a s s e tte sea led and s to re d a t -70 °C (as

a l l membranes were washed in h ig h s tr in g e n c y c o n d it io n s two in te n s i f y in g

screens were r o u t in e ly used to reduce exposure t im e s ) .

The f i lm was developed a f te r th e a p p ro p r ia te exposure t im e , which v a r ie d

from 24 hours to 1 week depending on th e a c t i v i t y o f th e o f p robe .

2i 4_DAIA_ANALVSIS_AND_INIERPREIAII0Ni

Only a gene ra l o u t l in e o f th e da ta a n a ly s is perfo rm ed on b o th mtDNA and Y -

chromosome DNA in t h i s s tud y i s g iven be low . I t d id n o t seem a p p ro p r ia te to

d is c u s s each a n a ly s is s e p a ra te ly as th e re was c o n s id e ra b le o v e r la p . D e ta i ls

and any m ajor d if fe re n c e s in th e tre a tm e n t o f da ta f o r each DNA ty p e a re

g ive n in th e a p p ro p r ia te r e s u l t s c h a p te rs .

2i 4i li_CgMP0SIIE_DNA_GENQIYPESi

In i t a l l y each un ique fragm en t p a t te rn (as assessed on th e b a s is o f

c o m ig ra tio n o f fra gm en ts separa ted in th e same g e l) f o r each g iven

r e s t r i c t io n enzyme d ig e s t , was id e n t i f ie d and d e fin e d as a " r e s t r i c t i o n

morph" (Brown Sc Simpson, 1981). Each morph was g ive n a d i f f e r e n t but

a r b i t r a r y l e t t e r d e s ig n a tio n , th e l e t t e r A be ing re se rve d f o r th e fragm ent

p a t te rn appearing e i t h e r in th e known re fe re n c e sequence (B ibb et al, 1981)

o r the most common genotype found. The re s t o f th e l e t t e r s were des ign a te d

52

Page 77: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

to p a t te rn s in c h ro n o lo g ic a l o rd e r as th e y were d is co ve re d (hence th e re i s

no c o r r e la t io n between a lp h a b e t ic a l p ro x im ity and degree o f s im i l a r i t y ) .

Where p o s s ib le , th e d ig e s t io n p a t te rn s were compared to th e p u b lis h e d d a ta

on Hus domesticus mtDNA (F e r r is et a i , 1983) and th e same le t t e r

d e s ig n a tio n s were used. I f t o r example each sample was d ig e s te d w ith te n

r e s t r i c t io n enzymes th e DNA co u ld be summarised as a te n l e t t e r code c a l le d

th e "com pos ite g eno type ". I f any in d iv id u a ls share th e same com pos ite f o r a

p a r t ic u la r DNA typ e assessed th e y a re assumed to be long to th e same DNA

"c lo n e " (Lansman et al, 1983).

2i 4i 2i_FRAGMENI_hgLECyLAR_WEIGHI_ESIIMAIES_AND_SIIE_MAPPINGi

The m o le cu la r w e ig h ts o f sample fra g m e n ts co u ld be e s tim a te d by com parison

w ith known s tan d a rds (s e c tio n 2 . 2 . 4 , ta b le 2 . 6 ) . T h is was ach ieved by a

co m b in a tio n o f methods depending on DNA ty p e .

S tandard c a l ib r a t io n cu rve s were gene ra ted fo r th e m o le c u la r m arkers used

in each ge l by p lo t t in g th e lo g DNA m arker fragm ent s iz e a g a in s t d is ta n c e

m ig ra te d from the o r ig in . T h is i s be i l l u s t r a t e d in f ig u r e 2 .4 . which shows

a s tan d a rd cu rve genera ted from A Bgl I fragm ent m arke rs . The d is ta n c e

m ig ra te d (cm) by th e unknown sample DNA fragm en ts ( ie I s le o f hay mouse

mtDNA c leaved w ith Dde I :s e e p la te 2 .1 ) run a lo n g s id e th e se m arkers can be

measured and read o f f th e graph to o b ta in t h e i r app rox im a te s iz e s .

The la rg e s t s iz e s (g re a te r than lOOObp) and th e t i n y fra gm en ts ( le s s than

40bp) proved to be v e ry d i f f i c u l t t o e s tim a te us ing t h i s te c h n iq u e . The use

o f a "S o n ic D ig i t iz e r " (Beckman) in c o n ju n c t io n w ith th e s o ftw a re

53

Page 78: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

"M ic ro g e n ie " (IBM l t d ) a llow ed ra p id and a c c u ra te d e te rm in a t io n o f

m o le c u la r s iz e s .

The e x is te n c e o-f a com plete m ito c h o n d r ia l sequence f o r th e la b o ra to ry mouse

(B ibb et al, 1981), a llo w s t h i s t o be used as an a d d it io n a l s ta n d a rd f o r

com parison to a l l th e o th e r Mus domesticus mtDNA. C onsequen tly -for each

r e s t r i c t i o n enzyme used, an expected p a t te rn o-f fra gm en ts can be produced

from t h i s sequence ( ta b le 2 .5 ) . The fragm en t p a t te rn o b ta in e d f o r each

enzyme from each mouse mtDNA co u ld be re la te d by a sm a ll number o f p o in t

m u ta tio n s to th a t p re d ic te d from th e known base sequence ( k . b . s ) .

I t was u s u a lly p o s s ib le to s p e c ify th e e xac t lo c a t io n ( s ) in th e mtDNA

sequence a t which th e m u ta tio n (s ) must have occu rre d in o rd e r to e x p la in

how a g ive n fragm ent p a t te rn d i f f e r s fro m th a t a lre a d y known in th e k .b .s .

T h is h ig h re s o lu t io n sequence com parison method i s i l l u s t r a t e d in f ig u r e

2 .5 . T h is method has been used in p re v io u s s tu d ie s in v o lv in g humans (Cann,

1982; Cann et al.f 1984) and m ice ( F e r r is et a i , 1983).

T h is mapping te c h n iq u e i s much e a s ie r , more p re c is e and i s le s s ambiguous

than th e t r a d i t i o n a l doub le d ig e s t io n c leavage mapping methods (Nathans &

S m ith , 1975). The l a t t e r te ch n iq u e i s o n ly p r a c t ic a l when u s in g r e s t r i c t io n

enzymes, such as h e x a n u c le o tid e s , th a t produce a r e la t i v e l y sm a ll number o f

r e s t r i c t io n fra g m e n ts . Cann, e t a i» , (1982) e s tim a te th e average e r ro r w ith

which c leavage s i t e s have been mapped by c o n v e n tio n a l doub le d ig e s t io n s i s

about + 200bp, whereas th e sequence com parison method has an average e r r o r

o f a p p ro x im a te ly + 2bp.

54

Page 79: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

2i 4i 3i_ESIIMAIES_0F_BEQUENCE_piyERGENCEi

A u s e fu l measure o-f s im i la r i t y between any two DNA's (w he ther o-f

m ito c h o n d r ia l, Y chromosome, o r autosom al o r ig in ) i s th e p ro p o r t io n o-f

shared r e s t r i c t i o n fra gm en ts (F ) .

F = 2 N K y / N * + N y [ 13

where N Ky i s th e t o t a l number o f fragm en ts shared by two in d iv id u a ls , and

N K St N y a re th e number o f fragm ents in in d iv id u a ls X and Y.

U pho lt (1977) was th e f i r s t to show, i f c e r ta in assum ptions a re v a l id , F

can be re la te d to P ( th e number o f base s u b s t i t u t io n s pe r n u c le o t id e ) ,

s e p a ra tin g a g ive n p a i r o f DNA ’ s by th e fo rm u la :

P = 1 - F I (F2 + 8 F )1' 2

2

1/n

[23

Where n i s th e number o f b a se p a irs re co gn ise d per c leavage s i t e (u s u a lly 4 ,

5 o r 6 b a s e -c u t te r s ) . P -va lu e s were c a lc u la te d s e p a ra te ly f o r s e ts o f

r e s t r i c t io n enzymes d i f f e r i n g in n.

Nei St L i (1979) d e r iv e t h e i r fo rm u la e in a d i f f e r e n t manner, ye t th e y y ie ld

n e a r ly id e n t ic a l d ive rg e n ce e s tim a te s <dr) when a p p lie d to most da ta s e ts

(Lansman e t a i , 1981). The re la t io n s h ip between th e f r a c t io n o f shared

fragm en ts (e q u a tio n 1» Nei St L i , 1979 -e q u a tio n 21) and th e number o f

n u c le o t id e s u b s t i tu t io n s per s i t e (d F) based on fra gm en t a n a ly s is i s a ls o

55

Page 80: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

dependent upon le n g th o-f th e re c o g n it io n sequence. U sing Nei and L i ’ s

fo rm u la t io n s th e graph 2 in Appendix 2 i l l u s t r a t e s th e r e la t io n s h ip between

F and d , and e x p la in s how d -v a lu e s a re d e r iv e d from P ( p r o b a b i l i t y o f

n u c le o t id e s u b s t i tu t io n s ) in graph 1 in Appendix 2 u s in g e q u a tio n 3.

F = P* / (3-2P) C33

These fo rm u la e do no t co n s id e r back m u ta tio n s , bu t t h i s i s u n im p o rta n t

g ive n th a t th e fragm en t method can o n ly be used to e s tim a te sequence

d ive rge n ce (d ) when th e p o p u la tio n s a re c lo s e ly r e la te d (when d i s s m a ll) .

These methods o f e s t im a tin g dw from fragm en t a n a ly s is (Nei St L i , 1979?

U p h o lt, 1977) are v a l id p ro v id e d se v e ra l assum ptions a re m et, nam ely, (1)

a l l fragm ent changes must a r is e from base s u b s t i t u t io n s (2) th a t th e

d is t r ib u t io n o f c leavage s i te s i s s im i la r to th a t expected in random

sequences o f same-base c o m p o s itio n s , and (3) th a t non-hom ologous fragm en ts

a re no t scored as id e n t ic a l , assuming th a t a l l p o s s ib le fra gm en ts can be

observed . T h is f in a l assum ption may be e rroneous as th e co m p a ra tive

fragm en t method may n o t d e te c t sm a ll le n g th m u ta tio n s , Dr d e te c t s im i la r

le n g th s o f fragm en ts th a t may be produced in d i f f e r e n t p a r ts o f th e genome,

e s p e c ia l ly i f te t r a n u c le o t id e r e s t r i c t io n enzymes a re used as the se produce

many fra gm en ts . D iscu ss io n o f the se assum ptions and t h e i r v a l i d i t y in t h i s

s tu d y are p resen ted in la t e r c h a p te rs .

Use o f r e s t r i c t io n s i t e d a ta ra th e r tha n fragm ent d a ta p ro v id e s much more

in fo rm a tio n about th e exac t n a tu re o f DNA changes. A method fo r com puting

56

Page 81: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

sequence d ive rg e n ce from c leavage map com parisons in v o lv e s th e

d e te rm in a t io n o f th e f r a c t io n o f shared s i t e s (S) between two in d iv id u a ls

(Nei & L i , 1979; e q u a tio n 10):

S = 2 N K y / N M + N y C41

Where NK and Ny re p re s e n t th e number o f r e s t r i c t io n s i t e s in in d iv id u a ls X

and Y and NKV is th e t o t a l number o f r e s t r i c t io n s i t e s shared between th e 2

in d iv id u a ls (X and Y ). From th e p ro p o r t io n o f shared s i t e s (S) th e

e s tim a te d number o f base s u b s t i tu t io n s per b a se p a ir (d B) by which th e

mapped mtDNA’ s o f th e two in d iv id u a ls d i f f e r can be c a lc u la te d u s in g Nei Sc

L i ’ s e q u a tio n 16:

ds = ( 2 / r ) (1 / S - 1) C53

Where r i s th e number o f b a s e p a irs in th e r e s t r i c t io n enzyme re c o g n it io n

s i t e , S i s as d e sc rib e d as above. The e q u a tio n , however, i s a ls o dependent

on a number o f assum ptions. The f i r s t assumes th a t th e m a jo r i t y o f fragm en t

d if fe re n c e s and hence r e s t r i c t i o n s i t e d if fe re n c e s , a re due to s in g le base

s u b s t i tu t io n s . Secondly th a t th e p a t te rn s o f m ethyl a t io n o f c y to s in e does

no t change, th a t i s r e s t r i c t io n s i t e d if fe re n c e s shou ld n o t be due to

m e th y la t io n p a tte rn s which rende r s p e c i f ic s i t e s w ith th e se C-G p a ir s

r e s is ta n t to d ig e s t io n . The expected G + C c o n te n t shou ld rem ain c o n s ta n t.

F in a l ly , th a t n u c le o t id e s u b s t i tu t io n s occur random ly th ro u g h o u t th e genome

and fo l lo w the po isson d is t r ib u t io n w ith a r a te o f s u b s t i t u t io n ( \ ) per

57

Page 82: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

u n i t t im e ie .y e a r o r g e n e ra tio n (Nei & L i , 1979; Cann, 1982; Gotoh et a i ,

1979; Kaplan & L an g le y , 1979; Nei & T a jim a , 1981).

2i 4i 4i_IREE_C0NSIRyCII0Ni

Two methods were used -for c o n s tru c t in g t re e s in t h i s s tu d y . The advantages

and d isadvan tages o-f each te ch n iq u e a re d iscussed in th e a p p ro p r ia te

d is c u s s io n s e c tio n s .

For presence o r absence c h a ra c te r da ta (-fragm ents o r r e s t r i c t io n s i te s )

u n d ire c te d pars im ony a n a ly s is was conducted u s in g th e ” PAUP" package

developed by D.L Swof-ford (Swo-f-ford, 1985), to c o n s tru c t e v o lu t io n a ry t re e s

w ith o u t assuming a c o n s ta n t ra te o-f DNA e v o lu t io n . In g e n e ra l, those

c h a ra c te rs which a re common to a l l p o p u la t io n s o r in d iv id u a ls in q u e s tio n

a re co ns ide re d to la c k p h y lo g e n e tic in -fo rm a tio n co n ce rn in g th e

r e la t io n s h ip s between them. S im i la r ly a c h a ra c te r th a t i s un ique to a

p a r t ic u la r p o p u la tio n o r in d iv id u a l i s a ls o u n in -fo rm a tiv e . C onsequently th e

in p u t da ta c o n s is ts o f c h a ra c te rs which a re shared by a t le a s t two

p o p u la t io n s / in d iv id u a ls b u t no t by a l l . These c h a ra c te rs were d e sc rib e d as

" p h y lo g e n e t ic a l ly in fo r m a t iv e ” , and as such were removed from th e data s e t.

The s h o r te s t t re e was found fo r each d a ta s e t u s in g an o p t io n in th e PAUP

package which conducts an e xh a u s tive search fo r a l l p o s s ib le t re e s . A

consensus t r e e r e f le c t in g th e in fo rm a tio n shared by a l l t re e s was then

c o n s tru c te d when two o r more tre e s o f equal le n g th had been found . T h is was

perform ed u s in g bo th Adams (Adams, 1972) and S t r i c t (R o h lf , 1982) consensus

58

Page 83: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER TWO

method - f a c i l i t i e s in PAUP. These ne tw o rks were ro o te d e i th e r a t th e

m id p o in t o-f th e path co n n e c tin g th e two most d iv e rg e n t p o p u la t io n s o r by

u s in g sequence da ta -from th e la b o ra to ry mouse as an o u tg ro u p .

Using th e "d is ta n c e in d e x " id) -from Nei & L i ’ s (1979) o r U p h o lt ’ s , (1977)

■ fo rm u la tions on e ith e r shared s i t e o r fragm ent d a ta , a m a tr ix o f a l l

p o s s ib le p a irw is e v a lu e s was c o n s tru c te d which served as th e in p u t d a ta .

These in d ic e s were then grouped by a p h e n e tic method which l in k s

p o p u la t io n s / ta x a by t h e i r s im i l a r i t y o r la c k o f s im i l a r i t y . The unw eighted

p a ir -g ro u p method (UPGMA* Sneath and S o k a l, 1973) uses th e a r ith m e t ic

averages and assumes an equal ra te o f e v o lu t io n a ry d iv e rg e n c e , th a t i s a

c o n s ta n t r a te o f n u c le o t id e s u b s t i tu t io n s . T h is method s e q u e n t ia l ly

averages th e d is ta n c e in d ic e s ac ross th e p o p u la t io n s , p ro d u c in g an

o rth o g o n a l dendrogram.

59

Page 84: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .1 : ABBREVIATIONS.

ABBREVIATION ITEM

mtDNA M ito c h o n d r ia l DNA

BRL Bethesada Research L a b o ra to r ie sInc

NBL N o rthum bria B io lo g ic a ls L im ite d

NEB New England B io la b s

CsCl Cesium c h lo r id e

NaCl Sodium c h lo r id e

MgCl Magnesium c h lo r id e

EDTA E th y le n e d ia m in e te t r a a c e t ic a c id ,d isod ium s a l t

SDS Sodium dodecyl s u lp h a te

ug m icrogram (10 o f 1 gram)

u l m ic r o l i t e r (10 o f 1 l i t r e )

ng nanogram (10 o f 1 gram)

mCi m i l l i c u r i e

UV u l t r a v io l e t

cpm co un ts per m inu te

Kb k ilo b a s e

Z ’ -d e o x y th y m id in e - 5 - dTTP tr ip h o s p h a te

2 '-d e o xyg u a n o s in e - 5 - dGTP tr ip h o s p h a te

d e o x y r ib o n u c le ic a c idDNA

deox y r i bonuc1easeDNase

r a d io a c t iv e decays per m inu tedpm

E s c h e r ic h ia c o l iE .c o l i

nanometernm

re v o lu t io n pe r m inu terpm

NADH dehydrogenase s u b u n itsND

60

Page 85: (Hus domesticus. Rut t y ) - UCL Discovery

CTAB C e t ly t r im e th y l ammonium brom ide

Na2S03 Sodium s u lp h i te

APS Ammonium p e rs u lp h a te

DW d i s t i l l e d w a te r

d p e rcen tage sequence d ive rg e n ce

p d e n s ity

bp b a se p a ir

TE T r is -EDTA b u f fe r

DTT d i t h i o t h r e i t o l

g fo rc e o f g r a v i t y

mM m il l im o la r

M m olar

mA m illia m p

RNase R ibonuc lease

URF u n id e n t i f ie d re a d in g fram e

TEMED N ,N ,N ', N*- te t ra m e th y le th y le n e d i ami ne

TAE T r is a c e ta te EDTA b u f fe r

SSC S tandard s a l in e c i t r a t e

T r is 2-ami n o -2 - (h y d ro x y m e th y l) propane1 :3 d io l

w /v w e ig h t per volume

Repel s i lane 27. d im e th y l d ic h lo r o s i lan e in1 ,1 ,1 - t r ic h lo r o e th a n e

Si lan e gamma - m e th a c ry lo x y p ro p y l-t r im e th o x y s i la n e

K .B .S Known base sequence

BDH BDH ch em ica ls L td , P oo le , UK

BSA b ov ine serum a lbum in

dATP 2 ’ -deoxyadenos ine -5 - t r ip h o s p h a te

2 :‘ -d e o x y c y t id in e -5 - t r ip h o s p h a tedCTP

Page 86: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2.2? SAMPLING SITES IN BRITAIN AND IRELAND.

1 S ite lo c a t io n c a te g o r is e d by C o u n ty :th e - f i r s t name i s th e is la n d o r main tow n, th e second name is the more p re c is e sample s i t e to th e n e a re s t v i l l a g e o r -farm. Numbers in c i r c le s co rrespond to main sample s i t e s d is t r ib u t io n i l l u s t r a t e d on - f ig u re 2 .1 .

2 Ordnance Survey g r id re fe re n c e .* A pprox im ate number to g iv e an in d ic a t io n o f t ra p p in g a rea whenthe p re c is e s i t e i s unknown.

The N a tio n a l G rid does no t in c lu d e I r e la n d , co n se q u e n tly th e "AA Road A t la s " ( th re e m ile s to one in c h ) o f G reat B r i t a in and I re la n d re fe re n c e i s g ive n in s te a d .

3 C ap tu re method:A M ice caugh t by hand when corn r ic k s were d is m a n tle d fo r th re s h in g .° M ice caugh t by 1iv e - t ra p p in g w ith b a ite d "Longw orth " t ra p s . c Samples co u ld a ls o be caught by hand a t p ig fa rm s s im p ly by moving th e food tro u g h s and c a tc h in g the d is tu rb e d m ice in sacks.

M id -p o in t map re fe re n c e g iven o n ly f o r j* F a ray , O rkney, S c o tla n d . F o ra ccu ra te t ra p p in g d a ta a c ro ss th e is la n d see r e s u l t s c h a p te r 4.° The I s le o f May, F i r t h o f F o r th , n o r th -e a s t S c o tla n d . P re c is e s i t e lo c a t io n s a n d e x p la n a tio n s see r e s u l t s c h a p te r 6 - " I s le o f May In t r o d u c t io n e x p e rim e n t" .6 The Is la n d o f S ko kh o lm ,o ff th e P em brokesh ire c o a s t, sou th Wales. A ccu ra te sample s i t e s a re g ive n in the a p p ro p r ia te r e s u l t s ch a p te r 4 .

7 In d iv id u a l number ass igned to each mouse.

Page 87: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .2 : SAMPLING SITES.

SITE LOCATION 1 O.S REFERENCE N ° DATE CAPTURE INDIVIDN° 2 CAUGHT METHOD 3 N OT

1. ORKNEY ISLANDS: N o rth W estray, Noup HY 438489 11 3 /8 8 R ick caught '* 1-11

Mid W estray, Quoy HY 441469 38 3 /8 6 II 12-49

Mid W estray, Hammars HY 438441 21 3 /8 6 II 50-70

South W estray, N .G rinaby HY 483437 9 3 /8 8 II 71-9

South W estray, S ke lw ick HY 489457 8 3 /8 8 II 80-7

Papa W estray HY 488517 1 -/SO II 88

Eday, Newbiggin HY 544313 12 3 /8 0 II 89-100II 46 3 /8 6 if 101-46II 6 3 /8 8 II 147-52

Eday, Ruah HY 560360# 6 3 /8 8 II 153-58

Faray A HY 530370 * 12 9 /8 4 L iv e - tra p p e d B

II 29 9 /8 5 II159-70171-99

II 20 9 /8 6 II 200-19

S tro n s a y , Hoi 1 and HY 662222 2 4 /8 6 R ick caught 220-1

Sanday HY 722422 3 3 /8 0 II 222-22 '

2. ORKNEY MAINLAND: H a rra y , N is t house HY 313198 10 3 /8 8 II 225-34

Yaphur HY 361058 1 3 /8 8 11 235

3. CAITHNESS, SCOTLAND: John O’ G ro a ts , S ea te r ND 381725 3 9 /8 7 L iv e - tra p p e d 236-8

II 4 4 /8 6 II 239-42

Thurso, Mains o-f O lr ig ND 183667 3 9 /87 II 243-45

G reenland ND 244676 11 3 /84? R ick caught

K e iss ND 362623 12 3 /8 4 II246-56257-68

B arnaclavan ND 071647 5 9 /8 7 1iv e - tra p p e d 269-73

63

Page 88: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 . 2 : . .CONTINUED

SITE LOCATION 1

4. SUTHERLAND, SCOTLAND:A rch i emore

Armadale

5 /6 . FIRTH OF FORTH, SCOTLAND: Inchke i th

I s le o-f May ° :O r ig in a l p r e - in t r o d u c t io n Post in t r o d u c t io n

O.S REFERENCE N° 2

NC 893581

NC 791639

NT 290840*

NT 660990 *

7. DUMFRIES AND dmi_LGWAY , SCOTLAND:Curohouse u f F le e t NX 605565 *

NCAUGHT

4

1

DATE CAPTURE INDIVID METHOD 3 N OT

12356076

9 /87 » 274-77

9 /87 " 278

-/BO " 279

9 /82 L iv e - t ra p p e d 280-919 /85 " 431-659 /86 11 466-52t9 /87 " 526-601

9/88 292

8 /9 . NORTHERN IRELAND:Bel f a s tIIMoneymore

10. REPUBLIC OF IRELAND: Gal way

- D5I f

- D4

- F2

9 /878 /8 89/87

10/87

293-5296-302303

304

11. ISLE OF MAN: Linqaqne SC 220720 10/87 305

12. STAFFORDSHIRE, ENGLAND: B u r t o n - o n - t r e n t ,Hareho les Farm, T u tbu ry SK 189272 9

119/876 /88

306-314315-325

13. DERBYSHIRE, ENGLAND: H o rs ley SK 385445 7/87 326-28

14. WEST MIDLANDS, ENGLAND: Birmingham, Moseley SP 073725 6/87 329-336

15. CENTRAL LONDON, ENGLAND: London Zoo, Regents park TO 283836 9/88 337-39

64

Page 89: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .2 : CONTINUED.

SITE LOCATION 1

K ings C ross, I s l in g to n

16. SOUTH LONDON, ENGLAND: ■fulham

Wimbledon

17. KENT, ENGLAND:East G rin s te a d , L in g f ie ld

O.S REFERENCE N N° 2

TQ 303835

TQ 240770

TQ 240720

TQ 390430

CAUGHTDATE CAPTURE INDIVID

METHOD 3 N °7

1 7 /8 8 L iv e - tra p p e d 340

3 4 /8 7

1 7 /8 7

15 6 /8 7

341-43

344

345-359

18/19. SURREY, ENGLAND: N u t- f ie ld , S a n d y h ill

West Humble, Chapel Farm

TQ 323497

TQ 160520

11 6 /8 8 Hand caught c360-70

1 6 /8 8 L iv e - tra p p e d 371

20. HAMPSHIRE, ENGLAND: W incheste r SU 490320 * 4 /8 7 372-74

21. PEMBROKESHIRE, WALES: Skokholm * SM 735050 15 9 /8 6 375-89

22. SOMERSET, ENGLAND: Taunton, Park Farm

Taunton, B rid g e w a te r, ChedzDy

Taunton, M il lv e iw I I lm in is t e r

ST 278190 9 4 /81 R ick caught 390-9827 4 /8 6 ” 399-425

ST 340380 * 2 4 /81

ST 360150 * 3 - /8 2

426-27

428-430

TOTAL NUMBER OF SAMPLING LOCALITIES =42 TOTAL NUMBER OF MAJOR AREAS/ COUNTIES =22

TOTAL NUMBER OF MICE=601

Page 90: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2.3: LIST OF MAJOR BUFFERS AND SOLUTIONS.

NAME CONTENT

30% Acrylamide solution

Ammonical silver

Ampicillin

Dextran sulphate stock

EDTA, 0.5M

Ethidium bromide

Formamide, de-ionized

Homogenising buffer

L-Broth^% (w/v)

Loading buffer (lOx)

Lysis buffer

OLB buffer

0.15g bis-acrylamide, 4.85g acrylamide, lg montoed ion-exchange resin (MBI) resin in 100ml distilled water, stirred on a magnetic stirrer for an hour, filtered and stored at 4 °G

0.4g of silver nitrate dissolved in 2ml of DDW added to a final volume of 248ml DDW, prior to the addition of 1ml freshly prepared 1M NaOH and 1ml of 25% ammonia, in this order.

dissolved at a concentration of 50mg/ml in sterile water, stored at -2 0 °C.

dissolved in sterile water at 50% (w/v), stored at 4 ° C.

pH adjusted to 8.0, and autoclaved.

10 mg/ml concentration, stored at room temperature, wrapped in foil.

treated with ion-exchange resin (Bio-rad), lg per 10 ml formamide for 30 minutes, filtered through whatman n° 1 paper and stored at - 20 °C.

30mM Tris-HCL, ImM EDTA, 2.5mM CaCU, 0.25mM sucrose, autoclaved, stored at 4°C.

bactotryptone, 0.5% (w/v)bacto yeast extract, 0.5% (w/v) NaCl.

0.25% xylene cyanol, 0.25% ficoll (type 400), 0.25% bromophenol blue, in sterile water, stored at room temperature.

0.5M Na Acetate, lOmM EDTA pH 8.0, lOmM Tris-HCL pH 8.0, and 0.5% SDS. Autoclaved and stored at 4 0 C.

solution 0:1.25M Tris-HCL, 0.125M MgCl2 , pH 8.0, stored at 4 0 C. For hot T: solution A:lmlofsolutionOplus 18jil 2*mercaptoethanol, 5ul of each of dATP, dCTP, dGTP (each triphosphate previously dissolved in 0.1M TE

66

Page 91: (Hus domesticus. Rut t y ) - UCL Discovery

Tris -equilibrated phenol

Phenol-Chloroform

Potassium acetate stock. 3M

Pre-hybridisation buffer

Repel silane

RNase (DNase-free)

Salmon sperm DNA

ie. 3mM Tris-HCL, 0.2mM EDTA, pH 8.0), stored at -20 0 C. solution B:2M hepes pH 8.0, titrated with 4M NaOH, stored at 4 0 C. solution C:hexadeoxyribonucleotides (pl2166) suspended in T.E at 90 OD units/ml, stored at -2 0 0 C. These solutions were added together in the following quantites to make the final OLB buffer: A, 100 : B, 250 : C, 150.

removed from the freezer, allowed to warm to room temperature and melted at 65 0 C. 8, - hydroxyquino line added to a f in a l concentration of 0.1%. The melted phenol was extracted several times with an equal volume of 1M Tris-HCL, pH 8.0, then 0.1M Tris pH 8.0,

2% 2-mercaptoethanol. Stored at 4 °C, covered in foil.

redistilled phenol: chlorofrom: isoamyl alcohol (24: 24 : 1).

60% (v /v ) 5M potassium acetate, 11.5% (v /v) glacial acetic acid.

5ml formamide, 2ml sterile water, 2ml 50% dextran sulphate solution and 1ml 10% SDS, mixed by inversion and incubated at 42 ° for 10-15 minutes. 0.58g of NaCl was added to this solution, mixed and incubated again at 42 ° C for 15 minutes.

each glass plate to be treated was washed in detergent, rinsed well with DDW and left to dry. Then each plate was rinsed in repel silane, washed with running water to remove any traces of HCL which may have been formed in the treatment. Once dry these plates were stored in the dark in plastic bags.

dissolved to a concentration of lOmg/ml with sterile water and heated to 100 °C for 15 minutes and allowed to cool to room temperature, then stored at -20 °C.

5ug /u l salmon sperm DNA in lOmM Tris-HCL pH 7.5, ImMEDTA, stirred, sonicated then left stirringovernight. Storedat 4° C, boiled before use.

67

Page 92: (Hus domesticus. Rut t y ) - UCL Discovery

Sephedex G-50 30g sephedex G-50 added to 250ml TE pH 8.0, mixed and allowed to stand overnight at room temperature (or autoclaved for immediate use).

Si lane 0.1% solution (ie. 10ml acetone and lOulsilane),with 1ml applied to each previously washed glass plate and allowed to dry. Then rinsed in acetone alone to remove any traces of excess silane.

SodiumAcetate, 3M

Southern denaturation solution

Southern neutralising solution

SSC (20x)

STE buffer

TAE buffer

TBE buffer

TE buffer

adjusted to pH 5.2 with glacial acetic acid, autoclaved.

0.6M NaCl, 0.4M NaOH.

1.5M NaCl, 0.5M Tris-HCL, pH 7.5.

3M NaCl, 0.3M Na citrate, pH adjusted to 7.

lOOmM NaCl, lOmM Tris-HCL, pH 8.0, ImM EDTA, pH 8.0, autoclaved and stored at 4 0 C.

0.04MTris-acetate,0.001M EDTA, autoclaved, stored at room temperature.

0.089M Tris-base, 0.089M boric acid, 0.002M EDTA, pH 8.0.

lOmM Tris-HCL, 0.5mM EDTA, pH 8.0, and final solution adjusted to pH 7.5.

Total genomic buffer 50mM Tris-HCL, lOOmM EDTA, pH 8.0, lOOmM NaCl, 1% (w/v) SDS.

Page 93: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .4 : CHARACTERISTICS OF THE RESTRICTION ENDONUCLEASES USED

B u ffe rs f o r r e s t r i c t io n endonuclease d ig e s t io n s ;

LOW; lOmM T r is Cl pH 7 .5 lOmM MgCl

ImM d i t h i o t h r e i t o l

MED; 50mM NaCllOmM T r is Cl pH 7 .5 lOmM MgCl

ImM d i t h i o t h r e i t o l

HIGH; lOOmM NaCl50mM T r is Cl pH 7 .5 lOmM MgCl

ImM d i t h i o t h r e i t o l

® A=adenine; T= thym ine; C = cy to s in e ; G=guanine; P u=purine (A o r G); P y = p y r im id in e (T o r C ); X=A o r C; Y=G o r T; Z=A o r TJ N=any base;

* Enzymes used in mtDNA s tu d ie s s c re e n in g B r i t i s h and European m ice ( th e same s e t o-f enzymes chosen by F e r r is et aim, (1983 ), a l lo w in g da ta co m p a ris o n s ).

b A d d it io n a l -four enzymes used in d is c e rn in g th e " tw ig s " ( i t any) in th e B r i t i s h Phyloqeny t r e e .

c Enzymes used in th e Y-Chromosome DNA a n a ly s is .

d M ito c h o n d r ia l DNA d ia g n o s t ic m o le cu la r m arkers used in th e " I s le o f May In t r o d u c t io n e x p e r im e n t" .

Y-Chromosome DNA d ia g n o s tic m o le cu la r m arker used in th e " I s le o f May In t r o d u c t io n e x p e r im e n t" .

69

Page 94: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .4 1 C h a r a c te r is t ic s o-f r e s t r i c t io n endonuc leases used.

ENZYME RECOGNITION INCUBATION SALT BASE COMPSEQUENCE* TEMPERATURE ( °C) BUFFER 1 OF SITES a

G C A T

ACC I GT’ XYAC 37 MED 1.5 1. 5 1 .5 1HINC I I * - GTPu’ PyAC 37 MED 1.5 1. 5 1 .5 1HIND I I I A’ AGCTT 37 MED 1 1 2 2XBA I * p T ’ CTAGA 37 HIGH 1 1 2 2AVA I I * " G’ GZCC 37 MED 2 2 0 .5 0THA I * ’ CG’ CG 60 LOW 2 2 0 0HAE I I I — GG’ CC 37 MED 2 2 0 0TAQ I T ’ CGA 65 LOW 2 2 0 0MBO I 7 GATC 37 HIGH 1 1 1 1HINF I * ' c ' G’ ANTC 37 MED 1 1 1 1RSA I b,l,= ' GT7 AC 37 MED 1 1 1 1SAU 961 G7 GNCC 37 MED 2 2 0 0ALU I AG7CT 37 MED 1 1 1 1HPA I I * ’■ C7CGG 37 LOW 2 2 0 0DDE I C7TNAG 37 MED - - - -

SST I GAGCT7C 37 LOW - - - -

BGL I I A7 GATCT 37 LOW - - - -

ECOR I c=,‘ G’ AATTC 37 HIGH - - - -

TOTAL 20 .5 20 .5 13 137. 6 1 .2 38 .8RATIO 1 .57 : 1

BASE COMPOSITn ON LIGHT STRAND (7.)3 3 6 .7 63 .3

RATIO 1 : 1 .7

70

Page 95: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2.5s M o le c u la r w e ig h t s ta n d a rd s ; -fragment s iz e s and s i t e lo c a t io n s re c o g n is e d in th e p u b lis h e d * mouse mtDNA re fe re n c e sequence.

* B ibb e t a l . 1981.

1 Number o f r e s t r i c t i o n s i te s in the p u b lis h e d * mtDNA sequence.

2 M ito c h o n d r ia l DNA fragm en t s iz e s used as th e m o le c u la r w e ig h t s ta n a rd s ,l i s t e d in descending o rd e r from th e la r g e s t to s m a lle s t fragm ent f o r eachin d iv id u a l enzyme.

3 The mapped s i t e lo c a t io n s o f each fra g m e n t2 in th e p u b lis h e d * mousere fe re n c e mtDNA sequence, in d ic a t in g th e b e g in in g and end s i t e to account f o r each fragm en t s iz e .

A Summary o f lo c a t io n s o f r e s t r i c t io n s i t e s f o r 15 endonucleases in th e mouse mtDNA o f known base sequence in ascend ing o rd e r s t a r t in g a t th e a r b itu a r y o r ig in in th e d - lo o p * .

71

Page 96: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2.5s

ENZYME N° OF FRAGMENT FRAGMENT ENDS 3 SITESITES 1 SIZES 2 LOCATION

1 .ACC I 7 7358 14646 5709 57095048 9598 14646 57542304 7035 9339 6222813 6222 7035 7035468 5754 6222 9339259 9339 9598 959845 5709 5754 14646

2.HINC I I 5 8941 7718 364 3643265 1858 5123 18582266 5452 7718 51231494 364 1858 5452329 5123 5452 7718

3 . HIND I I I 3 13462 11969 9136 91361945 9136 11081 11081888 11081 11969 11969

4.XBA I 6 7576 953 8529 6125066 10907 15973 9531923 8984 10907 8529934 15973 612 8984455 3529 B9B4 10907341 612 953 15973

5.AVA I I 10 6510 6005 12515 782134 14239 78 4242046 3959 6005 20831724 12515 14239 23571659 424 2083 2871609 2371 3480 3480514 2357 2871 3959479 3480 3959 6005346 78 424 12515274 2083 2357 14239

6.THA I B 6434 4972 11406 317(FNUD I I ) 1907 14705 317 1772

1666 13039 14705 20071633 11406 13039 34101562 3410 4972 49721455 317 1772 114061403 2007 3410 13039235 1772 2007 14705

Page 97: (Hus domesticus. Rut t y ) - UCL Discovery

ENZYME

7. HAE I I I

8 .TAD I

N° OFSITES

35

19

FRAGMENT FRAGMENT ENDS 3 SITESIZES 2 LOCATION

2042 12666 14708 841951 4670 6621 10531362 9756 11118 1606969 84 1053 2004945 8811 9756 2215852 11526 12378 2856641 2215 2856 3335590 7592 8182 3402560 8182 B742 3871553 1053 1606 4007550 15189 15739 4129526 7015 7541 4238479 2856 3335 4670469 3402 3871 6621456 15923 84 6749448 14708 15156 7015438 4232 4670 7541398 1606 2004 7592334 11192 11526 8182266 6749 7015 8742216 12450 12666 8811211 2004 2215 9756136 3871 4007 11118128 5521 6749 11192122 15801 15923 11526122 4007 4129 12378103 4129 4232 1241774 11118 11192 1245069 8742 8811 1266667 3335 3402 1470862 15739 15801 1515651 7541 7592 1518939 1237B 12417 1573933 15156 15189 1580133 12417 12450 15923

2245 9835 12080 6341909 7668 9577 24071877 3343 5220 24291773 634 2407 33431472 12080 13552 52201403 5438 6841 52331079 15850 634 5438914 2429 3343 6841786 13562 14348 6885783 6885 7668 7668633 14620 15253 9577597 15253 15850 9835272 14348 14620 12080258 9577 9835 13552205 5233 5438 1356244 6841 6885 1434822 2407 2429 1462013 5220 5233 1525310 13552 13562 15850

Page 98: (Hus domesticus. Rut t y ) - UCL Discovery

ENZYME

9.MB0 I

1 0 .HINF I

N° OFSITES 1

35

30

FRAGMENT FRAGMENT ENDS 3 SITESIZES 2 LOCATION

2009 16175 1889 18891608 4276 5884 23501372 12028 13400 24381344 93B5 10729 2505845 15330 16175 3103772 8165 8937 3223705 11323 12028 3566598 2505 3103 3597581 14749 15330 4065533 13919 14452 4276529 7085 7614 5884488 7677 8165 5988468 3597 4065 6328461 1889 2350 6697439 10729 11168 6731369 6328 6697 6990343 3223 3566 7085340 5988 6328 7614301 8937 9238 7677297 14452 14749 8165259 6731 6990 8937

13592 13814 9238211 4065 4276 9385192 13400 13592 10729155 11168 11323 11168147 9238 9385 11323120 3103 3223 12028105 13814 13919 13400104 5884 5988 1359295 6990 7085 1381488 2350 2438 1391967 2438 2505 14452S3 7614 7677 1474934 6697 6731 1533031 3566 3597 16175

1993 1367 3360 2321734 9837 11571 7291329 3360 4689 13671026 13225 14251 3360946 4689 5635 4689920 7973 8893 5635379 15115 15994 6034633 729 1367 6514539 7434 7973 6882533 15994 232 7367497 232 729 7434489 12520 13009 7973485 6882 7367 8893480 6034 6514 9211

’447 14668 15115 9220417 14251 14668 9432399 5635 6034 9526368 6514 6882 9574367 11571 11938 9837318 B893 9211 11571

74

Page 99: (Hus domesticus. Rut t y ) - UCL Discovery

ENZYME

10.HINF

1 1 .RSA

1 2 .SAU

N° OFSITES 1

CONTINUED

37

961 25

FRAGMENT FRAGMENT ENDS 3 SITESIZES 2 LOCATION

263 9574 9837 119B8243 12277 12520 12082216 13009 13225 12277212 9220 9432 12520195 12082 12277 13009144 11938 12082 1322594 9432 9526 1425167 7367 7434 1466848 9526 9574 95749 9211 9220 9220

2925 5904 B829 59B1294 1270 2564 89512S0 4136 5416 1186994 13493 14487 1210751 10428 11179 1270720 15495 16215 2564678 16215 59B 2650658 11179 11837 2837623 14487 15110 3431594 2837 3431 3690577 9545 10122 3908495 12998 13493 4136473 5416 5889 5416455 9012 9467 5889372 11837 12209 5904308 15110 15418 8829306 10122 10428 8925297 598 895 9012291 895 1186 9467275 12209 12484 9545274 12724 12998 10122259 3431 3690 10428240 12484 12724 11179228 3908 4136 11837218 3690 3908 12209187 2650 2837 1248496 3B29 8925 12724B7 8925 9012 1299836 2564 2650 1349378 9467 9545 1448760 1210 1270 1511035 15460 15495 1541824 1186 1210 1543517 15443 15460 1544317 15418 15435 1546015 5889 5904 154958 15435 15443 16215

4572 6620 11192 782046 3959 6005 4241724 12515 14239 20831659 424 2083 22151258 11192 12450 2357615 6005 6620 2856

Page 100: (Hus domesticus. Rut t y ) - UCL Discovery

ENZYME

1 2 .SAU

1 3 .ALU

961

N° OFSITES 1

CONTINUED

67

FRAGMENT FRAGMENT ENDS 3 SITESIZES 2 LOCATION

583 15155 15738 2871573 15800 7B 3334499 2357 2856 3335469 14239 14708 3402463 2871 3335 3480447 14708 15155 3870390 3480 3870 3871346 78 424 3959142 2215 2357 6005132 2083 2215 662088 3871 3959 1119278 3402 3480 1245067 3335 3402 1251565 12450 12515 1423961 15739 15800 1470815 2856 2871 151551 15738 15739 157881 3870 3871 157391 3334 3335 15800

1069 13843 14912 9905 3863 4768 197709 11261 11970 474680 2463 3143 573654 5129 5733 871608 12992 13600 1033554 8490 9044 1197545 7708 8253 1321545 15759 9 1345530 1641 2171 1431451 9137 9588 1442450 14912 15362 1540450 5783 6233 1589448 9588 10036 1641381 6335 6716 2171365 10461 10326 2463352 6716 7068 3143348 3188 3536 3 IBS313 3536 3854 3536317 11970 12287 3854311 10083 10394 3863298 573 871 4768294 7331 7625 4900292 2171 2463 5075277 197 474 5129269 15490 15759 5783249 12743 12992 6233243 13600 13843 6291207 12392 12599 6335188 9 197 6716175 4900 50752 7068170 11082 11252 7115164 1033 1197 7219162 871 1033 7331144 12599 12743 7625132 4768 4900 7708

Page 101: (Hus domesticus. Rut t y ) - UCL Discovery

SITELOCAT

525352935409645454909044913795BB1003610083103941046110826108561097711082112521126111970122871239212599127431299213600138431491215362153881549015759

13318702519333234005725611262746388540015736

402342742874765118372508283139554989

N° OF FRAGMENT FRAGMENT ENDS 3SITES 1 SIZES 3

CONTINUED 124 1197 1321121 10856 10977116 8293 8409112 7219 7331105 12287 12392105 10977 11082104 7115 7219102 15388 1549099 474 57398 1442 154093 9044 913736 1345 143183 7625 770867 10394 1046158 6233 629154 5075 512952 1589 164149 1540 158947 10036 1008347 7068 711545 8409 845445 3143 318844 6291 633540 8253 829336 8454 849030 10826 1085626 15362 1538824 1321 134511 1431 14429 11252 122629 3854 3863

11 7336 B400 157362325 3400 57252012 6388 84001737 133 1870813 2519 3332692 15736 133649 1870 2519337 5725 6112162 6112 6274114 6274 638868 3332 3400

43 1671 337 25081124 2831 39551034 3955 4989926 5424 6350789 12164 12953780 15242 16022670 8230 8900668 11027 11695590 7120 7710520 7710 8230511 9548 10059

Page 102: (Hus domesticus. Rut t y ) - UCL Discovery

ENZYME

1 5 .DDE I

N° OFSITES 1

CONTINUED

FRAGMENT FRAGMENT ENDS 3 SITESIZES 3 LOCATION

496 8900 9396 5077473 6647 7120 5196472 13365 13837 5312468 14774 15242 5399451 13837 14288 5424412 12953 13365 6350384 10331 10715 6647326 511 837 7120323 2508 2831 7710312 10715 11027 8230297 6350 6647 8900272 10059 10331 9396270 14288 14558 9548241 11695 11936 10059208 16127 40 10331194 40 234 10715139 287 476 11027152 9396 9548 11695132 14642 14774 11936126 11936 12062 12062119 5077 5196 12131116 5196 5312 12164105 16022 16127 1295388 4989 5077 1336587 5312 5399 1383784 14558 14642 1428869 12062 12131 1455840 234 274 1464235 476 511 1477433 12131 12164 1524225 5399 5424 1602213 274 287 16127

Page 103: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .6 : ADDITIONAL MOLECULAR WEIGHT STANDARDS.

A Prepared by d ig e s t in g lambda DNA to co m p le t io n w ith Hind I I I . S tored at -20°C in a s tock s o lu t i o n c o n ta in in g a p p ro x im a te ly 500ug lambda rtind I I I in lOmM Tris -H C L (pH 7 .4 ) , 5mM NaCI, 0 . lmrl EDTA. When run n in g agarose g e ls l-2^ig ofA Hind I I I i s added per lane . C o n s ide ra b ly le s s i s added when us ing a c ry la m id e q e ls to be s i l v e r s ta in e d (G u i l le m e t te and Lew is, 1983) such as 0 .2 / ig . The lambda s tan da rds were heated to 65 ° C , to d is s o c ia te the cohes ive ends, im m ed ia te ly p r i o r to use.

Prepared by d ig e s t in g lambda DNA to com p le t io n w ith B g l ' I . The sames to ra g e c o n d i t io n s and a p p l i c a t io n s as -for A Hind I I I a re a p p l ic a b le .

c A p p ro x im a te ly 5pgot 1KB ladde r i s added to 2jj1of a s o lu t io n c o n ta in in g 17. w/v SDS, 0.17. w/v bromopnenol b lu e , 100mM EDTA, 50% v /v g l y c e r o l . The s o lu t i o n i s heated a t 65°C -for 5 m inu tes and th e e n t i r e sample loaded onto the agarose g e l . When us ing ac ry la m id e g e ls t o be s i l v e r s ta in e d o n ly O.S^ig 1KB la d de r i s a p p l ie d .

D The a b b re v ia te d form o f fragm ent s iz e ( in K i lo b a se s ) u s u a l ly used asla b e ls on gel photographs.

73

Page 104: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 2 .6 : ADDITIONAL MOLECULAR WEIGHT STANDARDS.

PHAGEPLASMID!

ENZYME:

NAME:

FRAGMENT N(

FRAGMENTSGENERATED:

OR LAMBDA LAMBDA YEASTCIRCLE

HIND I I I BGL I -

HIND I I I A BGL I B 1KB LADDER

S 29 22

23130 (2 3 .1 )° 16173 122169416 (9 .4 ) 9649 111986557 (6 .6 ) 3009 101804361 (4 .4 ) 2481 91622322 (2 .3 ) 2256 81442027 (2 .0 ) 1650 7126

564 (0 .56 ) 1441 6108125 (0 .125) 1446 5090

1249 40721203 30541138 2036790 1635773 1018669 516621 506562 394499 344489 298447 220410 200366 154267 142210 751861261261159151

9

8 0

Page 105: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE_2Jj_Djstobution _of major sampling localities in Britain and

L r^ la n d .

HXMWsun

ISLE OF MAY

BELFAST

ISLC OF MAN

GAIWAY

IRELAND

IINGHAM

INCHESTER SURREY

r < ?

>IM

81

Page 106: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 2.2 s Mouse identification marking schemes.

Ear-clipping, toe-dipping, -fur—clipping (Fig 2.2.1, 2, and 3 respectively),

used alone or in combination to individually mark each mouse caught.

Page 107: (Hus domesticus. Rut t y ) - UCL Discovery

1 EAR CLIP NUMBERING SCHEME.

LEFT EAR; TENS R IG H T EAR; DIGITS

BACK V IE W

2 TOF CLIPPING SCHEME.!°°.2ooT ^ V

BACKVIEW

300 LEFT FOOT; 1-5 HUNDRED400.500

10.00_ 8Q900 R IG H T FOOT; 6'IOHUNDRED

600 700 ^3 FUR CLIPPING SCHEME.

ARIELV IE W

1 RR—Right rump2 L R “* Left rump3 R M - R ' |h t m id 4L /V 1—Left mid 5 KF — Right fore

— Lett fore —Back

X — position of furclip

Page 108: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 2.3

Probability of NOT detecting - differences between individualsagainst a number of basepairs needed to be studied for different level of differentiation of Natural populations.N.B. Broken line is level of uncertainty at 0.05% probability,i.e. chance of saying 2 individuals are identical when they are not.For P = 0.60% number of basepairs to be studied is 500.P = 0.30% number basepairs is 900. (Tegelstrom 1986)

&z>

QL

003

•o>? Percentage nucleotide divergences

s0

3

&00

8i

0.5 •

0j60

1000500100

Number of booo-pairs

Page 109: (Hus domesticus. Rut t y ) - UCL Discovery

EIGyRI_2i 4i_pNA_QyANIIFICAIIQNi_STANDARD_CALIBRAII0N_CyRVE_2i _GRAPH_PL0Ti

The known m o le cu la r w e ig h ts ( / Bgl I ) was p lo t te d on lo g paper a g a in s t

d is ta n c e m ig ra te d from th e o r ig in to p roduce a s ta n d a rd c u rv e from which

th e unknown v a r ia n t DNA s iz e s can be c a l ib r a te d . For exam ple in la n e 5

mouse mtDNA from th e I s le o f May ( F i r t h o f F o r th , n o r th e a s t S c o tla n d ) was

c leaved w ith Dde I (P la te 2 .1 ) th e fra gm en ts produced were o f unknown s iz e .

The f i r s t fragm ent (0) m ig ra te d 3.2cm , t h i s va lu e can be measuured o f f th e

s ta n d a rd cu rve to p roduce a m o le cu la r w e ig h t o f a p p ro x im a te ly 1670 + 20 bp.

T h is can be checked fo r any d e v ia t io n s from th e p re d ic te d re fe re n c e

fragm en t p r o f i le s : th e fra gm en t co rresponds to th e 1671bp from th e

re fe re n c e p r o f i le s . These measurements were made f o r e v e ry fragm en t in

eve ry p r o f i l e f o r eve ry enzyme s tu d ie d .

85

Page 110: (Hus domesticus. Rut t y ) - UCL Discovery

IOO

OO

Orx

CO

o

CO

>o

(s.d9) S1H0I3M w iro a io w

8 6

DIST

ANCE

FR

OM

ORIG

IN

(CM

)

Page 111: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 2 .5 : 5ITE_MAPPING_0F_SINGLE_piGESIS_i_HIEH_RES0LlJII0N_SEDyENCE

COMPARISON.MEIHODi

R e s t r ic t io n -fragments in t h i s s tu d y se pa ra ted by g e l e le c tro p h o re s is were

mapped by th e sequence com parison method (Cann, 1982).

Type I i s a d iag ram m atic re p re s e n ta t io n o-f a mtDNA m o lecu le o f th e

re fe re n c e sequence map o f a la b o ra to ry mouse (B ibb et a i , 1981), ty p e I I

mtDNA re p re s e n ts an in d i iv id u a l f o r whom no sequence da ta e x is ts . Using a

p a r t i c u la r r e s t r i c t io n endonuclease th e mtDNA o f ty p e I in d iv id u a l can be

c le a ved a t th re e s i t e s ( la b e l le d A ,B ,C ,) p ro d u c in g th re e fra gm en ts o f known

s iz e s (For s im p l i f i c a t io n assume th e s iz e o f the mtDNA m o lecu le was

a p p ro x im a te ly 16KB), namely 8KB ( s i t e ends 0 /1 6 and 8 ) , 5Kb ( s i t e ends 3

and 8 ) , and 3KB ( s i t e p o s i t io n 0 and 3 ) .

The same enzyme c le a ve s th e unknown mtDNA ty p e I I in t o fo u r fra g m e n ts , th e

s iz e s o f w hich can be e s tim a te d from th e ge l e le c tro p h o re s is by d i r e c t

com parison to th e known m o le cu la r w e ig h ts o f typ e I ( t h is i s in d ic a te d in

th e low er p o r t io n o f th e d ia g ra m ). There i s a lo s s o f th e 8KB fragm en t

re p la c e d by a d o u b le t s ize d a p p ro x im a te ly 4KB. By d i r e c t l y m atch ing th e

fragm en t p r o f i le s in type I w ith ty p e I I we can in f e r th a t th e re has been a

m u ta tio n ca us ing a new re c o g n it io n s i t e (D ), r e s u l t in g in th e lo s s o f one

fragm en t and th e subesequent ga in o f two fra gm en ts whose s iz e s a re equal to

th e sum o f th e la rg e r lo s t fra g m e n t.

Page 112: (Hus domesticus. Rut t y ) - UCL Discovery

2ex.a.

ooU JOaUJ- J

2on

o

oo—j

U J

~kN

a

^ 1u j .-cZ O

U JK-to

CQ

£§§U J

IDo>U Jv/1

IO

u j

U JIDo>U Jto

Q _? ro >0 >0 I (N ff!m o<N

“ I I I I I I

If O r "

un on to >s O <n

t

2sA

pp vO "O.(N CS 'O f

m Q r«J r><

M i l I I

si «*o%L

<*)

Page 113: (Hus domesticus. Rut t y ) - UCL Discovery

PLAIE_2i li_DNA_QyANIIFICAIIDNi_STANDARD_CALIBRATI0N_CyRVESi_li _GEL

p h o io g r a p k

T h is f ig u r e i l l u s t r a t e s mouse mtDNA c leaved w ith r e s t r i c t i o n enzyme Dde I ,

sepa ra ted by e le c tro p h o re s is th rough a 57. p o ly a c ry la m id e ge l and s i l v e r

s ta in e d . The e xac t s iz e s o f some o f th e m o le cu la r w e ig h t m arker .ABgl I

fragm en ts a re in d ic a te d a long s id e la n e 5. The d is ta n c e m ig ra te d from th e

o r ig in (cm) f o r each m arker fragm ent was measured, and p lo t te d a g a in s t lo g

m o le cu la r w e igh t ( in bp) as in f ig u r e 2 .4 .

1ANES 1 -4 : F I , F2, Wl, E l, (Faray, W estray, and Eday, O rkney,

r e s p e c t iv e ly ) ; la n e 5: Ml ( I s le o f May, F i r t h o f F o r th , N o rth -e a s t

S c o t la n d ) .

+ in d ic a te s m ajor fragm ent d if fe re n c e s between sam ples.

83

Page 114: (Hus domesticus. Rut t y ) - UCL Discovery

DDE I

9 6 4 9

1650

. f

. 91

O

. o O

I

. ¥

- f

¥

Page 115: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

CHAPTER THREE : MOLECULAR EVOLUTION OF BRITISH HOUSE MOUSE (HUS

DOHEST1CUS) MITOCHONDRIAL DNA.

3 .1s INTRODUCTION:

M ito c h o n d r ia l DNA i s a h ig h ly in fo r m a t iv e m o le c u le , p ro v id in g new in s ig h ts

in t o d iv e rs e to p ic s , such as m a terna l p h y lo g e n y , p o p u la t io n s t r u c tu r e ,

b io ge o g ra p h y and h is t o r ic a l c o lo n is a t io n s , a t th e le v e l o f b o th p o p u la t io n s

o r s p e c ie s , h i t h e r t o u n o b ta in a b le from n u c le a r gene system s (A v is e , 19B6;

W ilson et a l - , 19B5). However, i f mtDNA i s t o be used as an a n a ly t ic a l to o l

i t must be th o ro u g h ly unde rs tood and c h a ra c te r is e d , so th a t any r e s u l t s may

be m e a n in g fu lly in te r p r e te d . In t h i s c h a p te r , th e mechanisms by w hich

m ito c h o n d r ia l DNA has evo lved in th e B r i t i s h House mouse (Hus dowesticus)

a re d is c u s s e d .

C u r re n t ly a v a i la b le te c h n iq u e s tD s tu d y mtDNA v a r ia t io n d i f f e r g r e a t ly , in

th e p ro p o r t io n o f th e genome th a t th e y can compare, and in th e amount and

n a tu re o f in fo rm a t io n th e y p ro v id e ( F e r r is & B erg, 1987; H a rr is o n , 1989).

The most d i r e c t , p o w e rfu l method in v o lv e s DNA sequence a n a ly s is o f p a r t o r

th e w hole o f th e mt genome. However, t h i s i s h ig h ly la b o r io u s , t im e

consum ing, and c o s t ly , u s u a lly in v o lv in g c lo n in g p ro c e d u re s , and th u s

im poses se ve re l im i t a t io n s f o r p o p u la t io n s tu d ie s . In c o n t r a s t ,

h y b r id is a t io n and r e s t r i c t i o n fragm en t le n g th po lym orph ism s (RFLPs) a re

t e c h n ic a l ly s im p le r , a llo w in g la rg e r numbers o f in d iv id u a ls t o be more

r a p id ly p rocessed , y e t th e y do n o t p ro v id e d a ta on th e n a tu re o f th e

m u ta t io n a l changes c h a r a c te r is in g th e p o p u la t io n s .

Page 116: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

A v a i l a b i l i t y o f a com p le te sequence o f mtDNA to r th e la b o ra to ry mouse (B ibb

et al.f 1981), ena b le s use o t th e a c c u ra te h ig h r e s o lu t io n "sequence

com parison " method o t r e s t r i c t i o n mapping (Cann, 1982; Cann, Brown, and

W ils o n , 19B2; Cann & W ils o n , 1983). T h is te c h n iq u e , p e rm its th e d e te c t io n

and ra p id mapping o t s i t e s trom s in g le d ig e s ts w ith a h ig h degree o t

p re c is io n ( to w i th in a tew b a s e -p a ir s ) , t o r a la rg e number o t sam ples,

w ith o u t re c o u rs e to th e t r a d i t i o n a l d oub le d ig e s t io n mapping m ethodology

(Danna et a i . , 1973; Nathans & S m ith , 1975). The l a t t e r te c h n iq u e has an

average mapping e r r o r o t + 200 b a s e -p a irs , and i t i s o n ly p r a c t ic a l when

u s in g r e s t r i c t i o n enzymes th a t p roduce r e la t i v e l y tew r e s t r i c t i o n

fra g m e n ts , p r im a r i ly th o se w ith s ix -b a s e p a ir r e c o g n it io n s i t e s . As

p o p u la t io n s examined in t h i s s tu d y a re c lo s e ly r e la te d , com parisons

n e c e s s ita te th e use o f f r e q u e n t ly c u t t in g te t r a n u c le o t id e r e s t r i c t i o n

endonucleases to in c re a s e th e le v e l o f r e s o lu t io n o f th e mtDNA com parisons.

The la rg e number o f fra g m e n ts th u s produced a re v i r t u a l l y im p o s s ib le to map

w ith th e c o n v e n tio n a l te c h n iq u e .

M a jo r o b je c t iv e s o f m o le c u la r e v o lu t io n a ry s tu d ie s u s u a l ly in v o lv e e i th e r

th e d e s c r ip t io n o f th e m o le c u la r b a s is o f v a r ia t io n , th e fu n c t io n and

o rg a n is a t io n o f th e g e n e tic system o r subsequent use o f t h i s v a r ia t io n as

m arkers o f g e n e t ic a l ly d i s t in c t lin e a g e s f o r p h y lo g e n e tic and e v o lu t io n a ry

a n a ly s e s . An e f f e c t iv e synerg ism o f te n o ccu rs between th e s e tw o ty p e s o f

in fo rm a t io n and in d ee d , th e employment o f sequence com parison mapping o f

house mouse mtDNA a ch ie ve s most o f th e s e a im s.

92

Page 117: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

F e r r is et el,, (19B3) a p p lie d th e same mapping te c h n iq u e as used here to

W estern European, M e d ite rra n e a n , and New W orld house mouse p o p u la t io n s ,

p ro v id in g a u n ique o p p o r tu n ity f o r com parison w ith B r i t i s h sam ples examined

in t h i s s tu d y . Comparison o f t h i s da ta p ro v id e s in fo rm a t io n co n ce rn in g th e

e x te n t o f g e n e tic d iv e rg e n c e w ith in and between p o p u la t io n s in d i f f e r e n t

p a r ts o f th e w o r ld , a p r e r e q u is i te f o r a g e n e ra l u n d e rs ta n d in g o f th e

g e n e tic b a s is o f e v o lu t io n a ry change in one o f th e most in te n s iv e ly s tu d ie d

o rgan ism s a t a l l s c i e n t i f i c le v e ls .

Here I d e s c r ib e th e in c id e n c e and ty p e s o f m u ta tio n s w h ich c h a ra c te r is e th e

fra gm en t d ig e s t io n p r o f i l e s from B r i t i s h house mouse mtDNA, to e lu c id a te

th e s u s c e p t ib i l i t y o f d i f f e r e n t re g io n s o f th e mouse mt genome to base

changes. I use t h i s in fo rm a tio n in la t e r c h a p te rs f o r in v e s t ig a t io n s

ra n g in g from m a t r ia r c h ia l p h y lo g e n e tic o r ig in s o f th e B r i t i s h House mouse,

superim posed ove r m acrogeograph ica l l o c a l i t i e s in B r i t a in and w o rld w id e

(c h a p te r 4 ) , t o a m ic ro g e o g ra p h ic a l le v e l o f is la n d s tu d ie s ( in c lu d in g

B r i t a in ) in v o lv in g demography, d ip e rs a l, and p o p u la t io n dynam ics (c h a p te r

6 ) . F in a l ly , I s h a l l d is c u s s p o s s ib le v io la t io n s o f th e u n d e r ly in g

assum ptions D f p h y lo g e n e t ic models and th e a p p l ic a t io n to " r e a l1' da ta and

h ig h l ig h t any mapping c o m p le x it ie s which a r is e u s in g th e sequence

com parison te c h n iq u e s .

3 .2 : MATERIALS AND METHODS.

Four hundred and t h i r t y m ice from 42 sa m p lin g l o c a l i t i e s w ith in 17 c o u n t ie s

o f G reat B r i t a in (C hapte r 2, ta b le 2 .2 - m a jo r sam p ling s i t e s ) were used in

Page 118: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

t h i s s tu d y . P u r i f ie d mtDNA was is o la te d from l i v e r , h e a r t , and k id n e ys

u s in g C s C l-e th id iu m b rom ide g ra d ie n t c e n t r i fu g a t io n (c h a p te r 2 f o r d e ta ils ?

Lansman et al.f 1983? C a rr & G r i f f i t h , 1987) o r u s in g th e m o d if ie d phenol

e x t r a c t io n p ro to c o l (Jones et al,9 1988). Each sample was d ig e s te d w ith 14

r e s t r i c t i o n endonucleases (BRL, NBL) re c o g n is in g s ix bases (H ind I I I , Xba

I , H inc I I , Acc I ) , f i v e bases (Ava I I ) and fo u r bases (Fnud I I , Hpa I I ,

Hae I I I , Taq I , Nbo I , H in f I , A lu I , Rsa I , Sau 96 I ) . T h is produced

fra g m e n ts o f mtDNA w h ich were sepa ra ted by e le c tr o p h o r e s is in e i t h e r 0 .7 -

0.87. agarose g e ls (e th id iu m brom ide s ta in e d , and v is u a l is e d under UV-

l i g h t -M a n ia t is et al,, 1982)? o r 57. p o ly a c ry la m id e g e ls ( s i l v e r s ta in e d -

T e g e ls tro m , 1986). F ig u re 3 .1 i l l u s t r a t e s th e m ajor p o in ts in th e

p re p a ra t io n , i s o la t io n , p u r i f i c a t io n , and v is u a l is a t io n o f th e mtDNA.

The s iz e o f fra gm en ts was e s tim a te d by com paring them w ith fra g m e n ts o f

known s iz e s fro m th e p u b lis h e d mouse mtDNA sequence ("known base sequence"

o r k .b . s - B ibb et a l 1981) run as a s ta n d a rd on each g e l and c u t w ith

th e a p p ro p r ia te enzyme ( ta b le 2 .5 c h a p te r 2 ) . A d d i t io n a l ly , c o m m e rc ia lly

a v a i la b le lambda DNA c u t w ith H ind I I I and th e 1 KB la d d e r (BRL) were used

as m o le c u la r w e ig h t m arke rs ( ta b le 2 .6 , c h a p te r 2 ) .

A c a p i ta l l e t t e r was ass igned to each fra gm en t d ig e s t io n " p r o f i l e "

id e n t i f ie d by a p a r t i c u la r r e s t r i c t io n enzyme, ’ A* b e in g re s e rv e d f o r th e

p a t te rn a lre a d y known in th e p u b lis h e d re fe re n c e sequence. D ig e s t io n

p a t te rn s were d e s ig n a te d c h ro n o lo g ic a l ly as th e y were d is c o v e re d , so

a lp h a b e t ic a l p ro x im ity does n o t in d ic a te g e n e tic s im i l a r i t y . Where

94

Page 119: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

p o s s ib le , th e d ig e s t io n p a t te rn p r o f i l e s were compared to th e p u b lis h e d

d a ta f o r Hus dowesticus ( F e r r is e t a i * , 1983), and th e same l e t t e r

d e s ig n a t io n s used. The "sequence com parison m ethod" was used to c o n s tru c t

c le a va g e maps f o r each fragm en t p r o f i l e o f e ve ry enzyme used. The r a t io n a le

and a d e ta i le d worked example o f t h i s te c h n iq u e i s shown in f ig u r e s 2 .5

(c h a p te r 2) and p la te 3 .1 and f ig u r e 3 .2 r e s p e c t iv e ly .

3 .2 .1 O rd in a t io n o f Data?

D ive rg e nce e s tim a te s , th e (p) o f Nei and L i (1 9 7 9 ), used in th e L1PGMA

c lu s te r a n a ly s is (see c h a p te rs 4 & 5) assume a random d is t r ib u t io n o f

r e s t r i c t i o n endonuclease s i t e s around th e m ito c h o n d r ia l genome. C h i-s q u a re

s t a t i s t i c s were used to compare th e observed d is p e rs io n p a t te rn o f s i t e s

a g a in s t a p o isso n o r random d is t r ib u t io n . Where th e n u l l h y p o th e s is was

r e je c te d , d e v ia t io n from randomness was de te rm ine d by exam in ing th e

c o e f f ic e n t o f d is p e rs io n (C .D ), ta ke n as th e r a t i o o f th e v a r ia n c e to th e

mean f o r an observed fre q u e n cy d is t r i b u t io n . A t r u e ly P o isson d is t r ib u t io n

has a c o e f f ic e n t o f d is p e rs io n o f 1, clum ped p a t te rn s >1, and u n ifo rm

p a t te rn s <1. The d is t r ib u t io n o f s i t e s was te s te d f i r s t a t th e le v e l o f th e

who le genome, and then in in d iv id u a l gene re g io n s . The d is t r ib u t io n o f

enzyme c le a vag e s i t e s th ro u g h o u t th e w ho le genome were a ls o examined to

ensu re each enzyme c u ts random ly.

Where a p r e d ic t io n o f a l in e a r r e la t io n s h ip o f two v a r ia b le s from th e

re g io n a l v a r i a b i l i t y d a ta (s e c t io n 3 .3 .6 ) i s re q u ire d Model I I re g re s s io n

a n a ly s is may seem a p p ro p r ia te . Both v a r ia te s a re measured w ith e r r o r ,

v io la t in g one o f th e assum ptions o f Model I re g re s s io n a n a ly s is . However,

Page 120: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

as th e in te n t io n o-f t h i s a n a ly s is i s -for pu rposes o-f p r e d ic t io n and n o t

in v e s t ig a t io n o-f t h e i r fu n c t io n a l r e la t io n s h ip , the n s im p le l in e a r

re g re s s io n te c h n iq u e s a re a p p lie d (S okal and R o h lf , 1981; p . 5 4 9 ).

5 .3 RESULTS

5 .3 .1 Fragment D ig e s t io n P r o f i le s :

U sing th e fo u r te e n r e s t r i c t i o n endonuc leases employed in t h i s s tu d y , a

t o t a l o f between 274-316 mtDNA fra g m e n ts were produced f o r each in d iv id u a l

in v e s t ig a te d . Using th e same enzymes, th e known base sequence ( k . b . s . ) o f

mouse mtDNA (p a t te rn A in each case) (B ibb e t a l . , 1981) was c le a ved in t o

29B fra g m e n ts . The s iz e s o f fra gm en ts w h ich c h a ra c te r is e th e s e mtDNA

d ig e s t io n p r o f i l e s a re l i s t e d in ta b le 3 .1 . D ig e s t io n p r o f i l e i d e n t i t i e s

were assessed on th e b a s is o f c o -m ig ra t io n o f fra g m e n ts r e la t i v e to th e

k .b . s and a d d it io n a l m o le cu la r w e ig h t m a rke rs . T y p ic a l g e ls o f e i th e r

s i l v e r s ta in e d 57. p o ly a c ry la m id e o r 0 .7 o r 0 .8 7. agarose s ta in e d w ith

e th id iu m b rom ide f o r th e same r e s t r i c t i o n enzymes used in t h i s s tu d y can be

seen in p la te s 3 .2 -3 .1 0 (m o s tly exam ples o f p r o f i l e s w ith many fra g m e n ts ,

produced w ith f r e q u e n t ly c u t t in g r e s t r i c t i o n enzymes which a re d i f f i c u l t t o

v is u a l is e fro m ju s t th e d ig e s t io n p r o f i l e d e s c r ip t io n g ive n in ta b le 3 .1 ,

a re shown). D e ta i ls o f po lym orph ism s shown in th e s e g e ls a re d iscu ssed

l a t e r .

A l l m u ta t io n a l changes observed in t h i s s tu d y were due s o le ly t o base

s u b s t i t u t io n s ; le n g th v a r ia n ts (m inor o r m a jo r) and h e te ro p la sm y , were n o t

d e te c te d in t h i s s u rv e y . Any a d d it io n a l f a i n t mtDNA bands in a r e s t r i c t i o n

96

Page 121: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

d ig e s t io n p r o f i l e was a t t r ib u te d to in c o m p le te d ig e s t io n , th e se

supernum erary bands a lw ays d isappeared when th e sam ple was re d ig e s te d .

S im i la r ly , th e t o t a l m o le c u la r w e ig h t o f a l l fra g m e n ts summed in each

r e s t r i c t i o n d ig e s t neve r exceeded 16,295 bps, th e expec ted s iz e o f th e

house mouse m ito c h o n d r ia l genome (B ibb et a J 1981).

The 128 mtDNA d ig e s t io n p r o f i le s f o r Hus dowesticus w h ich have been

re co rd e d u s in g th e ’ sequence com parison m ethod’ f o r 2 -14 r e s t r i c t io n

enzymes a re l i s t e d in ta b le 3 .1 , 58 (43.5%) o f w h ich a re found in B r i t a in .

Seventeen o f th o se observed in B r i t a in , have been p re v io u s ly d e s c r ib e d by

F e r r is et a i , , 1983) f o r p o p u la tio n s in o th e r re g io n s o f th e w o r ld , w h i ls t

th e rem a inde r (41) a re un ique to B r i t a in . F o r ty s ix p e rc e n t o f th e se un ique

d ig e s t io n p r o f i l e s were reco rded u s in g th e a d d it io n a l r e s t r i c t i o n

endonucleases (Rsa I , A lu I , fc Sau 96 I ) w h ich were n o t employed in

p re v io u s s tu d ie s ( F e r r is et a i . , 1983). T ab le 3 .2 sum m arises th e r e s u l t s

f o r th e number o f mtDNA d ig e s t io n p r o f i le s .

3 .3 .2 C leavaoe m apping:

When th e se c h a ra c te r is e d d ig e s t io n p r o f i l e s , were compared in d e ta i l w ith

th e k .b .s , i t was p o s s ib le to map an average o f 296 c le a va g e s i t e s in each

mtDNA c lo n e u s in g th e ’ sequence com parison m ethod’ (Cann, 1982; Cann &

W ilso n , 1983 f i g . 2 .5 ; p la te 3.1 and f ig u r e 3 .2 ) . Any one mouse c o n ta in s a

subse t o f th e t o t a l number o f 370 s i t e s exam ined.

The e xa c t lo c a t io n s o f th e 143 v a r ia b le s i t e s f o r each mouse mtDNA c lo n e

examined can be found in ta b le s 3 .3A-N under each r e s t r i c t i o n endonuclease

97

Page 122: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

used. There were th re e cases where i t was o b v io u s th e v a r ia b le s i t e s

re co rd e d were n o t s e p a ra te independent e ve n ts due to th e o v e r la p p in g o-f

s i t e changes. Thus th e 140 b a se p a ir p o s i t io n s a c tu a l ly accoun t -for th e 143

r e s t r i c t i o n s i t e s l i s t e d in ta b le 3 .3A -N ( f o r f u r t h e r m o le c u la r d e t a i ls o f

th e o v e r la p p in g s i t e changes, see th e ta b le legend 3 .3 A -N ). A d d i t io n a l ly in

ta b le s 3 .3A-N a n o te i s made by each v a r ia b le s i t e in th e p r o te in cod ing

re g io n s , as to w hether i t i s an amino a c id re p lacem en t o r a s i l e n t

s u b s t i t u t io n (R l-3 ; S I and 3 - see s e c t io n 3 .3 .3 ) . T a b le 3 .4 l i s t s th e 230

c o n s ta n t s i t e s found in e ve ry mouse f o r e ve ry r e s t r i c t i o n enzyme used. For

com parison purposes th e p ro te in co d ing genes a re d iv id e d in t o "C ytochrom e"

genes, in c lu d in g Cytochrom e O xidase genes I —I I I , Cytochrom e B, and ATPases

6 & 8 (p re v io u s ly r e fe r r e d to in th e l i t e r a t u r e as "known p r o te in s " ; Cann,

1982; F e r r is et al., 1983), and th e "NADH" genes in c lu d in g a l l th e NADH

dehydrogenase s u b u n its (1 -6 and 4 L ) , w h ich used t o be te rm ed u n id e n t i f ie d

re a d in g fram es (URFs 1 -6 &4L; Chomyn et al., 1985).

3 .3 .3 ? A n a ly s is o f s i t e g a in s ;

A l l s i t e s were mapped in r e la t io n to th e k .b . s , hence i f an in d iv id u a l had

an a d d it io n a l c le a vag e s i t e w ith any r e s t r i c t i o n endonuclease used when

compared w ith th e l a t t e r i t was d e s c r ib e d as a ’ s i t e g a in ’ (Cann, 1982?

Cann & W ilso n , 1983; F e r r is et a l 1983). S e v e n ty - f iv e o f th e 140 v a r ia b le

r e s t r i c t io n s i t e s a re a t t r ib u t a b le to g a in s u b s t i t u t io n s . These s i t e g a in s ,

in fe r r e d from th e re fe re n c e sequence, g iv e d e ta i le d in fo rm a t io n about th e

e xa c t n a tu re and lo c a t io n o f th e m u ta tio n s w hich cause i t . A m u ta tio n which

a f f e c t s ju s t one n u c le o t id e i s r e fe r re d to as a p o in t m u ta t io n . Thus a base

s u b s t i t u t io n , th e rep lacem en t o f one base p a i r by a n o th e r w ith o u t an

Page 123: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

a l t e r a t io n in th e t o t a l number o-f n u c le o t id e s i s a ls o a p o in t m u ta t io n . The

te rm ’ t r a n s i t i o n ’ d e s c r ib e s a s in g le base s u b s t i t u t io n th a t re p la c e s one

base w ith a n o th e r o t th e same ty p e ie . a p u r in e w ith a p u r in e (A-G, G -A ),

o r a p y r im id in e base w ith a no the r p y r im id in e (C -T ,T -C ); a ’ t r a n s v e r s io n ’ i s

th e re p lace m e n t o t a p u r in e base by a p y r im id in e base and v ic e v e rsa (A -

T ,A -C ,G -T ,G -C , e tc ) .

Thus, th e e x a c t lo c a t io n (base sequence number and gene in v o lv e d ) and ty p e

( t r a n s i t io n o r t ra n s v e rs io n ) o t each base change, was in te r r e d and a re

l i s t e d by r e s t r i c t io n endonuclease used to d e te c t th e base changes in ta b le

3 .5 . In th e t o t a l mt genome 53.37. o t th e g a in m u ta tio n s a re t r a n s i t i o n s ,

4 6 .7 7 t ra n s v e rs io n s ( r a t io 1.14s 1 ) . The app a ra n t r a t io s o t t r a n s i t i o n to

t ra n s v e rs io n s observed in t h i s s tu d y i s co nco rd a n t t o th o s e in s im i la r

s tu d ie s u s in g th e r e s t r i c t i o n mapping approach ( F e r r is e t a l 1983; Cann

e t al,,1984), b u t c o n s id e ra b ly lo w e r v a lu e s tha n th a t re p o r te d in

sequenc ing s tu d ie s (Brown & Simpson, 1982; Brown e t al,, 1982; G reenberg e t

al,,1983). The p ro p o r t io n o t t r a n s i t i o n s does n o t appear t o be dependent

on th e tre q u e n c y o t th e r e s t r i c t i o n s i t e ; b o th p o o r ly and w e ll re p re s e n te d

s i t e s in mouse mtDNA have low r a t io s o t t r a n s i t io n s t o t ra n s v e rs io n s (T a b le

3 .6 ) . F ig u re 3 .3 , a l in e a r map o t th e mt genome, i l l u s t r a t e s th e

d is t r ib u t io n s o t bo th to be u n ito rm ( t r a n s i t io n s - X 2 Cdt=43 = 18 * * ,

c e t t ic e n t o t D is p e rs io n CC.D3 = 0 .5 3 ; t ra n s v e rs io n s - X 2 Cdt=33 = 9 .3 8 * ,

C.D = 0 .4 ) .

99

Page 124: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

P ro te in -c o d in g genes g iv e even more d e ta i le d in fo rm a t io n in v o lv in g th e

e xa c t n a tu re o f th e base change, w hether th e y were " s i l e n t " (synonymous;

ca u s in g no a m in o -a c id rep lace m e n ts ) o r " re p la c e m e n t" (non-synonym ous)

s u b s t i t u t io n s , w h ich a m in o -ac id was in v o lv e d o r re p la c e d , and th e codon

p o s i t io n where th e y o ccu rre d ( ta b le 3 .5 ) . A p p ro x im a te ly equal numbers o f

th e 58 in f e r r a b le g a in base changes d e te c te d in th e p ro te in -c o d in g re g io n s

a re due to a m in o -a c id re p lacem en ts and s i l e n t s u b s t i t u t io n s ; 57% o f th e s e

m u ta tio n s o ccu r in th e t h i r d codon p o s i t io n . C o n s id e rin g o n ly th e p r o te in -

co d in g genes, th e app a re n t r a t i o o f t r a n s i t i o n s to t ra n s v e rs io n s in c re a s e s

s l i g h t l y to 1 .3 2 : 1, however, 757. o f th e s u b s t i t u t io n s in th e cytochrom e

p r o te in co d in g re g io n s compared t D 507. in th e NADH dehydrogenase s u b u n its

(1 -6 , 4L) p r o te in genes a re due t o t r a n s i t i o n s ( r a t io s 3 :1 ; 1:1

r e s p e c t iv e ly ) . The t r a n s i t io n s re co rd e d in a l l th e p ro te in -c o d in g genes

a re p re d o m in a n tly s i l e n t (7 5 .B7.). W h ils t th e m a jo r i t y o f t ra n s v e rs io n s

p roduce a m in o -a c id re p la ce m e n ts , o c c u r r in g more f r e q u e n t ly in NADH

dehydrogenase s u b u n its (84.27.) tha n in cytochom e p r o te in s (66 .67 .). In

re g io n s where th e re a re no open re a d in g fram es (rRNA’ s , tRNA’ s , th e D -lo o p ,

and th e o r ig in o f l i g h t s tra n d r e p l ic a t io n ) g e n e ra l ly , t ra n s v e rs io n s

(55.67.) a re more p ro m in en t than t r a n s i t i o n s (44 .47 .), in th e r a t i o 1: 0 .8 .

However, 757. were t r a n s i t io n s in th e tRNA genes as opposed t o o n ly 14.3% in

th e rRNA genes, whereas th e D -loop re g io n su p p o rte d equa l numbers o f b o th .

T ab le 3 .7 sum m arises th e da ta on g a in m u ta tio n s in each m a jo r fu n c t io n a l

re g io n .

100

Page 125: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

3 .3 .4 ? S i te lo s s e s ;

F o llo w in g th e same r a t io n a le as above a ' s i t e lo s s ' was re c o rd e d when a

m u ta tio n caused a re d u c t io n in number Df expected s i t e s r e la t i v e t o th e

k .b . s . However, i t was n o t p o s s ib le to in f e r th e e x a c t lo c a t io n and n a tu re

o f m u ta tio n s ca u s in g ' s i t e lo s s e s '. The base s u b s t i t u t io n re s p o n s ib le f o r

chang ing th e base sequence in such a way th a t i t i s no lo n g e r re c o g n is e d by

th e s p e c i f ic r e s t r i c t i o n endonuclease and hence n o t c le a ve d was unknown.

C onsequen tly o n ly th e lo c a t io n o f th e w hole r e c o g n it io n sequence can be

re co rd ed ie . 4, 5 o r 6 bases, depending on w hether a f o u r , f i v e o r s ix

b a s e -c u t te r was used, as any one o f th e se may have been th e s i t e th a t

m u ta ted .

Of th e re m a in in g v a r ia b le s i t e s , 65 a re s i t e lo s s e s w ith re s p e c t t o th e

k .b . s . The m a jo r i t y o f th e se (77.371) o ccu r in th e p ro te in - c o d in g re g io n s ,

47% o f w h ich map to th e NADH dehydrogenase s u b u n its . T ab le 3 .8 sum m arises

th e s i t e lo s s e s d e te c te d by each r e s t r i c t i o n enzyme employed in t h i s s tu d y .

3 .3 .5 : Summary o f s i t e occurences:

3 . 3 . 5 . is Genomic d is t r ib u t io n s o f c le a vao e s i t e s .

Each mouse was mapped, on average, f o r a p p ro x im a te ly 296 s i t e s (1360 b p ) ,

re p re s e n t in g 7.8% o f th e mt genome, th u s th e t o t a l mtDNA in 430 B r i t i s h

m ice su rveyed u s in g 14 enzymes was 137.3 k ilo b a s e s . The t o t a l amount o f

mtDNA a c tu a l ly compared in sc re e n in g a l l 638 (430 fro m B r i t a in - t h i s s tu d y ;

208 from W. Europe, M e d ite rra n e a n , and th e Am erica - F e r r is e t a l 1983)

M. dowesticus mtDNA u s in g th e sequence com parison mapping te c h n iq u e

em p loy ing between 2 -14 r e s t r i c t i o n endonuc leases , was about 172 k ilo b a s e s .

101

Page 126: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

W ith th e e x c e p tio n o f 5 t r a n s fe r RNA genes ( le u c in e , is o le u c in e , g ly c in e ,

t y r o s in e , and s e r in e ) , th e ATPase s u b u n it 8 (ATPase 8) and th e noncod ing

l i g h t s tra n d o r ig in o-f r e p l ic a t io n , a l l mtDNA genes possess c le a vag e s i t e s ,

f o r th e s e t o-f r e s t r i c t i o n enzymes I have used. F ig u re 3 .4A sum m arises th e

a p p ro x im a te map lo c a t io n s o-f 220 c le a va g e s i t e s (97 v a r ia b le ; 123 c o n s ta n t

s i t e s ) , in 57 com pos ite mtDNA geno types (see c h a p te r 4 -for f u r t h e r d e ta i ls )

fro m 638 in d iv id u a ls , d e te c te d w ith 2-11 enzymes. The 26 p re v io u s ly

u n re p o rte d v a r ia b le s i t e s found in B r i t i s h p o p u la t io n s , a re in d ic a te d w ith

(+) o r ( - ) t o i l l u s t r a t e th e n a tu re o f th e s i t e d i f fe r e n c e , (14 lo s s e s and

12 g a in m u ta tio n s ) r e la t i v e to th e k .b . s . F ig u re 3 .4B (o v e r la y ) show th e

lo c a t io n s o f 150 s i t e s (43 v a r ia b le C22 lo s s e s and 21 g a in s ! , 107 c o n s ta n t)

d e te c te d in B r i t i s h m ice u s in g th e th re e a d d it io n a l r e s t r i c t i o n

endonucleases (A lu I , Rsa I , & Sau 9 6 1 ), n o t p re v io u s ly used b e fo re in

sequence com parison mapping s tu d ie s o f ro d e n ts . D e s p ite th e la rg e number o f

s i t e s d e te c te d w ith th e s e e x tra enzymes o n ly 4 more co m p os ite mtDNA

geno types were id e n t i f i e d . Toge ther f ig u r e s 3 .4 a and 3 .4 b summarise th e

com p le te sc reen o f 638 tf. domesticus mtDNA’ s , 61 g en o typ e s , fro m many

g e o g ra p h ic lo c a t io n s around th e w o rld (d e te c te d u s in g 2 -1 4 enzym es),

re v e a lin g th e d is t r ib u t io n o f a l l 370 mapped r e s t r i c t i o n s i t e s (140 were

v a r ia b le ? 230 were c o n s ta n t ) .

These f ig u r e s ( f i g . 3 .4A and 3 .4 B - o v e r la y ) suggest t h a t th e s i t e s a re

w id e ly s c a tte re d th ro u g h o u t th e mt genome, indeed , th e t o t a l number o f

s i t e s (c o n s ta n t and v a r ia b le ) a re n o t s ig n i f i c a n t l y d i f f e r e n t fro m th e

p o isso n d is t r ib u t io n (X 2 C5df3 = 6 .4 5 N’ B) . However, when th e v a r ia b le

102

Page 127: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

s i t e s a lo n e (p h y lo g e n e t ic a l 1 y in fo r m a t iv e s i t e s ) a re ta ke n in t o

c o n s id e ra t io n , th e re i s a non-random d is t r ib u t io n (X 2 C2df3 = 8 .8 5 * * ) ,

th e c o e f f ic e n t o f d is p e rs io n in d ic a t in g th a t th e s i t e s a re clumped (C.D =

1 .2 6 ) . Thus, t h i s d is t r ib u t io n o n ly p a r t i a l l y f u l l f i l l s Nei and L i ’ s (1979)

assum ptions f o r c a lc u la t in g th e d iv e rg e n c e e s tim a te s , used in th e UPGMA

c lu s te r a n a ly s is in c h a p te rs 4 & 5.

In an a tte m p t to re s o lv e which r e s t r i c t i o n enzymes were c o n t r ib u t in g th e

g re a te s t t o th e o v e r a l l c lum p ing o f v a r ia b le s i t e s , th e d is t r i b u t io n o f

th e se c le a va g e s i t e s f o r each r e s t r i c t i o n enzyme used was examined f o r

d e p a r tu re fro m random d is t r ib u t io n s . F ig u re 3 .5 i l l u s t r a t e s th e

d is t r ib u t io n o f a l l c leavage s i t e s ( v e r t ic a l l in e s above and below th e

h o r iz o n ta l b a r , which re p re s e n ts th e l in e a r iz e d mt genome, a re th e v a r ia b le

and c o n s ta n t s i t e s re s p e c t iv e ly ) a c ro ss th e whole genome by each

r e s t r i c t i o n enzyme. W ith th e e x c e p tio n o f 2 enzymes, Rsa I and Sau 961,

v a r ia b le s i t e s were d is t r ib u te d random ly w ith re s p e c t to r e s t r i c t i o n

enzymes used. Both Rsa I and Sau 961 g iv e non-random d is t r ib u t io n s , th e

c o e f f ic e n t o f d is p e rs io n e s tim a te s in d ic a t in g t h e i r s i t e s were clumped (Rsa

I - X 2 C ld f 3 = 62 * * * , C.D = 1.53? Sau 961 - X 2 C Id f□ = 9 .7 8 * * , C.D =

1 .5 ) . When th e se 2 enzymes were exc lu de d fro m th e a n a ly s is b o th th e t o t a l

and v a r ia b le s i t e s showed random d is t r ib u t io n s , ( t o t a l , X 2 C5df3 = 3 .2 8

N’ s J v a r ia b le , X 2 C3df3 = 6 .52 N* s ) .

3 .3 .5 .2 i D is t r ib u t io n o f s i t e s w ith in and between gene re g io n s .

A c o m p ila t io n o f t o t a l s i t e s (3 7 0 ), in c lu d in g v a r ia b le (140) and c o n s ta n t

(230) s i t e s mapped f o r each gene re g io n ( s iz e in d ic a te d in b a s e p a irs ) ,

103

Page 128: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

d e te c te d by a l l 14 r e s t r i c t i o n enzymes, i s g iv e n in t a b le 3 .9 . E s tim a te s o f

s i t e s p e r b a s e p a ir ( t o t a l number o f c le a va g e s i t e s observed in each gene

re g io n d iv id e d by gene s iz e in b a s e p a irs ; Cann, 1982) in d ic a te s most

re g io n s were exam ined w ith an equal i n t e n s i t y (mean = 0 .0 0 2 ) , a lth o u g h

v a lu e s range fro m 0 .0 0 (ATPase 8) t o 0 .0 3 7 (ND 1 ) . G iven th e re were 370

s i t e s observed in th e genome w ith th e s e t o f enzymes used, th e expected

number o f s i t e s f o r each gene re g io n (w e ig h te d by s iz e o f gene) i s a ls o

l i s t e d in ta b le 3 .9 . O n ly th re e gene re g io n s show s ig n i f i c a n t d e v ia t io n s

from expec ted numbers o f c leavage s i t e s w i t h in them , c o n s id e r in g a random

mtDNA base sequence c o m p o s it io n . Two re g io n s (ATPase 8, and ND 6 ; X 2

C ld f3 = 4 .5 * and 4 .3 * r e s p e c t iv e ly ) , have le s s s i t e s tha n e xpe c ted ,

w hereas, o n ly one (ND 1 ; X 2 C ld f3 = 8 .9 * * ) has more. T h is i s p ro b a b ly

due to th e v a r ia t io n in base c o m p o s itio n o f s p e c i f i c gene re g io n s <7. G-C

c o n te n t ranges from 2 7 .2 - 41) and th e G-C r ic h b ia s o f th e re c o g n it io n

s i t e s o f th e s e t o f 14 endonucleases used ( ta b le 2 .4 shows th a t f o r a l l 14

enzyme re c o g n it io n sequences th e p e rce n ta g e G-C i s 6 1 .2 , compared w ith

36.77. f o r th e t o t a l mt genome. However th e re was no r e la t io n s h ip between

7G-C c o n te n t and s i t e pe r bp (R eg ress ion c o e f f ic e n t ( r ) = 0 .2 8 , fv a lu e =

1 .23 N' B) .

F u rth e rm o re , th e re i s a s ig n i f ic a n t l in e a r re g re s s io n between t o t a l ( r=

0 .6 5 , f - v a lu e = 5 8 .6 * * * ) , v a r ia b le ( r= 0 .8 7 , f - v a lu e = 5 .71 * ) , and

c o n s ta n t <r= 0 .5 4 , f - v a lu e = 4 2 .5 * * * ) c le a va g e s i t e s and th e s iz e o f gene

re g io n s (b a s e p a irs pe r re g io n ) as i l l u s t r a t e d in f ig u r e s 3 .6 A, B and C and

ta b le 3 .9 . A d d i t io n a l ly , when th e v a r ia b le s i t e s a re s u b d iv id e d in t o lo s s

104

Page 129: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

and g a in m u ta tio n s ;, b o th show s ig n i f i c a n t l in e a r re g re s s io n s w ith number o f

b a s e p a irs ( s iz e ) w i th in each m a jo r c la s s o f fu n c t io n a l re g io n (g a in

m u ta tio n s - r= 0 .9 6 , f - v a lu e = 3 6 .7 tt \ lo s s m u ta tio n s - r= 0 .9 5 , f - v a lu e

= 2 8 .4 * * ) , shown in f ig u r e 3 .6 E, and F.

F ig u re 3 .7 i l l u s t r a t e s th e a pp rox im a te p o s i t io n s o f th e v a r ia b le s i t e s

w ith in each gene re g io n d e te c te d by a l l enzymes used in th e s tu d y . The

d is t r ib u t io n o f th e s e s i t e s per gene re g io n was te s te d f o r d e v ia t io n s from

randomness u s in g e s tim a te s o f c o e f f ic e n t o f d is p e rs io n . S ix gene re g io n s

from th e 14 te s te d show s ig n i f i c a n t l y clumped d is t r ib u t io n s f o r s e v e ra l

m ajor c la s s e s o f fu n c t io n a l re g io n (Cytochrom e p r o te in s , NADH dehydrogenase

s u b u n its , 16s r ib o s o m a l RNA gene and th e n o n -co d in g D - lo o p ) . Degree o f

c lum p ing o f v a r ia b le s i t e s w ith in c e r ta in mt gene re g io n s i s n o t a fu n c t io n

o f t h e i r s iz e ( in s i t e s /b a s e p a ir » r= 0 .3 2 , f - v a lu e = 1 .4 N“ s ) .

3 .3 .6 ? Gene v a r i a b i l i t y

E xam ina tion o f th e r a te s o f base change pe r gene re g io n a re p o s s ib le once

th e d is t r ib u t io n s o f th e c leavage s i t e s a re c h a ra c te r is e d . A c o n ve n ie n t

e s tim a te o f gene v a r i a b i l i t y (Cann, Brown, and W ils o n , 1983; F e r r is e t al.r

1983) i s produced by d iv id in g th e number o f v a r ia b le s i t e s by th e t o t a l

number o f s i t e s in a gene re g io n , expressed as a p e rc e n ta g e . These

e s tim a te s a re l i s t e d in ta b le 3 .1 0 , f o r each mt gene, f o r 11 enzymes

( B r i t i s h d a ta - t h i s s tu d y , poo led w ith th e p u b lis h e d d a ta fro m tt*

douesticus - F e r r is et al 1983), 3 a d d it io n a l enzymes n o t p re v io u s ly

used b e fo re ( s i t e d a ta fro m B r i t i s h sam ples o n ly ) , and th e t o t a l 2-14

enzymes employed in c lu d in g a l l s i t e in fo rm a t io n f o r a l l m ice . T ab le 3.11

105

Page 130: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

summarises th e v a r ia t io n -for each m a jo r c la s s o f fu n c t io n a l re g io n and

ra n k s them from th e le a s t to most v a r ia b le re g io n s . Thus, th e most

conserved gene re g io n s a re th e t r a n s fe r RNA's, n ex t th e r ib o so m a l RNA’ s ,

th e n th e cytochrom e p ro te in -c o d in g genes, th e most v a r ia b le re g io n s be ing

th e NADH dehydrogenase s u b u n its (ND 1 -6 , 4L) and th e n o n -c o d in g a re a s , th e

D -lo o p . E s tim a te s o f gene v a r i a b i l i t y p e r gene re g io n in B r i t i s h m ice a re

compared w ith p re v io u s ly re co rd e d in M* douesticus p o p u la t io n s and humans,

i l l u s t r a t e d in ta b le 3 .1 2 .

3 .3 .7 ? D e s c r ip t io n s o f s i t e d i f fe re n c e s .

The fo l lo w in g d e s c r ip t io n s a re o f a l l th e s i t e d if fe re n c e s summarized in

ta b le 3 .1 (fra g m e n t d ig e s t io n p r o f i le s ) and ta b le 3 .3 A -N / t a b le 3 .4

( r e s p e c t iv e ly th e v a r ia b le and c o n s ta n t s i t e s o f e ve ry d ig e s t io n p r o f i l e ) .

These d e s c r ip t io n s a re produced by s tu d y in g pho tog raphs s im i la r to p la te s

3 .2 -3 .1 0 , f o r th e s ix , f i v e , and fo u r base c u t te r s used in t h i s s tu d y . The

sam p ling l o c a l i t i e s o f th e m ice show ing th e v a r io u s d i f f e r e n t r e s t r i c t i o n

d ig e s t io n p r o f i l e s a re m entioned in th e p la te te x t s and a re d iscu sse d

f u r t h e r in c h a p te r 4.

3 .3 .7 .1 ? H e x a n u c le o tid e R e s t r ic t io n Enzymes?

3 .3 .7 .1 .1 ? H ind I I I (AAGCTT).

T h is r e s t r i c t i o n endonuclease i s th e f i r s t o f fo u r h e x a n u c le o tid e enzymes

used to screen mtDNA fro m 430 B r i t i s h m ice . The r e c o g n it io n sequence was

o n ly found th re e t im e s in th e known base sequence (B ibb e t a l . , 1981)

(p a t te rn A) a t s i t e s 9136, 11081, and 11969 w ith th e th re e c o rre s p o n d in g

fra g m e n ts o f s iz e 13462, 1945, and 888 base p a ir s . O nly two d ig e s t io n

p r o f i l e s were seen in B r i t i s h sam ples ( ta b le 3 .1 ) , bo th o f w h ich , p a t te rn A

Page 131: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

and B, have been p re v io u s ly d e s c r ib e d -for c o n t in e n ta l sam ples ( F e r r is e t

al~, 1983). P a tte rn B i s produced by a s i t e lo s s a t 9136 ( s i t e 1, ta b le

3 .3A ) w ith th e d isappearence o-f -fragm ents 13462 and 19456 w h ich jo in to

p roduce a la r g e r -fragment 15407 bp. Hence a t o t a l o-f 3 s i t e s were a ss ig n e d ,

2 c o n s ta n t , and 1 v a r ia b le , u s in g H ind I I I ( ta b le 3 .3A - v a r ia b le s i t e s ;

ta b le 3 .4 , p o in t 1 - c o n s ta n t s i t e s ) . P la te 3 .2 i l l u s t r a t e s th e s e two

d ig e s t io n p r o f i le s . T h is enzyme was im p o r ta n t f o r s ta n d a rd iz in g th e

v a r ia b le p a t te rn s d e s c r ib e d by F e r r is e t a l . (1983) w ith th o se I o b ta in e d

from B r i t i s h m ice. L a b o ra to ry s to c k s C 5 7 b l/6 J and NZB, p u b lis h e d as

p a t te rn s A and B, r e s p e c t iv e ly , p roved t o have id e n t ic a l p a t te rn s to th o se

found in th e B r i t i s h sam ples. C onsequen tly I adopted F e r r is e t a l . ’ s

n o m e n c la tu re .

3 .3 .7 .1 .2 : Xba I (TCTAGA).

U s ing t h i s r e s t r i c t i o n enzyme a l l B r i t i s h in d iv id u a ls screened p roved

t o t a l l y in v a r ia n t d is p la y in g o n ly d ig e s t io n p r o f i l e A, i l l u s t r a t i n g an

ex trem e case o f s i t e c o n s e rv a tio n w ith in Mus domesticus. T h is i s

co n co rd a n t w ith th e f in d in g s o f F e r r is et al*, 1983); th e m a jo r i t y o f Mus

domesticus mtDNA's observed in Europe and th e Am ericas have th e same

p a t te r n , w ith th e e x c e p tio n o f tw o in d iv id u a ls from S k iv e and V ib o rg ,

Denmark, w h ich have p a t te rn B. However, th e s e were d e f in e d as H* musculus

on th e b a s is o f e le c t r o p h o r e t ic and m o rphom etric e v id e n c e , b u t had M*

domesticus mtDNA th ro u g h in t r o g r e s s io n (G y lle n s te n S< W ils o n , 1987).

In t o t a l , s ix s i t e s were scored f o r t h i s enzyme, 5 c o n s ta n t and 1 v a r ia b le

( ta b le 3 .3B - v a r ia b le s i t e s ; ta b le 3 .4 , p o in t 2 - c o n s ta n t s i t e s ) . P la te

3 .3 i l l u s t r a t e s t y p ic a l Xba I d ig e s ts o f p a t te rn A from B r i t i s h m ice ,

107

Page 132: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

s e p a ra te d on s i l v e r s ta in e d 57. p o ly a c ry la m id e ;, and an e th id iu m brom ide

s ta in e d 0 .7 5 7 agarose g e l.

3 .3 .7 .1 .3 : H inc I I (GTCPuPvJAC).

The known re fe re n c e sequence i s c le a ved a t 5 s i t e s ( ta b le 2 .6 , c h a p te r 2 ) ,

th e d ig e s t io n p r o f i l e (A) i s l i s t e d in ta b le 3 .1 , a l l B r i t i s h in d iv id u a ls I

have exam ined show t h i s p a t te rn e x c lu s iv e ly . However, F e r r is and c o lle a g u e s

d e s c r ib e d 3 v a r ia n t d ig e s t io n p a t te rn s nam ely B, C, and G in M* domesticus

from Europe and th e A m ericas. Each o f th e s e a d d it io n a l v a r ia n ts d i f f e r e d

from th e k .b . s by a s in g le s i t e g a in in e v e ry case ( d e ta i ls shown in ta b le s

3.3C and 3 .4 ) . In t o t a l ft* domesticus mtDNA c le a ve d by H inc I I produced 8

s i t e s , 5 c o n s ta n t and 3 v a r ia b le .

3 .3 .7 .1 .4 : Acc I (GTCA/C3CG/T1AC).

Acc I d is c r im in a te s B r i t i s h p o p u la t io n s in t o 2 ty p e s (d ig e s t io n p r o f i l e s A

and L ) . The fo rm e r i s th e same as th e k .b . s and th e l a t t e r a u n iqu e new

p a t te rn n o t p re v io u s ly d e s c r ib e d . D ig e s t io n p a t te rn L has 8 fra g m e n ts

c h a r a c te r is in g i t (as opposed to o n ly 7 in p a t te rn A ), w h ich i s produced by

a s in g le s i t e g a in a t 4515 ( s i t e 2 , ta b le 3 .3 D ), ca us ing th e lo s s o f

fra gm en t 7358 bp, re p la c e d by fra g m e n ts 6164 and 1194 bp, th e sum o f th e

la r g e r fra gm en t lo s s ( ta b le 3.3D; ta b le 3 .4 ) . F e r r is et al*, (1983)

re c o g n ise d 6 v a r ia n t p r o f i le s (B, C, D, E, J , and K ), th e fra g m e n ts in them

a re l i s t e d in ta b le 3 .1 , and d e t a i ls o f v a r ia b le s i t e s can be found in

ta b le 3 .3D .

The t o t a l number o f r e s t r i c t i o n s i t e s asssayed f o r Acc I in ft* domesticus

i s 12 o f w h ich 6 a re c o n s ta n t and 6 a re v a r ia b le ( ta b le 3 .4 l i s t s th e t o t a l

Page 133: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

as 11 .5 and th e number o-f v a r ia b le s i t e s as 5 .5 . as a s i t e g a in a t 15924

[ s i t e 6 , ta b le 3.3D3 seen in d ig e s t io n p r o f i l e s B-D, causes a co nco m ita n t

lo s s o f a Hae I I I s i t e a t 15923. For p h y lo g e n e tic p u rpo se s t h i s s i t e was

o n ly coun ted o n ce ).

3 .3 .7 .2 s F iv e b a s e -c u t te r r e s t r i c t io n endonuc leases:

3 .3 .7 .2 .1 : Ava I I (GGCA/TICC)

T h is i s th e o n ly f i v e b a s e -c u t te r used in t h i s s tu d y . A t o t a l o f 13.5 s i t e s

were assayed, 6 c o n s ta n t ( ta b le 3 .4 p o in t 5) and 7 .5 v a r ia b le ( ta b le

3 3 .3E ), 10 s i t e s com prised th e base sequence p a t te rn A ( l i s t e d ta b le 2 .6 ,

c h a p te r 2 ) . B r i t i s h p o p u la t io n s e x h ib ite d fo u r v a r ia n t d ig e s t io n p r o f i le s

J , K, L , and M, w hich have n o t been p re v io u s ly re c o rd e d , th e fragm en t s iz e s

o f each can be found in ta b le 3 .1 . P a tte rn A was n o t observed in B r i t i s h

sam ples and th e v a r ia n t d ig e s t io n p r o f i le s d i f f e r e d fro m t h i s by th e

fo l lo w in g s i t e changes. P a tte rn L has one s i t e g a in a t 12213 ( s i t e 6 , ta b le

3 .3 E ), w ith th e lo s s o f fragm en t 6510 bp and th e g a in o f two new fra gm en ts

s iz e d 6208 and 302 bp. P a t te r n 's J , M and K, a l l have t h i s l a t t e r s i t e g a in

in common as in p a t te rn L , a d d it io n a l s i t e changes fro m t h i s f o r each

p a t te rn i s d e s c r ib e d be low . P a tte rn J i s e x p la in e d by a n o th e r s i t e g a in a t

6123 ( s i t e 3 , ta b le 3 .3 E ), w h ich in co m b in a tio n w ith s i t e g a in 12213 causes

th e lo s s o f th e fra g m e n t 6510 re p la c e d by th re e fra g m e n ts 6090, 302, and

118 bp. P a tte rn M has a lo s s a t 2083 ( s i t e 1, ta b le 3 .3 E ) , in a d d it io n t o 2

s i t e g a in s a lre a d y d e s c r ib e d f o r p a t te rn J , th u s fra g m e n ts 6510, 1659 and

274 bp a re re p la c e d by 6090, 302, 118 and 1933 bp. F in a l l y p a t te rn K has a

new s i t e lo s s a t 2871 ( s i t e 2 , ta b le 3 .3 E ) , ca u s in g fra g m e n ts 609 and 514bp

to be lo s t , w ith th e g a in o f th e la rg e r fra gm en t 1123 bp in i t ' s p la c e .

Page 134: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

S e ve ra l o th e r d ig e s t io n p r o f i le s n o t observed in B r i t a in have been

re p o r te d by F e r r is e t aim, (1 9 83 ), p a t te rn s B, C, D, and I , w h ich a re

summarised in ta b le s 3 .1 and 3 .3E .

3 .3 .7 .3 : T e tra n u c le o t id e r e s t r i c t i o n endonucleases:

3 .3 .7 .3 .1 ; Fnud I I (CGCB).

T h is te t r a n u c le o t id e r e s t r i c t i o n endonuclease gave th re e d ig e s t io n p a t te rn s

in B r i t i s h p o p u la t io n s . The base sequence was c le a ved a t 8 s i t e s ( ta b le

2 .6 , c h a p te r 2) p ro d u c in g 8 fra g m e n ts in th e d ig e s t io n p r o f i l e (p a tte rn A -

ta b le 3 .1 ) . The two v a r ia n t fo rm s o f d ig e s t io n p r o f i le s J and K, a re each

c h a ra c te r is e d by 7 fra g m e n ts . P a tte rn J r e s u l t s from th e lo s s o f 1 s i t e a t

14705-8 ( s i t e 5; ta b le 3 .3 F ) ca u s in g th e lo s s o f fra g m e n ts 1907 and 1666

bp, re p la c e d by th e sum o f th e se p ro d u c ts , 3573 bp. S im i la r ly , p a t te rn K

d i f f e r s from th e base sequence by 1 s i t e lo s s a t 317 ( s i t e 1; ta b le 3 .3F )

r e s u l t in g in th e g a in o f th e la r g e r fragm en t 3362 bp and th e subsequent

lo s s o f 2 s m a lle r frg a m e n ts 1907 and 1455 bp.

Three o th e r d ig e s t io n p r o f i le s have been d e s c r ib e d e lse w he re w h ich have n o t

been re co rd e d f o r B r i t i s h p o p u la t io n s , namely B, H, and I , (w h ich do n o t

resem b le any o th e r p r o f i l e s se e n ), summarised in ta b le s 3 .1 and 3 .3 F .

Com bining th e p u b lis h e d d a ta by F e r r is and c o lle a g u e s , w ith d a ta from t h i s

s tu d y , a t o t a l o f 10 s i t e s were exam ined u s in g Fnud I I in M* domesticus, 5

c o n s ta n t and 5 v a r ia b le .

3 .3 .7 .3 .2 : Hpa I I (CGG).

Two p a t te rn s , A and D, a re seen in B r i t i s h House mouse p o p u la t io n s u s in g

t h i s fo u r b a s e -c u t te r . Both o f th e se d ig e s t io n p r o f i le s have been

Page 135: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

p re v io u s ly i d e n t i f i e d by F e r r is and c o lle a g u e s (c o n s e q u e n tly , th e same

l e t t e r d e s ig n a tio n s were a d o p te d ), in a d d i t io n to 2 o th e r p a t te rn s (B and

C) n o t seen in B r i t a in . In t o t a l 11 .5 s i t e s were assayed w ith t h i s enzyme,

9 c o n s ta n t ( ta b le 3 .4 ; p o in t 6) and 2 .5 v a r ia b le ( ta b le 3 .3 G ). The k .b . s .

( p a t te rn A) has 11 s i t e s and 11 c o rre s p o n d in g fra g m e n ts ( ta b le 2 .6 , c h a p te r

2 ; ta b le 3 .1 r e s p e c t iv e ly ) , p a t te rn D d i f f e r s from t h i s common p a t te rn by

th e lo s s o f 1 s i t e a t 3332 ( s i t e 2 , ta b le 3 .3 G ), w h ich causes th e

d isa p p e a ra n c e , o f fra g m e n ts 813 and 68 bp and th e appearance a new fra g m e n t

o f 881 bp. R e p re s e n ta tiv e d ig e s t io n p r o f i l e s o f th e two common p a t te rn s

observed in B r i t a in a re shown on e i t h e r agarose g e ls as in p la te 3 .2 o r in

57 p o ly a c ry la m id e in p la te 3 .4 .

3 .3 .7 .3 .3 s Tao I (TCGA).

F e r r is and c o lle a g u e s d e s c r ib e d 7 d ig e s t io n p r o f i l e s (summarised in ta b le

3 .1 ) , in M. domesticus, o f which tw o , A and B, a re commonly observed in

B r i t i s h p o p u la t io n s . The t o t a l number o f s i t e s assayed w ith Taq I was 21,

16 were c o n s ta n t ( l i s t e d ta b le 3 .4 , p o in t 9 ) , and 5 were v a r ia b le ( ta b le

3 .3 H ) . P a tte rn B d i f f e r s from th e base sequence (p a t te rn A) by a s in g le

s i t e lo s s b e g in in g a t 9577 ( s i t e 5 , ta b le 3 .3 H ) , ca us ing th e d isa pp e a ra n ce

o f 2 fra g m e n ts 1909 and 258bp, re p la c e d by 2167 bp. Hence p a t te rn B i s

c h a ra c te r is e d by 18 fra g m e n ts , as opposed t o 19 in th e base sequence. P la te

3 .5 i l l u s t r a t e s th e common B r i t i s h d ig e s t io n p a t te rn s A and B on a s i l v e r

s ta in e d 57. p o ly a c ry la m id e g e l.

3 .3 .7 .3 .4 : Hae I I I (GGCC).

F o r ty th re e s i t e s were examined w ith t h i s enzyme in M. domesticus, o f

w h ich 25 a re c o n s ta n t ( ta b le 3 .4 , p o in t 8 ) , and 18 v a r ia b le ( ta b le 3 .3 1 ) .

Ill

Page 136: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

T h is t o t a l in c lu d e s 18 d ig e s t io n p a t te rn s , 11 have been p re v io u s ly

d e s c r ib e d by F e r r is and c o lle a g u e s (A -F and M-Q; summarised in t a b le ’ s 3 .1

and 3 .3 ) . E ig h t d ig e s t io n p ro - f i le s were found in th e B r i t i s h p o p u la t io n s

in c lu d in g th e k . b . s . , namely A, R, S, U, V, X, and W. A l l d ig e s t io n

p r o f i l e s I have sco re d a re c h a ra c te r is e d by a mean o f 35 fra g m e n ts ; th e

number o f fra g m e n ts in th e k .b .s .

D if fe re n c e s r e la t i v e to th e k .b .s . in d ig e s t io n p r o f i l e s o f B r i t i s h sam ples

a re as fo l lo w s : P a tte rn S in v o lv e s 1 s i t e g a in a t 8648 ( s i t e 8 , ta b le

3 .3 1 ) , w hich causes th e lo s s o f fra gm en t 560 and th e g a in o f two s m a lle r

fra g m e n ts 465 and 95 bp. P a tte rn R in v o lv e s 3 s i t e lo s s e s and 1 s i t e g a in ,

a t p o s i t io n s 3402, 7541, 9756 p lu s 3398 ( s i t e s 3, 7 , 11 and 2 r e s p e c t iv e ly ,

ta b le 3 .3 1 ) . The lo s s a t s i t e 9756 causes th e lo s s o f fra g m e n ts 1372 and

945 bp w ith th e co n co m ita n t g a in o f th e la r g e r fra g m e n t 2307 bp. S im i la r ly ,

lo s s o f s i t e 7541 causes th e d isapp e a ra n ce o f fra g m e n ts 526 and 51 bp,

re p la c e d by fra g m e n t 577 bp. The lo s s o f 67 and 469 bp and th e appearance

o f fra g m e n ts 63 and 473 bp a re e x p la in e d by th e s im u lta n e o u s lo s s o f s i t e

3402 and g a in o f a s i t e a t 3398 (an exam ple o f t h i s p r o f i l e i s f ig u r e d in

p la te 3 .6 , la n e 2 ) .

D ig e s t io n p r o f i l e T in v o lv e s 2 s i t e lo s s e s a t B811 and 12378 ( s i t e s 9 and

10, ta b le 3 .3 1 ) , w h ich a re a d ja c e n t to each o th e r in th e mtDNA sequence,

ca u s in g th e lo s s o f fra g m e n ts 945, 560, and 69 bp, w h ich a re re p la c e d by a

fra g m e n t th e s iz e o f t h e i r sum, 1574 bp ( p la te 3 .6 , la n e 3 ) .

P a tte rn V in v o lv e s 2 s i t e lo sse s 15189 and 12378 ( s i t e s 18 and 14

r e s p e c t iv e ly , ta b le 3 .3 1 ) , w ith th e subsequent lo s s in each case o f two

112

Page 137: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

s m a lle r fra g m e n ts nam ely, 550 and 33 bp p lu s 852 and 39 bp , w ith th e g a in

o f fra g m e n ts 583 and 891 bp ( la n e 5 , p la te 3 .6 ) . P a tte rn U i s a t t r ib u t a b le

t o th e lo s s o f 1 s i t e 15189 ( s i t e 18, ta b le 3 .3 1 ) , w ith th e d isappea rance

o f fra g m e n ts 550 and 33 bp and th e g a in o f a 583 bp fra g m e n t ( la n e 4, p la te

3 .9 ) . P a tte rn X shows th e same p r o f i l e as R, d i f f e r i n g o n ly by th e presence

o f s i t e 9756 in s te a d o f a lo s s (see d e s c r ip t io n a bo ve ).

D ig e s t io n p r o f i l e W, in v o lv e s a s i t e g a in a t p o s i t io n 11210 ( s i t e 12, ta b le

3 .3 .1 ) , w ith th e lo s s o f th e la rg e r fra gm en t 334 bp and th e appearance o f 2

s m a lle r fra g m e n ts 316 and 18 bp.

3 .3 .7 .3 .5 ? H in f I (GACN3TC).

T h is te t r a n u c le o t id e r e s t r i c t i o n enzyme d e te c ts 8 d ig e s t io n p a t te rn s in

B r i t a in , p la te 3 .7 shows 5 such p r o f i le s (A, C, S, Z, and 3 r e s p e c t iv e ly ) .

F e r r is and c o lle a g u e s in t h e i r s tu d y o f European and Am erican H.

domesticus, observed 23 p a t te rn s , 4 o f w h ich (A, C, U, and Z) a re re co rd ed

in B r i t i s h sam ples. F o r ty s ix s i t e s were assayed f o r a l l d ig e s t io n p a t te rn s

d e te c te d w ith t h i s enzyme, o f w hich 19 a re c o n s ta n t ( ta b le 3 .4 , p o in t 1 1 ),

and 27 v a r ia b le ( ta b le 3 .3 K ).

B r i t i s h p o p u la t io n s fro m s e v e ra l lo c a t io n s show d ig e s t io n p r o f i l e A (p la te

3 .7 , la n e s 1 and 4 ) , th e 30 fra g m e n ts c h a r a c te r is in g th e p r o f i l e and

c o rre s p o n d in g r e s t r i c t i o n s i t e lo c a t io n s a re l i s t e d in ta b le 2 .6 (c h a p te r

2 ) . P a tte rn C d i f f e r s fro m th e known base sequence in th e lo s s o f two

a d ja c e n t s i t e s nam ely 9526 and 9574 ( s i t e s 16 and 17, ta b le 3 .3 K ),

p ro d u c in g an a d d it io n a l fragm en t o f 405 bp, w ith th e c o rre s p o n d in g lo s s o f

th re e s m a lle r fra g m e n ts , 263, 94 and 9 bp ( p la te 3 .7 , la n e 2 ) . S im i la r ly ,

113

Page 138: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

p a t te rn U has lo s t s i t e 9574, in a d d i t io n , th e d isa pp e a ra n ce o f fra gm en t

533 bp and th e o b s e rv a tio n o f two s m a lle r fra g m e n ts th e sum o f t h i s , o f 34B

and 185 bp, was e x p la in e d by a s i t e g a in a t p o s i t io n 16179 ( s i t e 27, ta b le

3 .3 K ) . P a tte rn Z in v o lv e d 1 s i t e lo s s a t p o s i t io n 7973 ( s i t e 12, ta b le

3 .3 k ) , th e appearance o f fragm en t 1459 bp re p la c in g fra g m e n ts o f 920 and

539 bp ( i l l u s t r a t e d in p la te 3 .7 , la n e 3 ) .

D ig e s t io n p r o f i l e s n o t p re v io u s ly re co rd e d in c lu d e p a t te rn s G, S, X, and 3,

e x p la in e d by th e fo l lo w in g base changes! G and X p r o f i l e s a re b o th no ted

f o r th e 2 a d ja c e n t s i t e lo s s e s , p re v io u s ly seen in C and U ty p e s ( d e ta i ls

see above ). However, each have a d d it io n a l s i t e changes m aking them

d is t in c t i v e . For exam ple, G has a s i t e g a in a t 11255 ( s i t e 20, ta b le

3 .3 .K ) , which p roduces 2 fra g m e n ts 1418 and 318 bp fro m th e one la rg e r 1734

bp, w h i ls t p a t te rn X su gg e s ts a co n c o m ita n t lo s s and g a in o f s i t e s 15115

and 15094 ( s i t e s 26 and 25 r e s p e c t iv e ly , ta b le 3 .3 k ) , g iv in g a d d it io n a l

fra g m e n ts o f 900 and 426 bp, in th e p la c e o f th e m is s in g 879 and 447 bps.

P a tte rn s S and 3 (see p la te 3 .7 , la n e s 5 and 6 , r e s p e c t iv e ly ) a ls o share

th e same s i t e lo s s as p r o f i l e Z, a t p o s i t io n 7973 (see d e s c r ip t io n o f

n a tu re o f fra gm en t d i f fe re n c e s above ), y e t each have a d d i t io n a l b u t

s e p a ra te s i t e lo s s e s a t p o s i t io n s 6889 and 11938 r e s p e c t iv e ly ( s i t e s 11 and

21, ta b le 3 .3 K ). The fo rm e r s i t e lo s s causes th e d isa p p e a ra n ce o f fra gm en ts

485 and 368 bp, w h i ls t th e l a t t e r in v o lv e s th e appearance o f 511 bp in th e

p la c e o f fra g m e n ts 367 and 144 bp.

114

Page 139: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

3 .3 .7 .3 .6 t Mbo I (BATC).

F o r ty seven c le a va g e s i t e s were seen u s in g t h i s enzyme, employed he re -for

th e purpose o-f com parison w ith p re v io u s s tu d ie s . Of th e se s i t e s 26 a re

observed in e v e ry mouse te s te d (c o n s ta n t s i t e s ) , and 21 a re v a r ia b le .

T h is enzyme d e te c ts 22 d ig e s t io n p r o - f i le s , o-f w hich 6 a re re p re s e n te d in

B r i t i s h sam ples. Two have been p re v io u s ly re p o r te d , one id e n t ic a l t o th e

k .b .s . (p a t te rn A ), th e o th e r , p a t te rn X, seen o n ly in Taunton p o p u la t io n s .

Four ty p e s a re un ique to B r i t a in ( / , 3 , 0 and W). D ig e s t io n p a t te rn X can

be de-fined by a s in g le s i t e lo s s a t 13B14, ca u s in g th e lo s s o-f -fragm ents

222 and 105 bp and th e g a in o-f fragam en t 327 bp. W h ils t p a t te rn S) i s

produced by 1 s i t e g a in w ith th e lo s s o-f th e la rg e -fragment 1344, re p la c e d

by 1179 and 165 bp. D ig e s t io n p a t te rn □ can be e x p la in e d by 2 s i t e lo s s e s

a t p o s i t io n s 2505, and 3597 and 1 s i t e g a in a t 24B9. T h is causes th e lo s s

o-f fra g m e n ts 59B + 67, 468 + 31, re p la c e d by 614 + 51, and 499

re s p e c t iv e ly ( p la te 3 .8 , la n es 2 -6 ) .

P a tte rn / has th e same s i t e changes as 0 w ith th e e x c e p tio n o f an

a d d it io n a l s i t e lo s s and g a in a t p o s i t io n s 11168 and 11305, w ith th e

subsequent g a in o f fra g m e n ts 579 and 15 bp, w ith th e lo s s o f 155 and 439

bp. P a tte rn W i s s im p ly e x p la in e d by th e o cc u rre n c e o f 1 s i t e g a in a t

10564, r e s u l t in g in th e d isappearance o f fra gm en t 1344 and th e appearance

o f 1034 and 310 bp ( p la te 3 .8 , la n e 1 ) .

3 .3 .7 .3 .7 : Rsa I (GTAC).

T h is te t r a n u c le o t id e r e s t r i c t io n endonuc lease has n o t been used in House

mouse s tu d ie s th u s f a r . In t h i s s tu d y I observed 7 d i f f e r e n t d ig e s t io n

115

Page 140: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

p r o f i le s ( p la te 3 .9 i l l u s t r a t e s fo u r d ig e s t io n p r o f i l e s , nam ely A, C, D,

and E) in B r i t i s h sam ples in c lu d in g one s im i la r t o th e k . b . s . , w h ich i s

c h a ra c te r is e d by 37 fra gm en ts ( ta b le 3 .1 , p o in t 1 3 ), th e r e s t r i c t i o n s i t e

lo c a t io n s a re l i s t e d in ta b le 2 .6 (c h a p te r 2 ) .

D ig e s t io n p r o f i l e C i s th e s im p le s t p a t te rn t o e x p la in w ith o n ly 2 s i t e

d if fe re n c e s fro m k .b . s . (p a tte rn A ), a t p o s i t io n s 9545 and 11265 ( s i t e 10

[ lo s s ! , and 11 [ g a in ] , ta b le 3 .3 N ), w ith th e lo s s o f fra g m e n ts 577 + 78 bp

and 658 bp, re p la c e d by 655 bp p lu s 572 + B6 bp r e s p e c t iv e ly . P a tte rn D

in v o lv e s 2 cases o f s im u lta n e o u s lo s s and g a in s a t 12484 ( - ) and 12492 (+ ) ,

p lu s 12998 ( - ) and 13005 (+) [ s i t e s 12, 13, 14, and 15, ta b le 3 .3N 3, w ith

th e d isappearance o f fra gm en ts 240 + 275 bp and 274 and 495 bp, and

appearance o f 283 + 232 bp and 281 and 488 bp . D ig e s t io n p r o f i l e ty p e B has

11 s i t e d i f fe re n c e s compared w ith th e k . b . s . , 5 a re g a in m u ta tio n s a t

p o s i t io n s 7B6, 2783, 6633, 11265, and 13342 ( s i t e s 3 , 4 , 8 , 11, and 16,

ta b le 3 .3 N ), and 2 lo s s e s a t 9545, and 15495 ( s i t e 10 and 21, ta b le 3 .3 N ).

T h is r e s u l t s in th e fo l lo w in g fragm en t d i f fe r e n c e s : th e lo s s o f th e la rg e r

fra gm en ts 297, 187, 2925, 658, and 495 bp w h ich a re re p la c e d by 2 s m a lle r

fra gm en ts in each s i t e g a in case ie . 188 + 109 bp; 54 + 133 bp? 2196 + 729

bp» 86 + 572 bp and 151 + 344 bp, w h i ls t on th e o th e rh an d th e 2 lo s s e s o f

s i t e s causes th e d isappearence o f 577 + 78 bp p lu s 35 + 720 bp, w ith th e

appearance o f fra g m e n ts o f t h e i r sum, 655 and 755 bp r e s p e c t iv e ly .

A d d i t io n a l ly 2 cases o f s im u lta ne o us lo s s and g a in o f s i t e s in c lo s e

p ro x im ity to each o th e r , a t s i t e s 15110 (+ ) , and 15126 ( - ) , p lu s 15418 (+ ) ,

and 1542B ( - ) [ s i t e s 17 and 18, p lu s 19 and 20, t a b le 3 .3N 3, causes th e

116

Page 141: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

lo s s o-f -fragm ents 623, 308, and 17 bp, w ith th e g a in o-f 639, 302, and 7bp

in s te a d . D ig e s t io n p r o - f i le s E, F, and G sh a re th e p re v io u s ly d e s c r ib e d s i t e

d i-f-fe re nce s in ty p e B, each however h a v in g e x tra changes as - fo llo w s :

p a t te rn E - 2 s i t e g a in s and 1 lo s s a t p o s i t io n s 3679, 3698 and 3690

r e s p e c t iv e ly ( s i t e s 5 ,7 and 6, ta b le 3 .3 N ), r e s u l t in g in th e lo s s o-f

■fragments 259 and 218 bp, w ith th e g a in o-f 248, 210 and 19 bp in t h e i r

p la c e ; p a t te rn F - 1 a d d it io n a l s i t e lo s s a t 8925 ( s i t e 9 , ta b le 3 .3 N ),

w ith th e lo s s o-f 96 and 87 bp -fragm ents p lu s th e g a in o-f th e sum o-f th e s e ,

183 bp; p a t te rn G - a s i t e g a in and lo s s a t 107 and 598 ( s i t e s 1 and 2,

ta b le 3 .3 N ), w ith th e co n co m ita n t re p lacem en t o-f -fragm ents 188 and 678 bp

w ith 184 and 682 bp.

3 .3 .7 .3 .8 ; A lu I (AGCT).

The known base sequence has 67 c leavage s i t e s ( ta b le 2 .6 , c h a p te r 2) w ith

t h i s r e s t r i c t i o n endonuclease ( th e most - fre q u e n tly c u t t in g enzyme used in

t h i s s tu d y , n o t p r e v io u s ly employed in House m ice mtDNA sequence com parison

s u rv e y s ) . 0-f th e 75 s i t e s seen in tt. domesticus d e te c te d w ith A lu I , 58

a re c o n s ta n t ( ta b le 3 .4 , p o in t 12) and 17 a re v a r ia b le ( ta b le 3 .3M ). In

B r i t a in 8 d ig e s t io n p r o f i l e ty p e s have been d is c e rn e d (A -H ), p la te 3 .1 0

i l l u s t r a t e s 3 v a r ia n t p a t te rn s B, G, and H, in a d d it io n t o th e k .b . s .

D ig e s t io n p a t te rn B c h a r a c t e r is t i c a l l y has 3 s i t e lo s s e s a t 3143, 5129,

8253 ( s i t e 3 , 7, 12, t a b le 3.3M) and 3 g a in s a t p o s i t io n s 5124, 8259, 9947

( s i t e s 4 , 6 , 13, ta b le 3 .3 M ). T h is r e s u l t s in th e fo l lo w in g fragm en t

d i f fe r e n c e s : lo s s o f 680 and 45 bp w ith th e g a in o f 725 bp; lo s s o f 54 and

654 bp, re p la c e d by 661 and 47 bp; appearance o f 551 and 34 bp in th e p la c e

117

Page 142: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

o-f 545 and 40 bp; and th e - f in a l ly th e d isa pp e a ra n ce o-f 448 bp and th e

s im u lta n e o u s g a in o-f 359 and 89 bp. Both d ig e s t io n p r o f i l e s C and D have

th e p r e v io u s ly d e s c r ib e d s ix common s i t e d i f fe re n c e s p lu s th e fo l lo w in g

a d d i t io n a l changes. P a tte rn C has 5 e x t r a s i t e d i f fe r e n c e s : th e lo s s o f th e

tw o a d ja c e n t s i t e s in th e sequence a t p o s i t io n s 6233 and 6291 ( s i t e s 10 and

11, ta b le 3.3M) r e s u l t s in th e lo s s o f 450, 58 and 44 bp, and th e

appearance o f one la r g e r fra gm en t th e sum o f th e s e , 552 bp; th e

s im u lta n e o u s lo s s and g a in o f s i t e s 1641 and 1633 ( s i t e s 1 and 2 , ta b le

3.3M) causes th e lo s s o f fra g m e n ts 52 and 530 bp, t o be re p la c e d by th o se

o f 44 and 538 bp; f i n a l l y th e g a in o f a s i t e a t 15515 ( s i t e 17, ta b le 3.3M)

w ith th e lo s s o f fra gm en t 269 bp and th e co n co m ita n t g a in o f 2 fra g m e n ts 25

and 244 bp. The l a t t e r s i t e g a in i s th e o n ly d i s t in c i t v e m u ta t io n a l change

p r o f i l e D has which s e p a ra te s i t fro m B. P a tte rn s E-H each have 2 s e p a ra te

u n iq u e s i t e d i f fe r e n c e s d e f in in g t h e i r d ig e s t io n p r o f i l e s , in th e cases o f

E, F, and G, th e se a re s im u lta n e o u s lo s s and g a in o f s i t e s , w h i ls t p a t te rn

H in v o lv e s lo s s o f 2 a d ja c e n t s i t e s . The r e s u l t o f th e s e d if fe r e n c e s i s as

f o l lo w s : p a t te rn E - a s i t e lo s s a t 5783 and g a in a t 5795 ( s i t e s 8 and 9,

t a b le 3 .3 M ), causes th e lo s s o f fra g m e n ts 645 and 450 bp, in t h e i r p la c e

a re th e 2 fra g m e n ts 662 and 438 bp; p a t te rn F - a lo s s and g a in o f s i t e s a t

3188 and 3508 ( s i t e s 3 and 4 , ta b le 3 .3 m ), w ith th e appearance o f fra g m e n ts

28 and 365 bp and th e d isa pp e a ra n ce o f 352 and 45 bp; p a t te rn G - lo c a t io n s

o f s i t e lo s s a t 10826 and g a in a t 10835 ( s i t e s 15 and 16, ta b le 3 .3 M ),

e x p la in s th e observed fra g m e n ts 374 and 21 bp in s te a d o f 365 and 30 bp;

f i n a l l y p a t te rn H w ith th e lo s s o f s i t e s 6233 and 6291, p ro d u c in g th e 552

bp fra g m e n t, in l ie u o f 450, 58 and 44 bp fra g m e n ts seen in p r o f i l e C (see

118

Page 143: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

d e s c r ip t io n a bove ).

5 .3 .7 .5 .9 s Sau 96 I (GGCN3CC).

P a tte rn A, th e known base sequence has 25 c le a va g e s i t e s , w h i ls t in B r i t i s h

sam ples 26 s i t e s were documented, 21 c o n s ta n t ( ta b le 3 .4 , p o in t 1 4 ), and 5

v a r ia b le ( in c lu d in g 1 s i t e g a in and 4 s i t e lo s s e s , ta b le 3 .3 L ) . T h is

r e s t r i c t i o n endonuclease has n o t been used in o th e r s tu d ie s o f th e House

mouse, hence th e p r o f i l e s (3 ; A-C) o b ta in e d a re o n ly o f B r i t i s h sam ples.

Compared w ith p a t te rn B, p a t te rn A has o n ly 1 s i t e lo s s a t p o s i t io n 1573B

( s i t e 6 , ta b le 3 .3 L ) , w ith th e subsequent lo s s o f fra g m e n ts 5B3 and 1 bp,

re p la c e d by th e s l i g h t l y la rg e r fra g m e n t 584 bp. W h ils t p a t te rn C a ls o has

t h i s s i t e lo s s in a d d it io n to a s im u lta n e o u s s i t e lo s s and g a in a t

p o s i t io n s 78 and 83 ( s i t e s 1 and 2, t a b le 3 .3 L ) , ca u s in g th e lo s s o f

fra g m e n ts 573 and 61 bp p lu s th e g a in o f fra g m e n ts 578 and 56 bp. Fragm ents

s m a lle r tha n a p p ro x im a te ly 150 bp a re v e ry d i f f i c u l t to obse rve r o u t in e ly ,

so th o s e below t h i s s iz e a re e s tim a te d fro m a know ledge o f th e k .b .s o f

mouse mt DNA.

119

Page 144: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

^.DISCUSSION:3iiiii_DNA_yariation_acrg55_the_MitDchgndrial_genome£

Double d ig e s t io n c le a vag e mapping and th e rm a l s t a b i l i t y s tu d ie s f i r s t

i l l u s t r a t e d th a t m u ta t io n a l changes were d is t r ib u t e d a l l o ve r anim al

m ito c h o n d r ia l DNA genomes. These changes were found to o ccu r a t d i f f e r e n t

fre q u e n c ie s in d i f f e r e n t re g io n s o f th e g®nome (Daw id, 1972; U p h o lt &

Dawid, 1977; Brown et a l 1979). F ig u re s 3 .4A and B view ed to g e th e r re v e a l

th e d is t r ib u t io n o f s i t e s a cross th e Hus domesticus mt genome, mapped

u s in g th e sequence com parison method, t e s t i f y i n g t o th e f a c t th a t base

s u b s t i t u t io n s a re s c a tte re d th ro u g h o u t th e mouse mt genome. Data fro m t h i s

c h a p te r i l l u s t r a t e s th a t c e r ta in gene re g io n s and n u c le o t id e p o s i t io n s seem

to be more la b i l e tha n o th e rs , p resum ab ly due to a r e la x a t io n o f fu n c t io n a l

c o n s t r a in ts . These r e s u l t s agree w ith p a t te rn s o f base s u b s t i t u t io n found

in p re v io u s s tu d ie s in v o lv in g com parisons o f c lo s e ly re la te d ta x a by d i r e c t

sequence a n a lyse s o r by in d i r e c t h ig h r e s o lu t io n sequence com parison

r e s t r i c t i o n mapping (Cann & W ils o n , 1983; Cann et a l 1984; F e r r is et al

1983), w h ich c o n f irm and extend th e e a r l i e r i n i t i a l f in d in g s , in c re a s in g

th e r e s o lu t io n o f th e m o le c u la r b a s is o f mammalian mt e v o lu t io n .

These s tu d ie s have p roved e s p e c ia l ly in fo r m a t iv e , as th e sequences compared

a re s u f f i c e n t l y c lo s e ly re la te d as to be r e la t i v e l y f r e e fro m m u lt ip le

e ve n ts o c c u r r in g a t th e same n u c le o t id e ; w h ich can obscu re p a t te rn s o f base

s u b s t i t u t io n . Thus c lo s e ly re la te d mtDNA’ s can be exam ined f o r

s u s c e p t ib i l t y o f v a r io u s p a r ts o f th e genome to base s u b s t i t u t io n w ith

c o n s id e ra b ly more c o n fid e n c e than in t e r s p e c i f i c com parisons . C om parisons o f

th e co m p le te sequences o f m ito c h o n d r ia l genomes fro m cow, mouse, and man

120

Page 145: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

(B ib b et al., 1981; Anderson et al., 1982) have re v e a le d t h i s m u lt ip le h i t

p rob lem . Brown et al., (1982) and M iya ta e t al., (1982) c a lc u la te d th e

average s i l e n t p o s i t io n has e xpe rie n ced th re e s u b s t i t u t io n s s in c e t h e i r

d iv e rg e n c e . T h is in t r a - s p e c i f i c s tu d y in Hus domesticus shows an average

o f le s s than 0 .003 pe r s i le n t base p a ir (< 0 .03 - Cann et al., 1984 - in

hum ans).

3 .4 .2 s Base sequence v a r ia t io n in anim al mtDNA.

What fo l lo w s i s a d e s c r ip t io n o f base s u b s t i t u t io n a l changes w ith in each

m a jo r fu n c t io n a l re g io n in th e mouse m ito c h o n d r ia l DNA, compared and

c o n tra s te d w ith what i s a lre a d y known fro m p r e l im in a r y s tu d ie s in t h i s

s p e c ie s and o th e r w e ll documented e v id en ce fro m a range o f s p e c ie s , u s in g

d i f f e r e n t approaches and te c h n iq u e s .

3 i4 i 2i ! i_ P r g te in - c g d in g _ r e g ig n s l

E xcept f o r th e e le v a te d ra te o f base s u b s t i t u t io n , th e g e n e ra l fe a tu re s o f

p r o te in gene e v o lu t io n appear to be s im i la r between m ito c h o n d r ia l and

n u c le a r system s (Brown, 1983, 1985; M o r itz e t al., 1987; A t t a r d i , 1985;

C a n ta to re & Saccone, 1987). Data from my s tu d y a re c o n s is te n t w ith th e

documented t re n d tow a rds th e p reponderance o f s i l e n t (synonymous)

s u b s t i t u t io n s o c c u r r in g se ve ra l t im e s more f r e q u e n t ly th a n non-synonymous

changes (am ino a c id re p la c e m e n ts ), th e l a t t e r a c c u m u la tin g a t ra te s

com parab le w ith th a t found in n u c le a r encoded genes ( r a t s - Brown &

Simpson, 1982; m ice - F e r r is et al., 1983; humans - Cann et al., 1984;

p r im a te s - Brown et al., 1982). The o rd e r o f s u b s t i t u t io n fre q u e n cy a t

d i f f e r e n t codon p o s i t io n s w ith in th e p r o te in cod ing genes i s t h i r d , f i r s t ,

the n second ( t h i r d : f i r s t : second r a t i o = 3 : 1 .3 : 1 ) . When th e p ro te in

Page 146: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

co d ing genes a re s u b d iv id e d in t o c h a ra c te r is e d p ro te in s ( C O I - I I I , Cyt B,

ATPase 6 and 8) and NADH dehydrogenase s u b u n its (ND 1 -6 , 4LJ fo rm e r ly th e

u n id e n t i f ie d re a d in g fram es URF1-6, 4L - Chomyn e t al., 1985 ), t h i s r a t io

i s more pronounced in th e fo rm e r (1 4 :5 :1 as opposed to 2 . 1 : is 1 .1 ) . The

o rd e r o f fre q u e n c y i s in accordance w ith th e know ledge th a t most t h i r d

p o s i t io n s u b s t i t u t io n s a re ' s i l e n t ’ , and so do n o t cause amino a c id

re p la ce m e n ts . Changes in v e r te b ra te m ito c h o n d r ia l g e n e tic code from th e

u n iv e rs a l code enhances th e p ro p o r t io n o f s i l e n t t h i r d p o s i t io n s in th e

m ito c h o n d r ia l compared to th e n u c le a r system (B ibb et al., 19B1; Anderson

e t al., 1982; A t t a r d i , 1985; Brown, 1985). Less r a d ic a l amino a c id

re p la ce m e n ts r e s u l t fro m th e f i r s t codon s u b s t i t u t io n s ca u s in g a low ered

p r o b a b i l i t y o f im p a ire d fu n c t io n in th e p ro te in gene th a n do second codon

base changes.

E very one o f th e 13 p r o te in s in mtDNA (Cytochrom e genes and NADH

dehydrogenase s u b u n its ) e x h ib i t s i t ' s own c h a r a c te r is t ic r a te o f base

s u b s t i t u t io n . These r a te s appear to be th e same amongst v e r te b ra te s w ith

th e e x c e p tio n o f CD I I in p r im a te s , w h ich has a c o n s id e ra b ly h ig h e r s i le n t

s u b s t i t u t io n r a te th a n i s found in e i t h e r b o v in e s o r ro d e n ts (Cann et al.,

1984; F e r r is e t al., 19B3; Brown, 1985; t h i s s tu d y - w ith th e e x c e p tio n o f

tR N A 's , CO I I gene i s th e le a s t v a r ia b le re g io n in th e mouse mt genome).

A d d i t io n a l ly th e re appea rs to be a h ig h e r r a te o f change in th e n u c le a r

encoded Cytochrome C p r o te in gene o f p r im a te s (C a rlso n e t al., 1977). T h is

gene i s known to in t e r a c t d i r e c t l y w ith th e C DII gene in th e m ito c h o n d ria

(T z a g o lo f f , 1982). The observed c o r r e la t io n o f r a te a c c e le ra t io n w ith in

122

Page 147: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

b o th cytochrom e C and CO I I genes may in d ic a te c o -e v o lu t io n (Cann et al.,

1984; W ilson et al., 1985).

In t r a - s p e c i- f ic com parisons o-f th e r e la t i v e v a r i a b i l i t y e s t im a te s amongst

p r o te in genes re v e a ls th a t ND 1 and Cyt B, and CO I I I a re th e le a s t

conserved w h i ls t CO I and I I , ATPases 6 and 8 a re th e most f u n c t io n a l l y

c o n s tra in e d in m ice ( t h is s tu d y ; F e r r is et al., 1983). T h is c o n t ra s ts w ith

in t e r - s p e c i f i c com parisons g e n e ra lly show ing C O I - I I I a re th e le a s t

v a r ia b le , w h i ls t ND and ATPase fu n c t io n s a re th e most v a r ia b le (Anderson et

al., 1982; Cann et al., 1984; ta b le 3 .11 - t h i s s tu d y ) .

I t has been observed th a t in th e s i l e n t s u b s t i t u t io n s th e re was a

predom inance o f t r a n s i t io n s w ith in th e p r o te in co d in g re g io n s (Brown &

S im pson, 1982; Brown et al., 1982; Pepe et al., 1983). Indeed , Brown &

Simpson (1982) no ted a s tro n g b ia s tow a rds C-T t r a n s i t i o n s on th e l i g h t

s tra n d when exam in ing CO I I gene sequences between tw o c lo s e ly r e la te d r a t

s p e c ie s . T h is c o n t ra s ts w ith A-G t r a n s i t i o n s g r e a t ly o u tnum be ring C-T in

Hus domesticus in t h i s s tu d y (F ig u re 3 .9 ; Lanave et al., 1984, 1985).

3i4i2i2i_Ri.bg5gmai_genesiTherm al s t a b i l i t y measurements and c le a va g e map a n a ly s is i l l u s t r a t e s th a t

th e r a te o f e v o lu t io n o f th e rRNA genes i s s lo w e r tha n in th e p ro te in

co d in g genes, bu t i s a p p ro x im a te ly 10 t im e s fa s te r in mt th a n t h e i r n u c le a r

c o u n te rp a r ts (p r im a te s - F e r r is et al., 1981; m ice - F e r r is et al., 1983;

hom in iodea - Brown et al., 1979, 1982; u n g u la te s - Dawid, 1972). T h is s tu d y

i s c o n s is te n t w ith th e above, th e 16s rRNA gene i s more conse rved than th e

123

Page 148: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

12s rRNA gene, y e t b o th a re c o n s id e ra b ly le s s v a r ia b le tha n th e p r o te in -

co d in g genes ( ta b le 3 .1 0 and 3 .1 1 ) ; f u r t h e r th e base s u b s t i t u t io n s in b o th

r ib o s o m a l re g io n s re v e a l a b ia s tow a rds t r a n s v e rs io n s . H igh r e s o lu t io n

r e s t r i c t i o n mapping in humans (Cann et al., 1984) s u p p o rts t h i s , show ing

th e rRNA genes to be th e le a s t v a r ia b le re g io n s in th e m ito c h o n d r ia l

genome, e v o lv in g p r im a r i ly by t r a n s v e rs io n s . F o r t et al., (1984) a ls o

r e p o r ts a low t r a n s i t i o n to t ra n s v e rs io n r a t i o ( l . l : 1) u s in g sequence

a n a y ls is o f th e 16s RNA genes from v a r io u s house mouse s p e c ie s . They

p roposed th a t th e 16s rRNA 5 ’ te rm in u s i s a * h o ts p o t ’ , b e in g much more

v a r ia b le than th e r e s t o f th e gene, and suggested th e re may be some

b io lo g ic a l c o n s t r a in t m a in ta in in g th e h ig h A-T7. c o n te n t observed a t t h i s

end o f th e gene, th u s lo w e r in g th e fre q u e n c y o f t r a n s i t i o n a l e v e n ts . No

such com parab le h y p e rv a r ia b le re g io n was documented in t h i s s tu d y in Hus

domesticus* 16s rRNA gene (nD base changes in th e f i r s t 300 n u c le o t id e s ) ,

how ever, to o few s i t e s were reco rded f o r t h i s f in d in g to be m e a n in g fu l.

Y e t, F o r t et al., (1984) concluded from DNA sequence a n a ly s is , t h a t mtDNA

co d in g f o r th e f i r s t 120 n u c le o t id e s o f th e 5* end o f th e 16s rRNA gene has

v e ry d i f f e r e n t ra te s D f e v o lu t io n in d i f f e r e n t Hus l in e a g e s ; c e r t a i n t l y on

c lo s e r in s p e c t io n o f t h e i r p u b lis h e d d a ta o f Hus domesticus s p e c ie s , o n ly

1 base change was n o te d . They em phasised t h a t such c o n t ra s t in g base

s u b s t i t u t io n ra te s w ith in sm a ll re g io n s o f th e mt genome c o u ld n o t be

d e te c te d when in v e s t ig a t in g th e whole m o le cu le u s in g r e s t r i c t i o n a n a ly s is .

H ixson Sc Brown (1986) examined 12s rRNA genes by d i r e c t seqenc ing in g re a t

apes and humans, r e p o r t in g th e same g e n e ra l t re n d as F o r t and c o lle a g u e s

124

Page 149: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

(1984) in 16s rRNA gene re g io n . S i te d ffe re n c e s were spaced th ro u g h o u t th e

gene, bu t th e 5 ’ end was le s s co n se rve d , b e in g a p p ro x im a te ly 1 .6 x more

v a r ia b le th a n th e 3 ' end. In com p le te c o n t ra s t t o th e p re v io u s ly d e s c r ib e d

s tu d ie s , t h e i r in t e r s p e c i f i c com parisons ove r a l l d iv e rg e n c e t im e s showed a

p reponderance o-f t r a n s i t i o n s . T h is f in d in g does n o t s u p p o rt Brown and

c o l le a g u e s ' (1982) c o n c lu s io n th a t th e m agn itude o f t r a n s i t i o n a l b ia s i s

in v e r s e ly re la te d t o d iv e rg e n ce t im e in th e hom in iodea . Extrem e b ia s does

n o t , how ever, e x is t in in t e r s p e c i f i c com parisons o f more d iv e rg e n t ta x a o f

cow, mouse and man (Anderson e t 1982; B ibb e t 1981; Brown, 19B5).

W ith in Mus domesticus ( t h is s tu d y ) s i t e s a re clumped near th e 5'’ end

c o n f irm in g H ixson & Browns (1986) r e s u l t , how ever, th e re were to o few s i t e s

to be c o n f id e n t o f such a t re n d . Hence, i t appears th e re a re pa tches o f

h ig h homology in rRNA genes, in te rs p e rs e d w ith le s s conserved s t re tc h e s

p re d o m in a n tly due to p o in t m u ta t io n s . A lth o u g h sm a ll d e le t io n s (1 -2 bp)

have been d e te c te d (H ixon & Brown, 1986) in p r im a te s and man, a s s o c ia te d

w ith p o ly C t r a c t s , th e s e were n o t observed in th e house mouse.

Lower t r a n s la t io n a l c o n s t r a in ts c h a r a c t e r is t ic o f th e m ito c h o n d r ia have

been in vo ked to e x p la in th e o v e r a l l h ig h e r r a te o f e v o lu t io n and f i x a t i o n

o f m u ta tio n s in mtDNA th a n in s in g le copy n u c le a r DNA (scnDNA) (Brown,

1981, 1983, 1985). V e r te b ra te mtDNA 16s rRNA genes a re most conserved a t

th e 3 ' end and have h ig h homology to E.Coli and y e a s t mtDNA; th e n u c le o t id e

changes a re c o n s is te n t th o se w ith c o n fe r r in g re s is te n c e to c h lo ra m p h e n ic o l.

125

Page 150: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

li4 jL 2 i3 i_ T ra n s £ e r_ R N A i

The gene ra l fe a tu re s o f e v o lu t io n and sequence v a r ia t io n in v e r te b ra te mt

tRNA a re v i r t u a l l y th e same as in th e r ib o so m a l RNA genes.

3i5i2i.4i_The_di5Blacement_iggBiThe D -lo o p , (so c a l le d because th e nascen t H -s tra n d d is p la c e s th e p a re n ta l

H -s tra n d , ca u s in g a th re e -s tra n d e d "d is p la c e m e n t lo o p " ) th e m a jo r non­

cod ing re g io n o f th e mtDNA, spans th e re g io n from tRNA PH= t o tRNA p" ° ,

and i s v o id o f any co d in g in fo rm a t io n f o r s t r u c t u r a l genes y e t c o n ta in s a l l

th e re g u la to r y e lem en ts f o r mtDNA r e p l ic a t io n , as w e ll as p ro m o te rs f o r

t r a n s c r ip t io n o f th e heavy and l i g h t s tra n d s (C la y to n , 1982, 1984;

C a n ta to re & Saccone, 1987). Sequence s tu d ie s in d ic a te i t i s th e most

v a r ia b le re g io n o f mt genome in le n g th and base c o m p o s it io n (G reenberg et

al., 1983) and i t a ccum u la tes base changes a t r a te s c o n s id e ra b ly fa s te r

than scnDNA (Lanave et al., 1984, 1985). Sequence com parison mapping

s tu d ie s o f Hus domesticus ( t h is s tu d y ; F e r r is et al., 1983) suggest th a t

a lth o u g h th e D -loo p i s v a r ia b le i t i s n o t th e most r a p id ly chang ing re g io n

in th e mt genome. T h is i s in agreement w ith th e re c e n t f in d in g s which

suggest th a t w h i ls t in t e r s p e c i f i c com parisons show th e D -lo o p to be h ig h ly

d iv e rg e n t , in t r a s p e c i f i c com parisons re v e a l t h i s re g io n e v o lv e s a t

a p p ro x im a te ly th e same average r a te as p ro te in co d in g genes (Brown et al.,

1986; Saccone et al., 1985). T h is low ered v a r i a b i l i t y o f th e D -loo p between

c o n s p e c if ic s su g g e s ts t h i s re g io n c o n ta in s s p e c ie s - s p e c if ic fe a tu re s (Brown

et al., 1986; G reenberg et al., 1983; M o r itz et al., 1987).

126

Page 151: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

R ecom bina tion and r e p l ic a t io n s lip p a g e mechanisms, p ro b a b ly caused by th e

in t e r r u p t io n o f th e po lym erase enzymes a t th e secondary s t r u c tu r e , a re

proposed as mechanisms by w hich mammalian mtDNA r e g u la to r y re g io n s e v o lv e

(C a n ta to re & Saccone, 1987). U p h o lt & Dawid (1977) u s in g b o th r e s t r i c t i o n

c le a vag e mapping and h e te ro d u p le x a n a ly s is in sheep and g o a ts , were th e

• f i r s t to observe th a t bo th ends o f th e D -lo o p were h ig h ly d iv e rg e n t

r e la t i v e to th e r e s t , e s p e c ia l ly upstream o-f th e heavy s tra n d o r ig in o f

r e p l ic a t io n (0 H) . These ’’h o ts p o ts " f o r base s u b s t i t u t io n in th e c o n t ro l

re g io n re co rd ed in human mtDNA sequenc ing s tu d ie s (G reenberg et al,, 1983;

Aquadro & G reenberg, 1983), suggest th e r a te o f s u b s t i t u t io n i s n o t u n ifo rm

f o r a l l s i t e s . These a u th o rs s p e c u la te d th a t r e s t r i c t i o n mapping a n a ly s is

may n o t be s e n s i t iv e enough to re s o lv e re g io n s w ith d i f f e r i n g le v e ls o f

v a r i a b i l i t y as th e se tw o h y p e rv a r ia b le dom ains in th e D -lo o p had n o t been

p re v io u s ly d e te c te d u s in g r e s t r i c t i o n mapping in p r im a te s (Brown & Goodman,

1979; F e r r is et al,, 1981a, b) and ro d e n ts (Brown et al,, 1982; Lansman et

al,, 1983). T h is was p ro b a b ly a consequence o f th e non-random d is t r ib u t io n

D f c leavage s i t e s a lo ng th e m ito c h o n d r ia l m o lecu le (Adams & Rothman, 1982).

I t soon became e v id e n t th a t th e D -loo p can be d iv id e d in t o th re e d is t in c t

a re a s , a c e n t ra l conserved re g io n (CCR) w ith p r im a ry sequence homology f o r

up t o 80 m i l l io n ye a rs (human, mouse, r a t , and cow sequence co m parisons ;

B ibb et al,, 1981; Anderson et al,, 1982), a few conse rved sequence b lo c k s

a t 5* te rm in u s (CSB 1, 2 , 3 ) , and th e te rm in a t io n a s s o c ia te d sequences

(TAS) a t th e 3 ?end (W alberg & C la y to n , 1981; Doda et al,, 1981; a ls o see -

Brown e t al,, 1986, A t t a r d i , 1985, p lu s C a n ta to re & Saccone, 1987, f o r

re v ie w s and summary). Data from t h i s s tu d y u s in g sequence com parison

127

Page 152: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

r e s t r i c t i o n m apping, a re in g en e ra l agreem ent w ith t h i s ; i l l u s t r a t e d by a

c lu s te r in g o f base s u b s t i t u t io n s a t th e ends and a co n sp icu o u s la c k o f

s i t e s in th e c e n t ra l re g io n o f th e D -lo o p (see f ig u r e 3 .8 ) . D e s p ite

c o n ta in in g th e s ta b le c lo v e r le a f seconda ry s t r u c tu r e s o f th e CSB and TAS

( s t a r t and s to p s i t e s , r e s p e c t iv e ly , f o r D -lo o p s tra n d s y n th e s is ) , b o th

ends o f th e D -lo o p a re h ig h ly v a r ia b le in base sequence and le n g th , w ith

c h a r a c t e r is t i c a l l y low guan ine c o n te n t , in a l l s p e c ie s exam ined to d a te

(Saccone et al., 1985; Brown et al., 1986 ). In t h i s s tu d y , th re e v a r ia b le

s i t e s in th e mouse were mapped to th e secondary s t r u c tu r e s ( f i g 3.8s 1 and

2 -e n la rg e d d e t a i l o f th e D -loop secondary s t r u c tu r e s ) , b u t n o t t o th e

im p o r ta n t CSB1 and TAS re g io n s , w h ich a re ca p a b le o f fo rm in g " m ir r o r

sym m etry", and a re s p e c u la te d t o a c t as s p e c i f i c r e c o g n it io n s i t e s f o r

re g u la to r y p ro te in s (Saccone et al., 1987 ). In te r a c t io n between RNA

secondary s t r u c tu r e s a re known to m odu la te th e fo rm a tio n o f a p r im e r -

p re c u rs o r / te m p la te com plex, needed in th e p r im e r g e n e ra tio n by RNase H, in

th e p la sm id C oIE I system (M asukata & Tomizawa, 1984). T h is p ro ce ss may be

ana logaous t o th e system re g u la t io n o f th e D -loo p re g io n , th e proposed

model o f w h ich i s based upon a p o s s ib le in t e r a c t io n between th e c l o v e r le a f

s t r u c tu r e s a t th e 5 ? end o f th e new DNA s tra n d and an R N A /p ro te in f a c to r

(Brown et al., 1986; Saccone et al., 19B7; C a n ta to re & Saccone, 1987). In

a d d i t io n , i t has been found th a t th e h ig h ly conserved c e n t ra l domain i s

f r e e o f any complex secondary s t r u c tu r e s and c o n ta in s an open re a d in g fram e

(ORF) w ith an unknown fu n c t io n , in d ic a t iv e th a t t h i s re g io n may be under

s tro n g p r im a ry s t r u c tu r a l c o n s t r a in ts (Saccone et al., 1987).

128

Page 153: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

5iii3i_Rates_and_tyee5_gf_change_in_aQimal_mtDNAiThe m a jo r i t y o-f in t r a s p e c i- f ic mtDNA v a r ia t io n in h ig h e r a n im a ls have been

a t t r ib u t e d t o n u c le o t id e changes w ith in r e s t r i c t i o n enzyme re c o g n it io n

s i t e s (p o in t m u ta t io n s ) , o r to v e ry sm a ll (a few base p a ir s ) in s e r t io n -

d e le t io n le n g th m u ta tio n s ( f o r re v ie w s , see Brown, 1985; A t t a r d i , 1985;

C a n ta to re & Saccone, 1987). S m a ll-s c a le le n g th m u ta tio n s have been observed

in humans (Cann & W ils o n , 1983), f r u i t f l i e s (S o lig n a c et al- , 1983), r a t s

(Brown & D e s ro s ie rs , 1983), c a t t le (H a u s w irth et a l - , 1984), f ro g s

(M onnerot et a l - , 1984), c r ic k e ts (H a rr is o n e t a l - , 1985 ), and l iz a r d s

(Densmore et a l - , 1985). No le n g th m u ta tio n s were d e te c te d in th e B r i t i s h

m ice exam ined, a l l m u ta t io n a l changes re p o r te d he re a re p r im a r i ly s in g le

base s u b s t i t u t io n s . However, th e re may be m ino r le n g th v a r ia n ts among th e

B r i t i s h and European house mice sam ples, w h ich were u n d e te c ta b le w ith th e

m e th o d o lo g ie s ( r e s t r i c t i o n mapping) used. To d e te c t th e s e , a more tho ro u gh

e x a m in a tio n o f e le c t r o p h o r e t ic m o b i l i t ie s would be re q u ir e d , u s in g

d e n a tu r in g ge l c o n d it io n s (Cann, 1982; Cann & W ils o n , 1983). However,

F e r r is et a l - , (1983) re co rd ed one v e ry c le a r case o f a le n g th v a r ia n t

(s iz e d 12 bp) in th e tobacco mouse, from P osch ia vo , S w itz e r la n d ; t h i s

m o d e ra te ly s iz e d le n g th v a r ia n t s im u lta n e o u s ly a l t e r s th e d ig e s t io n

p r o f i l e s f o r a l l r e s t r i c t i o n enzymes encom passing t h i s re g io n , so i s f a r

e a s ie r to d e te c t . A ls o , F o r t & c o lle a g u e s (1 9 8 4 ), u s in g DNA sequence

a n a ly s e s , documented a few m inor le n g th m u ta tio n s w ith in Mus l in e a g e s .

M o b i l i t y v a r ia n ts in mtDNA can r e s u l t from bo th le n g th (W ris c h n ik et al. ,

1987), and c o n fo rm a tio n a l m u ta tio n s (S ingh et a l - , 1987). M o b i l i t y fragm en t

129

Page 154: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

v a r ia n ts have been documented in human (Cann St W ils o n , 1983 ), sea u rc h in

(V aw ter & Brown, 1986 ), and mouse (H o w e ll, 1985; H ow e ll e t al., 1987)

mtDNAs. S im i la r ly , anom a lous ly m ig ra t in g DNA fra g m e n ts have been w id e ly

re p o r te d in ye a s t (Snyder e t al., 1986), try p a n o s o m a tid m in i - c i r c le DNAs

( G r i f f i t h e t al., 1986 ), and S a lm o n e lla (B oss i e t al., 1984 ), in w hich

"b e n t" DNA a l t e r s th e m ig ra t io n o f r e s t r i c t i o n fra g m e n ts in p o ly a c ry la m id e

g e ls b u t n o t in agarose g e ls (S te llw a g e n , 1983). C o n fo rm a tio n a l m u ta t io n s

can e a s i ly be m is - id e n t i f ie d as in s e r t io n - d e le t io n m u ta t io n s , o r coun ted as

m u l t ip le p o ly m o rp h ic r e s t r i c t i o n s i t e s , bo th o f w h ich can le a d t o e r r o r s in

c o n s t ru c t in g r e s t r i c t i o n maps, co n se q u e n tly b ia s in g sequence d iv e rg e n c e

e s t im a te s , w h ich may d i s t o r t mtDNA p h y lo g e n ie s (Cann et al., 1987). Thus,

g re a t c a re needs t o be ta ke n when a s s ig n in g mammalian mtDNA r e s t r i c t i o n

fra g m e n ts on th e b a s is o f s in g le r e s t r i c t i o n endonuc lease d ig e s ts (H o w e ll,

1985) in f in e - s c a le r e s t r i c t i o n mapping s tu d ie s .

M ito c h o n d r ia l DNA s iz e m a c ro v a r ia t io n ( la rg e s c a le le n g th v a r ia n ts ) and

h e te ro p la s m y , ( th e p resence o f more th a n one m ito c h o n d r ia l DNA ty p e w ith in

an in d iv id u a l ) , seems t o be p re v a le n t among th e lo w e r v e r te b ra te s and

in v e r te b r a te s ( f o r a summary, see Bermingham et al., 1985, 1986 ), b u t i s

r e l a t i v e l y ra re among mammals ( c a t t le - H a u sw irth & L a ip is , 1982 and

H a u s w irth e t al., 1984; humans - G reeberg et al., 1983; r a t s - Brown &

D e s ro s ie rs , 1983). B o u rso t et al., (1987) observed h e te ro p la s m y in two Hus

musculus in d iv id u a ls ; each c o n ta in e d a m ix tu re o f norm al mtDNA and a

m ito c h o n d r ia l m utant w ith a v e ry la rg e d e le t io n in a co d in g re g io n .

130

Page 155: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

However, no in c id e n c e s o-f h e te ro p la sm y were d e te c te d in Hus domesticus

sam ples from B r i t i s h l o c a l i t i e s ( t h is s tu d y ) Dr from w o r ld -w id e c o l le c t io n s

( F e r r is et al., 1983). Any la rg e sequence h e te ro g e n e ite s w ith in a sam ple

would have been e v id e n t , by a d d it io n a l fra g m e n ts e xceed ing th e t o t a l

expected s iz e o f th e m ito c h o n d r ia l genome (16 ,295 bp in th e house mouse;

B ibb et al., 1981). However, many cases o f h e te ro p la sm y may rem ain

unobserved , e i t h e r because th e y a re m is ta k e n ly a t t r ib u t e d t o p a r t i a l enzyme

d ig e s t io n s o r re p re s e n t such a t i n y p ro p o r t io n o f th e number o f mt

m o le cu le s per sample as to be u n d e te c ta b le , even by th e most s e n s i t iv e

v is u a l is a to n te c h n iq u e s (A v ise 8c Lansman, 1983).

The o rd e r o f gene v a r i a b i l i t y ( le a s t t o most) in th e B r i t i s h house mouse i s

rRNA, tRNA, Cytochrom e p r o te in s , d is p la c e m e n t loop and NADH dehydrogenase

s u b u n its (T a b le 3 .1 1 ) . T h is i s c o n s is te n t w ith com parab le r e s t r i c t i o n

mapping a n a lyse s o f w o r ld -w id e c o l le c t io n s o f Hus domesticus ( F e r r is et

al., 1983) and sequence d a ta in th e mouse (B ibb et al., 1981). However,

Cann, Brown, 8c W ilso n , (1984) found t h a t th e D -loop was a p p ro x im a te ly 1-2

t im e s more v a r ia b le th a n bo th g roups o f p ro te in -c o d in g genes, which were

s l i g h t l y more v a r ia b le tha n th e tRNA and rRNA genes (T a b le 3 .1 2 ) .

The most s t r i k in g and w e ll documented p r o p e r t ie s o f v e r te b ra te mtDNA

in c lu d e s a ra p id r a te o f e v o lu t io n , 5 -1 0 x g re a te r tha n scnDNA (Brown et

al., 1979), and th e t r a n s i t i o n a l b ia s (Brown 8c Simpson, 1982; Brown e t al.,

1982; Greenberg et al., 1983; H ig u ch i et al., 1984, 1987).

131

Page 156: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

The e x te n t o-f p e rc e n ta g e sequence d iv e rg e n c e in v e r te b r a te mtDNA appears to

be dependent on d iv e rg e n c e t im e (Brown et al, 1979? Brown, 1983). When

c lo s e ly r e la te d ta x a a re compared th e base s u b s t i t u t io n s a re p re d o m in a n tly

t r a n s i t io n s , as seen in p r im a te s (Brown e t al., 1982; Hayaska e t al., 1988),

r a t s (Brown Sc S im pson, 1982; C as to ra e t al., 1980; Goddard e t al., 1981),

humans (Aquadro Sc G reenberg , 1983; G reenberg e t al., 1 983 ), and f r u i t - f l i e s

(W olstenholm e Sc C la ry , 1985; S a t t i e t al., 1988; D e s a lle e t al., 1987b). The

i n i t i a l h ig h r a te o f mtDNA e v o lu t io n in c lo s e ly r e la te d ta x a has been

p o s tu la te d t o be a t t r ib u t a b le t o ra p id a c c u m u la tio n o f synonymous

s u b s t i t u t io n s , fo l lo w e d by a s lo w e r a c c u m u la tio n o f non-synonym ous

s u b s t i t u t io n s (a m in o -a c id re p la c e m e n ts ), w h ich c h a r a c te r is e in c r e a s in g ly

d is t a n t ly r e la te d ta x a (Brown e t al., 1979, 1982; D e s a lle e t al., 1987b).

F u rth e rm o re , many sequenc ing s tu d ie s sugges t t h a t th e a c tu a l r a t i o o f

t r a n s i t io n s to t ra n s v e rs io n s changes as a fu n c t io n o f d iv e rg e n c e t im e

(H ig u ch i e t al., 1987; Hayaska e t al., 1988; S a t t i e t al., 1988 ). T h is i s

p ro b a b ly due t o th e tim e -d e p e n d e n t a cc u m u la tio n o f m u l t ip le s u b s t i t u t io n s

a t many o f th e n u c le o t id e p o s i t io n s and to a h ig h e r r a t e o f t r a n s i t i o n -

ca us ing m u ta tio n s , fro m two to tw e n ty - fo u r t im e s t h a t o f t ra n s v e rs io n s

depending on th e s p e c ie s , ra th e r than a h ig h e r p r o b a b i l i t y o f t h e i r

f i x a t i o n (Brown, 1981, 1983). T ra n s v e rs io n s a ccum u la te a t a p p ro x im a te ly th e

same r a te in mt and scnDNA, and th e t r a n s i t i o n t o t r a n s v e rs io n r a t i o f a l l s

w ith in c re a s in g d iv e rg e n c e . T h is drop i s expected f o r th e p ro ce ss i s b ia se d

tow a rds t r a n s i t i o n s , b u t t ra n s v e rs io n s , a lth o u g h o c c u r r in g r a r e ly , tend t o

e rase th e re c o rd o f t r a n s i t i o n s (Brown et al., 1982; D e s a lle et al., 1987b).

Thus, in te r a c t io n s between t r a n s i t io n s and t r a n v e rs io n s a re asym m etric

132

Page 157: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

(H o lm q u is t, 1976, 1983; Jukes, 1982). The h ig h r a te o f base s u b s t i t u t io n i s

p o s tu la te d t o be due to th e la c k o f m ism atch r e p a ir in m ito c h o n d r ia (W ilson

et al., 1985), th e m a jo r i t y o f m u ta tio n s a s c r ib a b le t o ta u to m e r ic s h i f t s

w h ich sh ou ld have been re p a ire d b e fo re r e p l ic a t io n as in n u c le a r DNA. As

t r a n s i t i o n s a re th e rm o d y n a m ic a lly th e most l i k e l y ty p e s o f base

s u b s t i t u t io n to occu r d u r in g r e p l ic a t io n , i t appears th a t th e r e p a ir system

i s des igned t o e xc lu d e th e se (Topal 8c F re sco , 1976; W ilson e t aim, 1985).

T r a n s i t io n a l b ia s i s n o t e v id e n t from sequence com parison r e s t r i c t i o n

mapping in e i t h e r m ice ( t h is s tu d y ; F e r r is e t al., 1983 ), o r humans (Cann,

et al., 1984; Cann, 1986; H o ria e t al., 1984), wheras d i r e c t sequencing

s tu d ie s o f hom ino idea (Brown e t al., 1982; Aquadro & G reenberg , 1983;

G reenberg e t al., 1983 ), o r r a ts (Brown Sc Sim pson, 1982; Brown e t al., 1986,

Saccone e t al., 1985; C a n ta to re Sc Saccone, 1987) do show such a b ia s . The

d if fe r e n c e s observed may be a t t r ib u t a b le t o th e r e s o lu t io n o f th e d i f f e r e n t

te c h n iq u e s ; th a t i s th e t r a n s i t io n a l b ia s may be re g io n s p e c i f i c , in w hich

case sequencing th e D -lo o p and p ro te in -c o d in g genes may e le v a te th e b ia s ,

whereas r e s t r i c t i o n mapping o f th e whole mt genome may g iv e a more

r e a l i s t i c f ig u r e . However, i t may n o t be p o s s ib le t o make in fe re n c e s about

e v o lu t io n a ry ra te s u s in g th e sequence com parison r e s t r i c t i o n mapping

methods due to th e non-random p lacem ent o f r e s t r i c t i o n endonuclease

c le a va g e s i t e s in th e m ito c h o n d r ia l genome (Adams 8c Rothman, 1982). The

fre q u e n c y o f t r a n s i t i o n s and t ra n s v e rs io n s a re th o u g h t t o be a fu n c t io n o f

th e base c o m p o s it io n o f th e n u c le o t id e sequence (Aquadro 8c G reenberg,

1983), T h is i s i l l u s t r a t e d by s e v e ra l s p e c ie s o f D ro s o p h ila w h ich have a

133

Page 158: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

h ig h A+T c o n te n t (807.), and a h ig h in c id e n c e o-f t ra n s v e rs io n s ( S a t t i , et

aim, 1988). However, th e base c o m p o s it io n o-f house mouse mtDNA sequence i s

n o t p re d o m in a n tly A+T r ic h (63 .2% ). Thus, th e q u e s tio n a r is e s , w hether

humans a n d /o r m ice co u ld d i- f - fe r e n t ia l ly r e p a ir th e s e m u ta tio n s o r i s th e re ,

p e rha p s , an e le v a te d r a te o-f e v o lu t io n in th e s e s p e c ie s .

W hether ro d e n ts ( e s p e c ia l ly m ice) e v o lv e a t c o n s is te n t ly f a s te r ra te s tha n

th o s e o f o th e r v e r te b ra te s rem a ins a c o n t r o v e r s ia l is s u e (W ilson et aim,

1987). E v idence fro m scnDNA sequences, DNA-DNA h y b r id is a t io n and

p a la e o n to g ic a l so u rces suggests th a t n o t o n ly a re th e re h ig h e r a b s o lu te

r a te s o f n u c le a r DNA s u b s t i t u t io n in ro d e n ts , sea u rc h in s , and D ro s o p h ila

compared t o p r im a te s and a r t id a c t y ls , b u t a ls o t h a t th e s e ra te s have

p ro g r e s s iv e ly slowed in th e hominoedea l in e a g e , and a re a p p ro x im a te ly equa l

in th e mouse and r a t (Wu 8c L i , 1985; B r i t t e n , 1986; Jaeger et aim, 1986; L i

8c T an im ura , 1987; L i et aim, 1987; L i 8c Wu, 1987; C a t z e f l i s et aim, 1987).

F u r th e r i t appears th a t n u c le a r and mtDNA ra te s a re s im i la r and th a t th e

t r a n s i t i o n a l b ia s does n o t h o ld f o r some s p e c ie s o f D ro s o p h ila (P ow e ll e t

aim, 1986; de B r u i jn , 1983; S o lig n a c et aim, 1986) o r s e a -u rc h in s (Vaw ter 8c

Brown, 1986 ). Vaw ter 8c Brown, (1986) conc luded t h a t th e a pp a re n t ra p id r a te

o f v e r te b ra te mtDNA e v o lu t io n is , in p a r t , an a r t i f a c t o f th e w id e ly

d iv e rg e n t r a te s o f change w ith in n u c le a r DNA. Some d o u b ts have been

expressed on th e v a l i d i t y o f th e c o n c lu s io n s drawn fro m th e se s tu d ie s due

to th e use o f in d i r e c t methods, u n c e r ta in d iv e rg e n c e t im e s , d e r iv e d from

p o o r ly re p re s e n te d f o s s i l re c o rd s , and sm a ll sam ple s iz e s (D e s a lle et aim,

1987b).

134

Page 159: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

F o s s il e v id e n ce su gg e s ts ro d e n t l in e a g e s e vo lve d r a p id ly , d iv e rg e n c e t im e

between r a t and mouse be ing o n ly 8-11 M yr. However, th e s e e s tim a te s rem ain

c o n t ro v e rs a l because o-f th e c o n f l i c t i n g e v idence fro m m o le c u la r

co m p a rison s . E ith e r th e f o s s i l re c o rd (based p r im a r i ly on cheek te e th ) has

been m is in te r p r e ta te d , o r , th e average r a te o f m o le c u la r e v o lu t io n in m ice

i s f a s te r th a n in o th e r mammals from w hich d iv e rg e n c e t im e s a re c a l ib r a te d

(W ils o n et al,, 1987). Many w o rke rs p re d ic te d DNA e v o lu t io n sh o u ld be

f a s t e r in a n im a ls w ith s h o r t g e n e ra tio n t im e s (L i et al,, 1987; L i &

Tam imura, 1987; Wu & L i , 1985; Kohne e t al,, 1972). B r i t t e n (1986)

sugges ted th a t th e ra p id d iv e rg e n c e ra te s o f n u c le a r genes a re n o t a

f u n c t io n o f g e n e ra tio n t im e as D ro s o p h ila and ro d e n ts b o th have s h o r t

tu rn o v e rs , b u t sea u rc h in s do n o t . However, th e number o f r e p l ic a t io n s per

y e a r i s la rg e f o r sea u rc h in s , c o n s e q u e n tly th e y have a la r g e r number o f

g e rm lin e r e p l ic a t io n s pe r year th a n do s p e c ie s w ith com parab le g e n e ra tio n

t im e s .

A rc h a e o lo g ic a l and g e n e tic da ta have shown th e spread o f e a r ly fa rm in g from

th e Near E ast th ro u g h th e M e d ite rra n e a n in t o n o r th e rn Europe (C la rk , 1975;

S o k a l, 1988; A u f f ra y et al,, 1988). The commensal a s s o c ia t io n o f m ice w ith

man was th o u g h t to have begun w ith th e adven t o f a g r ic u l t u r a l p r a c t ic e s ,

e s p e c ia l ly a t h ig h la t i t u d e s where m ice were dependent on human g ra in

s to r e s (S chw artz & S chw artz , 1943; Sage, 1981; G y lle n s te n & W ils o n , 1987).

F e r r is et al,, (1983) e s tim a te d th e r a te o f mtDNA d iv e rg e n c e in m ice to be

2 -4V. pe r M yr, c o n s is te n t w ith r a te s found in o th e r mammals (Brown et al,,

1979, 1982; F e r r is et al,, 1981). T h is e s t im a te i s su p p o rte d fro m f o s s i l

135

Page 160: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

e v id e n ce o-f s p r e t t i s - l i k e m ice in N o rth A f r ic a d a ted about 4 M yr. BPD

(M a rs h a ll, 1981) and from mouse f o s s i l s fro m a rc h a e lo g ic a l s i t e s about 1

M yr. BPD (B ro th w e ll , 1981; T chernov, 1983 ). To t e s t w hether ro d e n ts do

indeed have a e le v a te d r a te , i n t r a s p e c i f i c r a te s o f mtDNA d iv e rg e n c e c o u ld

be c a l ib r a te d f o r m ice , u s in g a p o p u la t io n known t o have c o lo n is e d a

s p e c i f ic g e o g ra p h ic re g io n a t a known t im e . Com parisons c o u ld th e n be made

between e s tim a te s o f d iv e rg e n c e w ith in th e g e o g ra p h ic a rea w ith e s tim a te s

fro m th e n e a re s t n e ig h b o u rs (S to n e k in g et a im , 1986; W ilson e t a im , 1987b).

Sweden i s one such p o te n t ia l exam ple, as i t was c o lo n is e d a p p ro x im a te ly

4000 ye a rs ago, v ia N o rth e rn Germany (W ils o n , P ra g e r, p e rs comm).

I f i t i s fou n d th a t mouse mtDNA does n o t e v o lv e r a p id ly , i t maybe p e r t in a n t

t o in v e s t ig a te th e e f f ic e n c y o f t h e i r DNA r e p a i r . U s ing th e same sequence

mapping te c h n iq u e , Cann and c o lle a g u e s (1984) found a lo w e r r a t i o o f

t r a n s i t i o n s t o t ra n s v e rs io n s in humans th a n e xp e c te d , b u t s t i l l s l i g h t l y

h ig h e r th a n th a t found in m ice. G e n e ra lly , i t has been suggested th a t th e

s lo w e v o lu t io n a ry r a te o f human mtDNA lin e a g e s may be a t t r ib u t a b le to an

th e e f fe c t iv e n e s s o f th e DNA r e p a ir mechanisms ( B r i t t e n , 1986).

3 i4 _ 4 £ _ R e 5 tr ic t ig n _ 5 ite _ m a B B in g _ c g m B le x it ie s _ a n d _ c g m B lic a t ig n s i

5 i5 _ ii i i_ 5 if f i ! l§ D t_ m tD N A _ y is u a lis a t ig n _ m e th g d s i

Where p o s s ib le l e t t e r d e s ig n a tio n s f o r d ig e s t io n p a t te r n s , in t h i s s tu d y ,

fo l lo w e d th o s e e s ta b lis h e d by F e r r is 8c c o lle a g u e s (1 9 8 3 ). However, a few

d ig e s t io n p a t te rn s fro m a co u p le o f enzymes were n o t d i r e c t l y r e la t a b le to

th o s e p re v io u s ly d e s c r ib e d . The in t e n t o f t h i s s tu d y has been to exam ine

th e p o p u la t io n v a r ia t io n o f mtDNA fro m as many B r i t i s h house m ice as

136

Page 161: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

p o s s ib le and n o t t o g iv e a d e ta i le d accoun t o-f th e g e n e ra l m o le c u la r

e v o lu t io n o f th e m o le c u le . Hence, o n ly one p o ly a c ry la m id e g e l c o n c e n tra t io n

was used (57.), t o s e p a ra te th e d ig e s te d DNA fra g m e n ts , r a th e r than a whole

range o f ge l c o n c e n tra t io n s . As a consequence, o n ly fra g m e n ts from th e s iz e

range 2000 to 150 b a s e p a irs co u ld be sco re d a c c u r a te ly and s u b se q u e n tly

c o n f id e n t ly s i t e mapped. Y e t, a lth o u g h n o t e v e ry fra g m e n t in th e d ig e s t io n

p r o f i le s c o u ld be d e te c te d , th e s i l v e r s ta in in g v is u a l is a t io n te c h n iq u e

(T e g e ls tro m , 19B6) does g iv e b e t te r r e s o lu t io n th a n th e e n d - la b e l l in g

method (Brown, 1980) adopted by F e r r is St c o lle a g u e s (1 9 8 3 ). They p o in te d

ou t th a t changes in Hae I I I p a t te rn s were d i f f i c u l t t o d e te c t , because th e

fragm en t lo s s e s and g a in s occur in re g io n s o f m u l t ip le superim posed D r

c lo s e ly spaced bands (hom ologous b ands), however th e s e c o u ld be re s o lv e d

u s in g s i l v e r s t a in in g . A d d i t io n a l ly , th e y examined in d iv id u a ls from Orkney

u s in g th e enzyme Mbo I , and d e s c r ib e d th e r e s u l t in g d ig e s t io n p a t te rn as

id e n t ic a l t o t h a t found o f th e k .b .s (p a t te rn A; B ibb et el,, 1981). U sing

s i l v e r s ta in in g on sam ples from th e same l o c a l i t i e s , d i s t i n c t fragm en t

d if fe re n c e s were no ted as in d ic a te d in P la te s 3 .8 & P la te 3 .1 la n e s 1 & 2,

r e s p e c t iv e ly (see ta b le 3 .3 J f o r l i s t o f v a r ia b le s ite s ? s e c t io n 3 .3 .7 .3 .6

Mbo I f o r d e s c r ip t io n s ) . A ltho u gh s im i la r t o th e k . b . s , d ig e s t io n p a t te rn s

from Orkney a re d e s ig n a te d ty p e 0 , in s te a d o f A (renamed as ty p e W by th e

w o rke rs from B e rk e le y , W ilso n , p e rs comm). However, d e s p ite d if fe re n c e s in

th e te c h n iq u e s , th e m a jo r i t y o f th e p a t te rn s d e s c r ib e d by F e r r is &

c o lle a g u e s (1983) were co ng ru e n t w ith th o s e observed in t h i s s tu d y .

137

Page 162: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

3i4i4i2j._Case5_Df_mismaBEiD9i There was a p o s s ib i l t y , th a t some s i t e s may have been "m ismapped" because

o f th e d i f f i c u l t y in ch oo s in g between two o r more " s e m is i te s 11 y ie ld in g

fra g m e n ts o f a lm o s t id e n t ic a l s iz e s . T h is p rob lem was a c c e n tu a te d ,

e s p e c ia l ly w ith te t r a n u c le o t id e b a s e -c u t te rs , w ith in c re a s in g d iv e rg e n c e

between th e sam ple r e s t r i c t i o n p r o f i l e compared to th e k . b . s (B ib b et al.,

1981). However, W ilson & c o lle a g u e s (p e rs comm.,) re -e xa m in ed t h e i r

lo c a t io n o f p o s tu la te d s i t e s ( F e r r is et a l - , 1982, 1983 ), r e la t i v e to

a n o th e r p u b lis h e d sequence (Yonekawi & F is c h e r L in d a h l, 1987), and found

th e re was an e x c e l le n t agreem ent between th e sequences. They conc luded th a t

t h i s j u s t i f i e s u s in g th e r e s t r i c t i o n mapping approach to e s tim a te sequence

d iv e rg e n c e s . Any c o r r e c t io n s o f m ismapping le a d o n ly t o re f in e m e n ts ra th e r

tha n s ig n i f i c a n t r e v is io n s o f any c o n c lu s io n s drawn from th e s e com parisons.

3i 5i_Summary£

Between two to fo u r te e n r e s t r i c t i o n endonucleases were used t o screen fo r

th e presence o r absence o f c le a vag e s i t e s a t a p p ro x im a te ly 370 lo c a t io n s in

h ig h ly p u r i f ie d m ito c h o n d r ia l DNA o f 430 B r i t i s h house m ice , to g e th e r w ith

d a ta from 208 Hus domesticus from w o r ld -w id e c o l le c t io n s ( F e r r is et al.,

1983). By com paring th e DNA fra g m e n t s iz e s w ith th o se expec ted from th e

k .b .s o f mouse mtDNA (B ib b et al., 1981), u s in g th e sequence com parison

r e s t r i c t i o n mapping te c h n iq u e (Cann & W ils o n , 1983), c le a va g e maps were

c o n s tru c te d f o r a l l in d iv id u a ls . Of th e 370 s i t e s mapped, 140 were v a r ia b le

(p o ly m o rp h ic , b e in g p re s e n t in some in d iv id u a ls b u t absen t in o th e rs ) and

230 were c o n s ta n t ( ie . in v a r ia n t , found in a l l in d iv id u a ls exam ined). The

138

Page 163: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER THREE

v a r ia n t s i t e s re s u lte d -from s in g le base p a i r s u b s t i t u t io n s , o c c u r r in g in

a l l - fu n c t io n a l re g io n s o f th e genome? no h e te ro p lasm y o r le n g th v a r ia n ts

were d e te c te d . In 75 cases, i t was p o s s ib le to map th e e x a c t n a tu re and

lo c a t io n o f th e m u ta tio n re s p o n s ib le f o r th e absence o f a r e s t r i c t i o n s i t e

in th e k .b .s and i t s p resence in a n o th e r mouse mtDNA. Df th e s e 75 g a in

m u ta tio n s , 58 o ccu rre d in genes c o d in g f o r p r o te in s , o f w h ich 30 were

s i le n t and 28 caused amino a c id re p la c e m e n ts . V a r i a b i l i t y o f d i f f e r e n t

fu n c t io n a l re g io n s in th e m ito c h o n d r ia l genome, from th e most conserved to

th e most v a r ia b le , in c lu d e s a l l 22 t r a n s fe r RNA genes, 12S & 16S rib o som a l

RNA genes, Cytochrom e genes (cy toch rom e o x id a s e s u b u n its I —111, cytochrom e

b , and ATPase s u b u n its 6 & 8 ) , th e d is p la c e m e n t lo o p , and l a s t l y th e NADH

dehydrogenase s u b u n it genes (1 -6 , & 4 L ) .

O nly s l i g h t l y more t r a n s i t i o n s th a n t ra n s v e rs io n s were found ( r a t io - 1.14s

1 ) , a r a t i o c o n s id e ra b ly lo w e r tha n th o s e re p o r te d fro m sequenc ing s tu d ie s

o f v a r io u s ta x a , b u t c o n s is te n t w ith com parab le s tu d ie s u s in g th e h ig h

r e s o lu t io n r e s t r i c t i o n mapping app roach . E ith e r mouse mtDNA i s e v o lv in g a

more r a p id ly r e la t i v e to o th e r ta x a o r th e re i s a d i f f e r e n t i a l DNA r e p a ir

mechanism. A l t e r n a t iv e ly , d iv e rg e n c e e s tim a te s d e r iv e d from sequence

s tu d ie s o f sm a ll gene re g io n s c o u ld be in f la t e d , o r th e non-random

p lacem ent D f r e s t r i c t i o n s i t e s a c ro s s th e genome c o u ld cause under

e s tim a te s u s in g th e r e s t r i c t i o n mapping method.

139

Page 164: (Hus domesticus. Rut t y ) - UCL Discovery

IABLE_3ili_MII0CH0NDRIAL_DNA_RESIRICII0N_FRAGMENI_DIGESII0N_PR0FILESi

The s iz e s ( in b a s e -p a irs ) o f -Fragments w h ich c h a r a c te r is e th e mtDNA d ig e s t io n

p r o - f i le s produced by -fo u rte e n r e s t r i c t i o n endonuc leases (Acc I , Ava I I , Fnud

I I , H inc I I , H ind I I I , H in f I , Hpa I I , Taq I , Hae I I I ,M b o I , A lu I , Rsa I , Sau

96 I , and Xba I ) i s shown. The s iz e s o-F fra g m e n ts obse rved in th e mtDNA

d ig e s t io n p r o - f i le s in e i t h e r agarose o r p o ly a c ry la m id e g e ls were e s tim a te d

fro m com parisons w ith th e known fra g m e n t s iz e s in th e p u b lis h e d re fe re n c e

sequence (B ibb e t a l , , 1981 ), p lu s a d d i t io n a l m o le c u la r w e ig h t m arke rs (1 KB

la d d e r , Lambda DNA c u t w ith H ind I I I and o r w ith Bgl I ) .

The mtDNA d ig e s t io n p a t te rn p r o f i l e s f o r each r e s t r i c t i o n endonuclease were

g iv e n a l e t t e r d e s ig n a t io n . Where p o s s ib le , th e s e p r o f i l e s were compared to

p u b lis h e d d a ta f o r Hus domesticus ( F e r r is e t a l , , 1983) and th e same l e t t e r

d e s ig n a t io n s adop ted . By c o n v e n tio n l e t t e r A i s re s e rv e d f o r th e p r o f i le s o f

th e known base seqence.

1 Fragment p r o f i l e s d e s c r ib e d by F e r r is e t a i . , (1983) b u t n o t p re v io u s ly

re c o rd e d f o r th e B r i t i s h House mouse p o p u la t io n s used in t h i s s tu d y .

2 New fragm en t p r o f i l e s n o t p r e v io u s ly d e s c r ib e d .

N .B . A l l p r o f i l e s w ith o u t a s u p e rs c r ip t deno te ty p e s n o t fo u n d in th e B r i t i s h

I s le s b u t a re d e s c r ib e d e lse w he re ( F e r r is et a l , , 1983).

Below each d ig e s t io n p r o f i l e th e number o f fra g m e n ts obse rved was re c o rd e d ,

and th e mean number o f fra g m e n ts seen when House mouse mtDNA was c le a ved w ith

t h a t p a r t i c u la r r e s t r i c t i o n endonuc lease in q u e s tio n was n o te d .

140

Page 165: (Hus domesticus. Rut t y ) - UCL Discovery

I£®ki_3iIl_MIIQCH0NDRIAL_DNA_RESIRICIION_FRAGMENT_DIGESIION_PROFIL.es.

ACC_I|

B C D7358 5048 6080* 6080*5048 3188* 5048 4258*2304 2892* 2304 2304

813 2304 1278* 1278*468 1278* 813 813259 813 468 790*

45 468 259 468259 45 259

45 45

7 9 8 9

MEAN=7.88

A V A _ II:

A B C D6510 4835* 8234* 10368*2134 2134 2134 20462046 2046 2046 16591724 1724 1659* 6091659 1675* 609 514609 1659 514 479514 609 479 346479 514 346 274346 479 274274 346

274

10 11 9 8

MEAN=10.22

E J K L 27358 7358 7358 6164*5048 4258* 2591* 50482563* 2304 2457* 2304

813 813 2304 1194*468 790* 813 813

45 468 468 468259 259 259

45 45 45

6 8 8 8

I J 2 K 2 L 2 M 25249* 6090* 6208* 6208* 6090*2985* 2134 2134 2134 21342134 2046 2046 2046 20462046 1724 1724 1724 1933*1659 1659 1659 1659 1724609 609 1123* 609 609514 514 479 514 514479 479 346 479 479346 346 302* 346 346274 302* 274 302* 302*

274 274 118*116*

10 12 10 11 11

141

Page 166: (Hus domesticus. Rut t y ) - UCL Discovery

E N y? L ii_ i lH A H i.

A x B6434 4623*1907 19071666 1811*1633 16661562 16331455 15621403 1455235 1403

235

8 9

MEAN= 7 .67

K 2 I6434 7996*3362* 19071666 16661633 16331562 14551403 1403235 235

7 7

d IN C _ IH

A 1 B C 68941 8022* 8356* 89413265 3265 3265 32652266 2266 2266 1695*1494 1494 1494 1494329 919* 585* 571*

329 329 329

5 6 6 6

MEAN= 5 .7 5

HIND_III1A 1 B 113462 15407*

1945 888888

3 2

MEAN= 2 .5

J 2 6434 3573* 1633 1562 1455 1403 235

7

142

Page 167: (Hus domesticus. Rut t y ) - UCL Discovery

L1993173413291242$10301946920879732$638539485480447444$417405$39936831821219567$67

9

25

143

c 1 D E F1993 1841$ 1993 19931734 1734 1734 17341329 1242$ 1026 13291026 946 920 1026946 920 915$ 946920 915$ 879 920879 879 746$ 879638 638 638 638539 539 539 539533 533 533 533497 497 497 497489 489 489 489485 485 485 485480 480 480 480447 447 447 447417 417 417 405$405$ 414$ 414$ 399399 405$ 405$ 387$368 399 399 368367 368 368 367318 367 367 318243 246$ 318 243216 243 243 216212 212 216 212195 195 212 195144 152$ 200$ 144

67 144 195 679 72 144 30$

67 67 99 9

28 30 30 29

H I J K1993 1734 1993 19931734 1632$ 1734 13291026 1326 1329 1067$946 1026 1030$ 1026920 946 1026 946915$ 920 946 920879 915$ 920 879638 638 879 638539 539 732$ 539533 533 638 533497 497 539 497489 489 485 489485 485 480 485480 480 447 480447 417 417 447417 414$ 405$ 417414$ 405$ 399 405$405$ 399 368 404$399 368 367 399368 367 318 368367 361$ 216 367318 318 212 318243 243 195 263216 216 144 243212 212 67 216195 195 9 212144 144 19567 67 144

9 9 679

29 29 26 30

Page 168: (Hus domesticus. Rut t y ) - UCL Discovery

H IN F_I_=CONTINUEDi

M N 0 T U 11734 1993 1734 1993 19931690* 1734 1632* 1734 17341632* 1242* 1459* 1026 13291026 946 1329 946 1026946 920 1026 920 946920 915* 946 905* 920879 879 879 879 879638 732* 638 638 638539 638 533 539 539533 539 497 533 497497 533 489 497 489489 497 485 489 485485 485 480 485 480480 480 447 480 447447 447 417 447 417417 417 399 424* 405*405* 414* 368 417 399399 405* 367 399 368368 399 361* 368 367367 368 318 367 348*318 367 263 318 318243 318 243 263 243216 212 216 243 216212 195 212 216 212195 144 195 212 195144 67 144 195 185*

67 9 94 144 1449 67 94 67

48 67 99 48

9

28 27 30 31 29

W Y Z 1 A’ (P) B ' (Q)1993 1993 1993 1993 17341418* 1734 1734 1734 1632*1026 1329 1459* 1329 1026946 1326* 1329 1284* 946920 1026 1026 1242* 920915* 946 946 1030* 915*879 920 879 946 879638 638 638 879 638539 539 533 732* 539533 533 497 638 533497 497 489 485 497489 489 485 480 489485 485 480 447 485480 480 447 417 480447 417 417 405* 447417 368 399 399 417414* 367 368 368 414*405* 327* 367 367 405*399 305* 318 318 399368 263 263 212 368318 243 243 195 367316* 216 216 175* 361*243 212 212 144 31B216 195 195 67 243212 144 144 9 216195 94* 94 212144 94 67 195

67 67 48 1449 48 9 67

9

29 29 29 25 30

V199317341242*946920915*879638539533497489485480447417414*405*39936836731824321219514467

9

28

1 4 4

Page 169: (Hus domesticus. Rut t y ) - UCL Discovery

HINF_I_CONIINUEDi i i i

C’ (R) S 2 X 2 3 21937* 1993 1993 19931734 1734 1734 17341026 1459* 1329 1459*946 1329 1026 1329920 1026 946 1026879 946 920 946746* 879 900* 379638 353* 638 638539 638 539 -J •-» o533 533 533 511*497 497 497 497489 489 489 489485 480 435 435480 447 480 480447 417 426* 447417 399 417 417414* 367 405 * 799405* 318 399 368399 263 368 318368 243 367 “T367 216 318 •'1?318 212 243 216243 195 216 212216 144 jl i*; 195*"> * O 1 94 195 94195 67 144 67174* •*8 481446756*

9

9 Q 9

31 23 28 28

MEAN= 28 .67

145

G 219931418*13291 026

946920379633539C77w -;049 7489485480447417405*399368367318316*24321621219514467

9

29

Page 170: (Hus domesticus. Rut t y ) - UCL Discovery

HAE I I I :

A 1 B 1 C D E2042 1951 2042 2042 19511951 1362 1362 1951 13621362 1229* 1230* 1362 1229*969 969 969 969 969945 945 945 945 945852 852 852 852 852641 813* 721* 641 813*590 641 641 590 641560 590 590 578* 590553 578* 560 560 560550 560 553 553 553526 553 550 550 550479 550 526 546* 526469 526 479 526 479456 479 469 469 469448 469 456 448 456438 448 448 438 448398 438 438 398 43B334 398 398 334 398266 334 334 266 334216 266 266 225* 266211 216 216 216 216136 211 211 211 211128 136 136 136 136122 128 128 128 128122 122 122 74 122103 103 122 69 122

74 74 103 62 10369 69 74 51 7467 67 69 39 6962 62 67 33 6751 51 62 33 6239 39 51 5133 33 39 3933 33 33 33

33 33

35 35 36 32 36

M N 0 P Q1951 1951 2389* 2042 20421362 1423* 1362 1362 1951969 1362 1229* 1230* 1362954* 969 969 969 969945 945 945 945 945852 852 852 852 852813* 641 813* 721* 641641 619* 641 641 590590 590 590 590 578*560 560 560 578* 560553 553 553 560 553550 550 550 553 550526 526 526 550 526479 479 479 526 479469 469 469 479 469456 456 448 469 448445* 448 398 448 438438 438 334 438 398398 398 266 398 334334 334 216 334 266275* 266 211 266 216266 216 136 216 211216 211 128 211 136211 136 122 136 128136 128 103 128 122128 122 74 122 103122 122 69 103 74122 103 67 74 69103 74 62 69 6774 69 51 67 6269 67 39 62 5167 62 33 51 3962 51 33 39 3351 39 33 3339 33 3333 3333

37 36 33 35 34

F204219511362969945852641590560553550526479469456448438398279266216211136128122122103

7469676255*51393333

36

1 4 6

Page 171: (Hus domesticus. Rut t y ) - UCL Discovery

HAE_IIls._CONIINyEpi i

R 2 S 2 T 2 U 2 V 2 W 2 X 22307* 2042 2042 2042 2042 2042 20422042 1951 1951 1951 1951 1951 19511951 1362 1574* 1362 1362 1362 1362969 969 1362 969 969 969 969852 945 969 945 945 945 945641 852 852 852 891* 852 852590 641 641 641 641 641 641577* 590 590 590 590 590 590560 553 553 583* 583* 560 577*553 550 550 560 560 553 560550 526 526 553 553 550 553479 479 479 526 526 526 550473* 469 469 479 479 479 479456 465* 456 469 469 469 473*448 456 448 456 456 456 456438 448 438 448 448 448 448398 438 398 438 438 438 438334 398 334 398 398 398 398266 334 266 334 334 316* 334216 266 216 266 266 266 266211 216 211 216 216 216 216136 211 136 211 211 211 211128 136 128 136 136 136 136122 128 122 128 128 128 128122 122 122 122 122 122 122103 122 103 122 122 122 122

74 103 74 103 103 103 10369 95* 67 74 74 74 7463* 74 62 69 69 69 6962 69 51 67 67 67 63*39 67 39 62 62 62 6233 62 33 51 51 51 3933 51 33 39 33 39 33

39 33 33 3333 3333 18*

33 36 33 34 34 36 34

MEAN= 3 4 .7

147

Page 172: (Hus domesticus. Rut t y ) - UCL Discovery

H P A _ IIi

A 1 B C7336 7336 73362325 2325 23252012 2012 20121737 1737 1737813 760* 813692 692 692649 649 649387 387 387162 162 276*114 114 68

68 6853*

11 12 10

MEAN= 10.75

IA Q _I

A 1

B 1 C2245 2245 22451909 2167 18771877 1877 17731773 1773 14781472 1472 14721403 1403 14031079 1079 1079914 914 786786 786 783783 783 777633 633 689597 597 633272 272 597258 205 272205 44 205

44 22 13722 13 4413 10 2210 13

10

19 IB 20

MEAN= 19

D 1 7336 2325 2012 1737 881 * 692 649 387 162 114

10

D E G2245 2245 22451877 1B77 21671773 1795 18771478 1478 17731472 1472 14721403 1403 14031079 1079 1079914 914 914786 786 786783 783 783689 689 633633 633 308597 597 289272 272 272205 205 205

44 44 4422 13 2213 10 1310 10

19 18 19

Q22451909177314721433140310799147867B3633597444272258205

44221310

20

1 4 8

Page 173: (Hus domesticus. Rut t y ) - UCL Discovery

MBO I :

A 1 B C D E F 6 H I J K2009 2009 2009 2009 2009 2009 2009 2009 2009 2269* 20091608 1608 1372 1819* 1608 1697* 1608 1608 1608 2009 16081372 1344 1344 1344 1372 1372 1564 1564* 1564* 1819* 1564*1344 885* 951* 885* 1344 936* 1344 1344 1344 1344 1344845 845 868* 845 860* 845 845 845 845 845 845111 772 845 772 845 772 772 772 772 772 772705 705 772 705 772 705 705 705 705 598 705598 598 705 598 705 598 598 598 598 581 598581 581 598 581 598 581 581 594* 581 533 581533 579* 581 533 581 533 533 581 529 529 529529 533 533 529 529 529 529 533 488 499* 488488 488 529 488 488 488 488 529 468 488 468468 487* 488 487* 468 468 468 488 461 461 461461 468 468 468 461 461 461 468 444* 439 444*439 461 461 461 439 439 444* 461 439 369 369369 439 439 439 369 408* 439 369 369 343 343343 369 369 369 343 369 369 343 343 340 320*340 343 343 343 340 343 343 340 320* 301 301301 340 340 340 301 340 301 301 301 297 297297 301 301 301 297 301 297 297 297 259 272*259 297 297 297 259 297 259 259 259 222 259222 259 259 259 211 259 222 222 222 155 222211 222 222 222 192 222 211 211 213* 147 213192 211 192 192 155 192 155 147 211 120 211155 192 155 155 147 155 147 120 155 105 167*147 155 147 147 120 147 120 105 147 104 155120 147 120 120 104 122* 105 104 120 95 147105 120 105 105 95 120 95 95 105 88 120104 105 104 104 88 105 88 88 95 67 10595 104 95 95 67 104 67 67 88 63 9588 88 88 88 63 95 63 63 67 34 8867 67 67 67 34 88 34 34 63 6763 63 63 63 31 67 31 31 34 6334 45* 34 34 63 31 3431 34 31 31 34 31

31 31

35 36 35 35 33 36 33 33 34 31 35

149

Page 174: (Hus domesticus. Rut t y ) - UCL Discovery

MBO I CONTINUED.

R S T U X 1 Y Z W 2 D 2 / 2 8 22009 2009 2009 2009 2009 2009 2009 2009 2009 2009 20091608 1608 1372 1819$ 1608 1819$ 1608 1608 1608 1608 16081564$ 1564$ 1344 1372 1372 1564$ 1372 1372 1372 1372 13721344 1344 951$ 936$ 1344 1344 1344 1034$ 1344 1344 1179$845 845 868$ 845 845 845 845 845 B45 845 845111 772 845 772 772 772 772 772 772 772 772705 705 772 705 705 705 705 705 705 705 705598 598 705 598 598 598 598 598 614$ 614$ 598581 581 594$ 581 581 581 581 581 581 581 581533 533 581 533 533 533 533 533 533 579$ 533529 529 533 529 529 529 488 529 529 533 529488 488 529 488 488 488 468 488 499$ 529 488468 468 488 468 468 468 461 468 488 499$ 468461 461 468 461 461 461 439 461 461 488 461439 369 466$ 439 439 439 369 439 439 461 439369 343 369 408$ 369 369 343 369 369 369 369343 340 343 369 343 343 340 343 343 343 343340 328$ 340 343 340 340 301 340 340 340 340301 301 301 340 327$ 301 297 310$ 301 301 301297 297 297 301 301 297 293$ 301 297 297 297259 259 259 297 297 259 259 297 259 259 259222 222 222 259 259 222 236$ 259 222 222 222211 211 211 222 211 155 222 222 211 211 211155 155 192 192 192 147 211 211 192 192 192147 147 147 155 155 120 192 192 155 147 165$120 120 120 147 147 105 155 155 147 120 155105 111$ 105 120 120 104 147 147 120 105 147104 105 104 105 104 95 120 120 105 104 12095 104 95 104 95 88 105 105 104 95 10588 95 88 95 88 67 104 104 95 88 10467 88 67 88 67 63 95 95 88 63 9563 67 63 67 63 34 88 88 63 51$ 8834 63 34 63 34 31 67 67 51$ 34 6731 34 31 34 31 63 63 34 15$ 63

31 31 34 34 31 3431 31 31

34 35 34 35 34 33 36 36 35 34 36

MEAN= 3 4 .5

1 5 0

Page 175: (Hus domesticus. Rut t y ) - UCL Discovery

s u l h

A 2 B 2 C 2 D 21069 1069 1069 1069905 905 905 905709 725* 725* 725*680 709 709 709654 659* 659* 659*608 608 608 608554 554 554 554545 551* 552* 551*545 545 551* 545530 530 545 530451 451 538* 451450 450 451 450450 450 450 450448 381 381 381381 365 365 365365 359* 359* 359*352 352 352 352348 348 348 348318 318 318 318317 317 317 317311 311 311 311298 298 298 298294 294 294 294292 292 292 292277 277 277 277269 269 249 269249 249 244* 249243 243 243 244*207 207 207 243188 188 188 207175 175 175 188170 170 170 175164 164 164 170162 162 162 164144 144 144 162132 132 132 144124 124 124 132121 121 121 124116 116 116 121112 112 112 116105 105 105 112105 105 105 105104 104 104 105102 102 102 10499 99 99 10298 9B 98 9993 93 93 9886 89* 89* 9383 86 86 89*67 83 83 8658 67 67 8354 58 49* 6752 52 47 5849 49* 47 52

E 2 F 2 G 2 H 21069 1069 1069 1069905 905 905 905709 709 709 709680 680 680 680662* 654 654 654608 608 608 608554 554 554 554545 545 545 552*545 545 545 545530 530 530 545451 451 451 530450 450 450 451448 450 450 450438* 448 448 448381 381 381 381365 365 374* 365352 365* 352 352348 352 348 348318 318 318 318317 317 317 317311 311 311 311298 298 298 298294 294 294 294292 292 292 292277 277 277 277269 269 269 269249 249 249 249243 243 243 243207 207 207 207188 188 188 188175 175 175 175170 170 170 170164 164 164 164162 162 162 162144 144 144 144132 132 132 132124 124 124 124121 121 121 121116 116 116 116112 112 112 112105 105 105 105105 105 105 105104 104 104 104102 102 102 10299 99 99 99^98 98 98 9893 93 93 9386 86 86 8683 83 83 8367 67 67 6758 58 58 5454 54 54 5252 52 52 4949 49 49 47

151

Page 176: (Hus domesticus. Rut t y ) - UCL Discovery

47 49 45 49 47 47 47 4747 47 44 49* 47 47 47 4545 47 36 47 45 45 45 4545 45 33* 47 45 44 45 4044 44 30 45 44 40 44 3640 36 26 44 40 36 40 3036 33* 25* 36 36 30 36 2630 30 24 33* 30 28* 26 2426 26 11 30 26 26 24 1124 24 9 26 24 24 21* 911 11 9 25* 11 11 11 99 9 24 9 9 99 9 11

99

9 9 9

>7 67 65 69 67 68 67 65

MEAN= 66 .88

Page 177: (Hus domesticus. Rut t y ) - UCL Discovery

J 2>196*1294.280994755*751729*678655*639*594572*473455372344*306302*291275274259240228218188*151*133*109*968786*866054*24171587 *

40

B.7

c 2 D 22925 29251294 12941280 1280994 994751 751720 720678 678655* 658623 623594 594572* 577495 488473 473455 455372 372308 308306 306297 297291 291275 283*274 281*259 259240 232*228 228218 218187 18796 9687 8786* 8686 7860 6035 3524 2417 1717 1715 158 8

37 37

F 2 G 22196* 2196*1294 12941280 1280994 994755* 755*751 751729* 729*678 682*655* 655*639* 639*594 594572* 572*473 473455 455372 372344* 344*306 306302* 302*291 291275 275274 274259 259240 240228 228218 218188* 184*183* 151*151* 133*133* 109*109* 9686* 8786 86*60 8654* 6024 54*17 2415 178 157* 8

7 *

39 40

E 22196*12941280994755*751729*678655*639*594572*473455372344*306302*291275274248*240228210*188*151*133*109*

968786*866054*2419*171587*

41

1 d 3

Page 178: (Hus domesticus. Rut t y ) - UCL Discovery

bU

B 245922046172416591258615584*573499469463447390346142132887867656115

11

24

24

B757650662378<

934341

5

5 .5

C 2 4592 2046 1724 1654 1258 615 584* 57B* 499 469 463 447 390 346 142 132 88 67 65 56* 15

1 1

23

154

Page 179: (Hus domesticus. Rut t y ) - UCL Discovery

T a b le 5 .2 : Summary o f r e s t r i c t i o n fra gm en t d i g e s t i o n pat t e rn s .

T h is ta b le summaries th e r e s t r i c t i o n fra g m e n t d ig e s t io n p r o f i l e s and th e

fra g m e n ts w h ich c h a r a c te r is e them , by each r e s t r i c t i o n endonuc lease employed

in th e s tu d y .

1 - th e t o t a l number o f d ig e s t io n p r o f i l e s re c o rd e d f o r ffus dowesticus

( F e r r is et al., 1983 - W estern European, M e d ite rra n e a n , and O ld W orld

p o p u la t io n s ; t h i s s tu d y - th e B r i t i s h I s le s ) f o r each p a r t i c u la r enzyme used.

2 - th e number o f p r o f i l e s d e s c r ib e d e lse w he re b u t n o t p r e v io u s ly re co rd ed

f o r th e B r i t i s h p o p u la t io n s exam ined in t h i s s tu d y .

3 - new B r i t i s h d ig e s t io n p r o f i l e s n o t d e s c r ib e d b e fo re .

4 - th e t o t a l number o f fra g m e n t d ig e s t io n p r o f i l e s observed in th e B r i t s h

I s le s .

5 and 6 - th e minimum and maximum numbers o f fra g m e n ts r e s p e c t iv e ly ,

c h a r a c te r is in g th e d ig e s t io n p r o f i l e s per r e s t r i c t i o n endonuc lease used.

7 - th e number o f fra g m e n ts c h a r a c te r is in g th e known base sequence d ig e s t io n

p r o f i l e s per enzyme used.

2

135

Page 180: (Hus domesticus. Rut t y ) - UCL Discovery

Tab l e 3 .2 : Summary o f r e s t r i c t i o n -fragment d i g e s t i o n p ro f i l e s .

Enzyme Number o f d ig e s t io n p r o f i l e s Number o f fra g m e n ts

T o ta l in in B r i t a in !Mus domesticus p r e v io u s ly u n iq u e t o t a l min max base

re co rd e d sequence

Acc I 8 1 1 2 6 9 7

Ava I I 9 - 4 4 8 12 10

Fnud 11 6 1 2 3 7 9 8

H inc I I 4 1 - 1 5 6 5

H ind I I I 2 2 - 2 2 3 3

H in f I 27 4 4 8 25 31 30

Hpa I I 4 2 - 2 10 12 11

Taq I 7 2 - 2 18 20 19

Xba I 2 1 - 1 5 6 6

Hae I I I 18 1 7 8 32 37 35

Mbo I 22 2 4 6 31 36 35

A lu I 8 - 8 65 69 67

Rsa I 7 - 7 7 37 41 37

Sau 96 I 4 - 4 4 22 25 25

T o ta ls 128 17 41 58 274 316 2

Page 181: (Hus domesticus. Rut t y ) - UCL Discovery

Ta b le 3.3A-N ? V a r ia b le r e s t r i c t i o n s i t e s o f mouse mtDNA d e te c te d w i th

fo u r te e n r e s t r i c t i o n endonuc leases .

U sing th e sequence com parison m ethod, c le a va g e maps f o r e v e ry mouse f o r

each o f th e fo u r te e n enzymes, were c o n s tru c te d . T a b les 3 .3 A-N l i s t s th e

hundred v a r ia b le s i t e s in fe r r e d fro m th e s e maps.

The p u b lis h e d mouse mtDNA re fe re n c e sequence (B ibb e t a l 1981) i s th e

l i g h t s tra n d (L) hence o n ly base changes o c c u r r in g on t h i s s t ra n d a re

in d ic a te d . The b a s e -p a ir num bering in t h i s sequence b e g in s a t th e f i r s t 5 '

n u c le o t id e o f th e t r a n s fe r RNApH" and p roceeds w ith in c re a s in g number

th ro u g h th e rRNA genes to th e o r ig in o f th e heavy s tra n d (H) o f

m ito c h o n d r ia l r e p l ic a t io n ( f ig u r e 1 .1 ) .

S ta r t - r e fe r s to th e f i r s t base o f th e re c o g n it io n sequence o-f th e

p a r t i c u la r r e s t r i c t i o n endonuclease used where th e v a r ia b le s i t e i s

1o ca te d .

For th e p ro te in -c o d in g re g io n s w ith g a in m u ta tio n s r e la t i v e t o th e

re fe re n c e sequence, th e e x a c t lo c a t io n and n a tu re o f th e base change can

be in fe r r e d . The s i l e n t and re p la ce m e n t s u b s t i t u t io n s (S I, S3 and R1-R3

r e s p e c t iv e ly ; th e numbers r e fe r t o th e codon p o s i t io n s o f th e base change)

a re in d ic a te d f o r th e p ro te in - c o d in g genes.

For lo s s m u ta tio n s th e e x a c t base canno t be in fe r r e d th e r e fo r e th e

lo c a t io n s o f th e w ho le re c o g n it io n sequence i s g iv e n . The fu n c t io n a l re g io n

where th e base change i s lo c a te d i s a ls o n o te d , re g a rd le s s o f w he the r i t i s

a g a in o r lo s s m u ta tio n (a b b re v ia t io n s f o r genes g iv e n in f ig u r e 3 .4 A ) .

0 o r 1 in d ic a te s a lo s s o r g a in o f a s i t e r e la t i v e t o th e re fe re n c e

sequence. The fra g m e n t p a t te rn p r o f i l e s and t h e i r a s s o c ia te d c le a v a g e maps

a re re fe r re d to by c a p i ta l l e t t e r s (see ta b le 3 .1 ) . The use o f t a b le 3 .4

(c o n s ta n t s i t e s ) in c o n ju n c t io n w ith th e v a r ia b le s i t e ta b le s a llo w s th e

c o n s t ru c t io n o f com p le te c le a va g e maps f o r each enzyme f o r each mtDNa ty p e .

1 3 ?

Page 182: (Hus domesticus. Rut t y ) - UCL Discovery

1 D e sc rib e d e lse w h e re ( F e r r is et aim, 1983) b u t n o t p r e v io u s ly re c o rd e d

■for th e B r i t i s h p o p u la t io n s exam ined in t h i s s tu d y .

2 New u n iqu e d ig e s t io n p r o f i l e s n o t p r e v io u s ly re c o rd e d .

A l l p r o f i l e s w ith o u t a s u p e rs c r ip t d e n o te p r o f i l e s n o t d is c o v e re d in th e

B r i t i s h I s le s and a re d e s c r ib e d e lse w h e re ( F e r r is etal•, 1 98 3 ). New la b e ls

a re g iv e n in b ra c k e ts to r e a d i ly d is t in q u is h between ty p e s f o r subsequen t

com pute r a n a ly s is where p r o f i l e s were p re v io u s ly deno ted w ith a p rim e ( ie .

A’ ) fo l lo w in g F e r r is e t al*s n o m e n c la tu re .

t in d ic a te s s i t e lo c a t io n s n o t re c o rd e d b e fo re .

* A m u ta tio n o f C to G a t p o s i t io n 15925 ( s i t e 6 ; t a b le 3 .3 D ) , lo c a te d in

th e D -loo p re g io n , p roduces an Acc I s i t e , s im u lta n e o u s ly c a u s in g th e lo s s

o f th e Hae I I I s i t e a t 15923 ( s i t e 19; ta b le 3 .3 E ). T h is s i t e change i s

o n ly coun ted once f o r p h y lo g e n e tic p u rp o se s .

b A m u ta tio n o f G t o A a t 12516 ( s i t e 7 ; ta b le 3 .3 E ) , lo c a te d in th e ND 5

re g io n , causes th e lo s s o f an Ava I I s i t e and th e c o n c o m ita n t g a in o f an

Mbo I s i t e a t 12515 ( s i t e 17? ta b le 3 .3 J ) . Afew m ice were obse rved to have

lo s t th e A v a i l s i t e w ith o u t g a in in g an Mbo I s i t e , e x p la in e d by a m u ta tio n

o f G to e i t h e r C o r T. These s i t e s were coun ted tw ic e in th e subsequent

a n a ly s e s .

c A m u ta tio n o f G t o A a t 14240 ( s i t e 8J ta b le 3 .3E ) in th e Cytochrom e B

gene, r e s u l t s in th e lo s s o f an Ava I I s i t e and s im u lta n e o u s g e n e ra tio n o f

an Mbo I s i t e a t 14239 ( s i t e 21; ta b le 3 .3 J ) . The absence o f b o th s i t e s was

a ls o n o te d , accoun ted f o r by a m u ta tio n o f G to e i t h e r T o r C a t p o s i t io n

14239. Hence t h i s s i t u a t io n was d e s c r ib e d as two s i t e s f o r th e p h y lo g e n e t ic

a n a ly s e s .

d A m u ta tio n o f G t o any o f th e o th e r bases (A, T, o r C) a t p o s t io n 3335 in

th e ND 1 re g io n , causes bo th th e lo s s e s o f th e Hpa I I s i t e ( s i t e 2 ; ta b le

3 .3G ) and th e Hae I I I s i t e ( s i t e 1; ta b le 3 .3 1 ) . However a base change a t

Page 183: (Hus domesticus. Rut t y ) - UCL Discovery

s i t e s 3332-4 r e s u l t s in th e lo s s o f th e Hpa I I s i t e w ith o u t th e lo s s o f th e

Hae I I I s i t e . , th u s th e se s i t e changes a re coun ted tw ic e .

* A m u ta tio n o-f T t o C a t s i t e 3788 in th e t r a n s fe r RNA010 gene e x p la in s

b o th s i t e g a in s a t 3787 (Taq I : s i t e 3 ; ta b le 3 .3H ) and 3784 (H in f I :

s i t e 7; ta b le 3 .3 K ) , w h ich was o n ly coun ted as one s i t e f o r p h y lo g e n e t ic

p u rpo se s .

* A s in g le gene m u ta tio n a t 9577 -8 causes th e s im u lta n e o u s p resence o r

absence o f b o th th e Taq I s i t e a t 9577 ( s i t e 5 ; ta b le 3 .3H ) and th e H in f I

s i t e a t 9574 ( s i t e 17; ta b le 3 .3 k ) . A ga in t h i s base change was coun ted o n ly

once.

9 A m u ta tio n o f G to A a t p o s i t io n 11168 in th e ND 4 re g io n causes th e lo s s

o f th e Mbo I s i t e ( s i t e 14; ta b le 3 .3 J ) and th e subsequent g a in o f a H in f I

s i t e ( s i t e 19; ta b le 3 .3 K ). A d d i t io n a l l y a m u ta tio n o f G t o e i t h e r T o r C

a t t h i s s i t e causes th e absence o f b o th s i t e s . However, th e d ig e s t io n

p r o f i l e s observed c o u ld a ls o be e x p la in e d by a g a in o f a h in f I s i t e

s t a r t in g a t 11168 by way o f a m u ta tio n o f C to T a t p o s i t io n 11171, p lu s a

change to A o r G a t t h i s p o s i t io n e x p la in s th e absence o f b o th s i t e s

( F e r r is e t a i . , 1983). These s i t e changes were coun ted tw ic e in th e

p h y lo g e n e t ic a n a ly s e s .

h In th e ND 3 re g io n a m u ta tio n o f G to A a t p o s i t io n 4276 causes th e lo s s

o f a Mbo I s i t e ( s i t e 5 ; ta b le 3 .3 J ) and th e c o n co m ita n t g a in o f a h in f I

s i t e ( s i t e 8 ; ta b le 3 .3 k ) . A lso a M u ta tio n o f G to e i t h e r T o r C a t t h i s

s i t e r e s u l t s in th e lo s s o f b o th s i t e s , as a consequence th e s e s i t e changes

were d e s c r ib e d as two f o r p h y lo g e n e t ic p u rp o se s .

1

Page 184: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3 . 5As V a r ia b le r e s t r i c t i o n s i t e s o-f Hus dom esticus mtDNA d ig e s te dw i th Hind I I I .

L o c a tio n o-f s i t e P resence o-f s i t e

s i t e s t a r t base change ■ fun c tio na lre g io n A B

1 9136 9136-41 CO I I I 1 0

TABLE 3 .3B : V a r ia b le r e s t r i c t i o n s i t e s o f Hus domesticus mtDNA d ia e s te dw ith Xba I ,

L o c a tio n o f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a l re g i on A B

1 B984 8984-9 CO I I I 1 0

t g o

Page 185: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3 .3C : V a r ia b le r e s t r i c t i o n s i t e s o-f Hus dow esticus mtDNA d ig e s te dw i th H inc I I .

L o c a tio n o f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a lre g io n A B C G

1 7147 7147, A-G, S3 CO I I 0 0 0 12 B637 8642, T-C, S3 CO I I I 0 1 0 03 16074 16074 C-G D-L00P 0 0 1 0

TABLE 3.3D? V a r ia b le r e s t r i c t i o n s i t e s o f Hus dowesticus mtDNA d ig e s te d w ith Acc I ,

L o c a tio n o f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a lre g io n A B C D E J K L

1 2817 2822, A-C, R3 ND 1 0 1 0 0 0 0 0 0*2 4515 4515, C-G, R2 ND 2 0 0 0 0 0 0 0 13 9339 9339- 44 CO I I I 1 1 1 1 0 1 1 14 12055 12055, A-G, R2 ND 5 0 0 0 0 0 0 1 05 13856 13861, T-C, S3 ND 6 0 0 0 1 0 1 0 06* 15924 15925, C-T D-LOOP 0 1 1 1 0 0 0 0

1 5 1

Page 186: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3.3Es V a r ia b le r e s t r i c t i o n s i t e s o-f Hus dow esticus mtDNA d ig e s te d w i thAva I I .

Loca t ion o f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a lre g io n A B c D I J K L M

*1 2083 2083-7 16s rRNA 1 1 1 1 1 1 1 1 0*2 2871 2871-5 ND 1 1 1 1 1 1 1 0 1 1*3 6123 6124, A-G, R2 CO I 0 0 0 0 0 1 0 0 1

4 8990 8990, A-G, S3 CO I I I 0 0 0 0 1 0 0 0 05 10840 10844, A-C, S3 ND 4 0 1 0 0 0 0 0 0 0

*6 12213 12217, G-C, R2 ND 5 0 0 0 0 0 1 1 1 17b 12515 12515-9 ND 5 1 1 0 0 0 1 1 1 1Bc 14239 14239-43 CYT B 1 1 1 0 1 1 1 1 1

TABLE 3. 3F; V a r ia b le r e s t r i c t i o n s i t e s o f Hus dowesticus mtDNA d ia e s te d w ithFnu D11 -

L o c a tio n o f s i t e s Presence iD f s i t e

s i t e s t a r t base change fu n c t io n a lr eg i on A B H I J K

*1 317 317-10 12S rRNA 1 1 1 1 1 02 4972 4972-5 Trp tRNA 1 1 1 0 1 13 9505 9508, T-G, R2 ND 3 0 0 1 0 0 04 9595 9596, A—G, S3 ND 3 0 1 0 0 0 0

*5 14705 14705-8 CYT B 1 1 1 1 0 1

1 5 2

Page 187: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3,5G: V a r ia b le r e s t r i c t i o n s i t e s O-f Hus dow esticus mtDNA d ig e s te dw i t h Hpa I I .

L o c a tio n o f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a lre g io n A B C D

1 327? 3281, A-G, S3 ND 1 0 1 0 0* 3332 3332 -5 , ND 1 1 1 1 0

6274 6274-7 CO I 1 1 0 1

TABLE 3 . 3Hi V a r ia b le r e s t r i c t i o n s i t e s o f Mus dowesticus mtDNA d ig e s te d w ith Tag I .

L o c a tio n o f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a lre g io n A B c D E G Q

41 2407 2407-10 16S rRNA 1 1 1 1 0 1 1£ 2566 2566, A-T 16S rRNA 0 0 1 0 0 0 0

37B7 3788, T-C Gin tRNA 0 0 0 0 0 0 14 8357 8358, T -C ,S3 ATP 6 0 0 1 1 1 o 05" 9577 9577-8 ND 3 1 0 0 0 0 0 16 15542 15544, A-G D-L00P 0 0 0 0 0 1 0

153

Page 188: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3.51s V a r ia b le r e s t r i c t i o n s i t e s o f Hus dow esticus mtDNA d ig e s te dw i th Hae I I I .

L o c a tio n o-f s i t e P resence o-f s i t e

s i t e s t a r t base change fu n c t io n a lr eg i on ft B 1: e1 1E 1F F: s; w1 X U T■ V' n1 N C1 F► 1

*1 * 3335 3335-8 ND 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1*2 3398 3398, A -G ,S3 ND 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

3 3402 3402-5 ND 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 14 4129 4129-32 ND 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 15 4670 4670-3 ND 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 16 5900 5900, A -G ,S3 CO I 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

*7 7541 7541-44 CO I I 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1*8 8647 8648, T-G R3 CO I I I 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0*9 8742 8742-5 CO I I I 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

*10 8811 8811-4 CO I I I 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1*11 9756 9756-9 ND 3 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1*12 11210 11212, T-C,R2 ND 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

13 11471 11471, A -G ,S3 ND 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0*14 12378 12378-81 ND 5 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

15 13479 13482, T -C ,S I ND 5 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 016 14089 14090, A-G Glu tRNA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 017 14433 14435, A -C ,S3 CYT’ B 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

*18 15189 15189-92 CYT’ B 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 119* 15923 15923-5 D-LOOP 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1S4

Page 189: (Hus domesticus. Rut t y ) - UCL Discovery

TABL

E 3.

3JS

V

aria

ble

re

str

icti

on

si

tes

of Hus

dowesticus

mt

DNA

dig

est

ed

w

ith

Mbo

I.

C3Xo3ivi>-X

►—CO

DC

•-D

ID

U.LU

O(J

CP

<L

«0co c

•r* o-Mu cr c Qi 3 L.

01CPctvJZu

01tn«c-Q

© © © © © © © © © © VH ^4 ©

© © © 4"1 © — © © © © © © © © f4 ©

— © © © © © © © © © © — © © »4 ©

o — — © — © © © © — © © — © VH © ©

o — — © 4-4 © 4^ © © © © © © © 4^ ^4 ©

o — © © © 4"4 © © © © © © © © © fH 4^ ©

o — © *—• © © © © © © © © © VH © — ©

o o © © © ^4 © © © © © 4-1 © ^4 ^4 ©

© — © © — © © © © © © © © — © — ©

o 4-4 © © O © © o V-H o *■4 © 4*4 © 4-1 ©

o © © © © © © © © — © - © © ©

o 4 -4 © — © © © © © © © — © - © o ^4

o © © © © © © © © © © ^4 © © © © — ©

© © © © © © © © © © © 4^ © o •■4

o 4-1 © — © © © © © © © © © 4^ © © — ©

© © © © © © © © © © © »4 © © •4 ©

© — © © »W © — © © © © — © © •4 f4 ©

© © © © © © © © © © © © © ©

© — © © © — © © © © © © fH © »4 »4 — — ©

o © © 4—1 © © © o © © ▼H © iH © 4-4 v4 ©

o vW © © © © © © © © © — f4 ^4 »4 ©

o o 4-4 © © © © © © © ^4 © © ^4 ^4 ©

<rz <XDC z i—il_ v4 t4 CN CN cc *—• »—i Vi 4 - 4" 4 - 4 - in in in <1 >o

co a Q Q Q O a Q a Q Q a Q Q Q a Q Q o>o z Z Z Z nj u u z z Z Z z Z Z z z z Z z»4

<1»4 CN W t—i CN —H

Vi cc ce cn cn 0£ t rCN cn ccDC r. r. r. r. w. r.

r. c_> o <x u CD <LI— u © t— i i 1 i 1 i1 © <X 1 1 1 <x CO CD h- h - 4-1 CD CN

U © 1 <x ▼4 <x <r Vi K» CNCD vO CO O' r 1 v. 1 i 1

r. 1 1 r. 1 w. w. CN rv ▼4 4" CD CO CO vO © 4 - O'cn in CD o O' CD CD in CN o 4 - © >0 © CN 44 © 44 ^40“ © O' CD K 44 CD O' 4 - Ii*j CD © r4 Vi © in 4 - CO O'4" in in ▼—i CN © O' Vi O' © © © —-i 4-1 —H CN CN Vt Vi ViCN Vi Vi 4 - 4" in 111 O' -4 »4 44 —-1 44 ^4 4-1 1

O' in 1^ 'D o CO CO 00 O' 4 - © 44 CO CD CO in © O'CD © O' CD I ' ' »4 CD Ch »4 <1 4 - © O © CN 4-1 © 4-1

4" in in CN © O' Vi n in CD © 44 Vi © uo 4 1 CO O'CN to Vi 4 * 4 - UI in O' © © © 4-1 44 44 CN CN IO Vi

*4 — 44 4^ 44 4^

£ D £^4 CN n 4" 111 <3 CD O' © CN ho 4 - in >0 I ' ' CD O' ©■N- 4-1 ' “I ^4 4-4 4«4 4-1 CN

185

1423

9 14

240,

G

-A,

S3 CY

T B

Page 190: (Hus domesticus. Rut t y ) - UCL Discovery

TABL

E 3.

«3K:

V

ari

ab

le

res

tric

tio

n

site

s of

Hus

dowesticus

ro

tDNA

d

icie

ste

d

with

H

inf

I.

h• r t

inH-OHiucIUinailu­ll.

(0co c+* o u •*« c cn 3 ai

N- l_

ajcncmx:uaiuiHiXI

x I •w o © © © © © © © -* *W© © © © © © © — © O ©cn | o © © © © © © © © © © © © © © © © ©DC h |CJ j o © © © © 4 © © © © © © © —* 4 © © *“4 ©

0 CQ 1 o — © - © © © © — - © © — © © © © © © © ©___ <r | o o © © © © © © © _ © © © © © © © © o © © **■4 oCL— re ! o © © © © © © © © © © © © © © 4 © © ©

N 1 4*4 o © © — © © © © © — © © © 4 »*4 — © © © — — © © ©>- | o © © © © © © — 4 © © © *W4—4 © © © *■4 © © © ©0 { o © © © © © © © — ««4 © © — © © © © — 4W© © ©3 1 o © © 4 © © © © © © © © © © — — 4H © © ■4 ©> | o © © © © - © © — © © 4 © © © © © O © © 4 ©ZD j o © © 4 © © © © © VW© © O © © o © 4H © © —1- J o © © © © © o iH fH © © ▼•1 iH t4 O o O H © © 4 ©O j 4 o © © © © © © © © © — © © © 4 © © 4- ©Z | o o © © © © © © © 4 © © © © © o © © © ©JC { - o © © © © © © © — © © © © © © © vH © © — ©—1 | © o o © © © © © © © © © © © © © © — © © © © ©y 1 o © © — © © © © © © © — © © — © — 4 © © 4 ©>“3 | o o o © 4-4 © © © © © 4 tH © © © © © © © — © 4W© © 4—1 ©M J — o © — © © © o 4 © © © © © © © — 4 4 © © © ©X 1 o o © 4-4 © © © © VW © © © © © © © 4 4 4W© © ©Ll J — o © © •H © © © © © — 4 © © © © © © © — -4 — © — ©LU | o © © — © © — — © 4 »W© © -« © © © © © vH *-4 — © © ©Q | - © © - © © - © © © — © © © © © — © © © oU J o © © © © © © © © © — © © © © © 4 4—4— © © ©CQ | o © © — © O © © © 4 — © © © 4 — © © © — © © t4 ©<r | © © o »w © © © © © 4 © © 4 © © © © © ■4 ©

<L <£ <X >—« *—i *—»z 3 z z n0 t—1 »—i ►—t CO CCi COce C£ 1—1X CN ►—( i—i ce M »—i ►—1 V.i Ki «3- in in inL. lu. •4-J 0. I- b- 1-

Q a a a a o o h- o o a Q a Q Q Q a Q a >- >~ >cn CD Z z z z c z CJ u X <r CJ CJ u Z z Z z Z z z z CJ u uCN v0 p-4 LU4 4 CO CD

o O' O'4- r^ in Vi 1 1 11 i i 1 Vi CD 44 CDnd Vi ro ND <r O' Vi Vi Vi CN CN M ce ^41 K) Vi ND ^4 CD K j Vi r^ 1—1 Vi i—t CN ce CD CD in CN CD 44

in CD CD to cr cn CD O' cc CD CN m V. 9. CN Vi «r. 9. inVi w w. Vi V. r. 9. V. w. 9. O' O' CO<x CO i-i <x CO i—*CN cj COu 1— u <x CO CO COCJ 1 1 1 i 1

I 1 1 1 1 1 1 1 1 1 V s 1- CO b- CN s s u CJ Ns <x <r b- CO b- CO <r <E <r b- 4- 44 ND NDin ^r CN r-'. CO 9. 9, 9. i 1 1 9. 9, 1Vi v. 9. tt. 1 9. r. V. r. V. 1 1 w. W. 1 i I *T CO in CO o in O' 4" in1 K> O' CD © rv CD <3 in O' CN Vi CD O' ¥4 'b r-" © ND in Vi CN CN O' 44CN CN O' © ND K j 00 f'- Vi CN CD V- ■4 <1 ■4 CN r . O' ^4 CN O' in CN ND © 44Vi ID O' Vi Vi in CN CO o O' Cn UT liD o »*4 -4 TH CN Vi in inCN 4—4 CN Vi Vi Vi Vi <r in LT ND h- CO 00 O' O' O' 4-4 4-4 44 44 v4 4—4 44

CN O' O' 4 “ ©Vi 44 O' © NDCN LD O' Kj Ki

CN Vi K i

^4 CN Vi *? in

inVi cd rv in iv cn vt k> 4-

I £nd iv co

UD O' CN KiVi CN CO k .4 - K. CD O'in UD ND K

O' © 44 CN44 44 ^4

++

N O' W CO CD Ch

ND UDCD © in CD 4" UDCN K. O ND in Kj CN CN Ki O'LD in O' ^4 CN O' m CN ND © ■4-4O' O' o 44 CN Ki in m

— 1 4 4 4-4 44 4-4

4 0ND K- CD O' © 44 CN V> in ND44 44 i—i CN CN CN CN CN CN CN

■M- **

1 6 6

1617

9 16

179,

A-

G D

-LO

OP

Page 191: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3.3Ls V a r ia b le r e s t r i c t i o n s i t e s o f Hus dow esticus mtDNA d ig e s te d w i thSau 96 I .

lo c a t io n o-f s i t e P resence o f s i t e

s i t e s t a r t base change fu n c t io n a l re g io n A B C D

*1 78 78-81 12S rRNA 1 1 0 1*2 83 83, T-G 12S rRNA 0 0 1 0*3 2357 2357-60 16S rRNA 1 1 1 0*4 2856 2856-9 ND 1 1 1 1 0*5 1573B 15738-41 D -I00P 1 0 0 1

TABLE 3.311s V a r ia b le r e s t r i c t i o n s i t e s o f ftus dowesticus rotDNA d ig e s te d w ith A lu I ,

L o c a tio n o-f s i t e P resence o-f s i t e

s i t e s t a r t base change f u n c t i ona lre g io n A B c D E F G H

*1 1633 1636, A-T 16S rRNA 0 0 1 0 0 0 0 0%2 1641 1641-4 16S rRNA 1 1 0 1 1 1 1 1*3 3143 3143-6 ND 1 1 0 0 0 1 1 1 1*4 3188 3188-91 ND 1 1 1 1 1 1 0 1 1*5 350B 3509, A—G, S3 ND 1 0 0 0 0 0 1 0 0*6 5122 5124, T-C tRNA asn 0 1 1 1 0 0 0 0*7 5129 5129-32 tRNA asn 1 0 0 0 1 1 1 1*8 5783 5783-6 CO I 1 1 1 1 0 1 1 1*9 5795 5796, T-G, R1 CO I 0 0 0 0 1 0 0 0

*10 6233 6233-6 CO I 1 1 0 1 1 1 1 0*11 6291 6291-4 CO I 1 1 0 1 1 1 1 0*12 B253 8253-6 ATP 6 1 0 0 0 1 1 1 1*13 B259 8262, C -T ,S3 ATP 6 0 1 1 1 0 0 0 0*14 9947 9948, C-G,R3 ND 4L 0 1 1 1 0 0 0 0*15 10826 10826-9 ND 4 1 1 1 1 1 1 0 1*16 10B35 10835, T-A,R3 ND 4 0 0 0 0 0 0 1 0*17 15515 15517, G-C D-L0CP 0 0 1 1 0 0 0 0

167

Page 192: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3 . 3 N s V a r ia b le r e s t r i c t i o n s i t e s o-f Hus dow esticus mtDNA d ig e s te dw i th Rsa I ,

Location o-f si te Presenc o-f si te

5i te s ta rt base change functi onalr eg i on A B c D E F G

*1 104 107, A-C 12S rRNA 0 /*%V 0 0 0 0 1*2 598 598-601 12S rRNA 4

1 1 1 1 1 1 0*3 786 786, C-G 12S rRNA 0 1 0 0 41 1 1*4 2781 27B3, C-A,£3 ND 1 0 1 0 0 1 1 1*5 3679 3679, T~G,R2 ND 1 o 0 0 0 1 0 0*6 3690 3690-3 ND 1 1 1 1 1 0 1 1*7 3698 3698, A-G,S3 ND 1 0 0 0 0 1 0 0*8 6633 6633, A-G,R1 CO I 0 1 0 0 1 1 1*9 8925 8925-3 CO I I I 1 1 1 1 1 0 1*10 9545 9545-B ND 3 1 0 0 1 0 0 0*11 11265 11265, C-G,R1 ND 4 0 1 1 0 1 1 1*12 12484 12484-7 ND 5 1 1 1 0 1 1 1*13 12492 12495, G-C,R1 ND 5 0 0 0 1 0 0 0*14 12998 12998-13001 ND 5 1 1 1 0 1 1 1

*15 13005 13005, A-G,R1 ND 5 0 0 0 1 0 0 0*16 13342 13342, T-G,R2 ND 5 0 1 0 0 1 1 1

*17 15110 15110-13 CYT B 1 0 1 1 0 0 0*18 15123 15126, G-C,R1 CYT B 0 1 0 0 1 1 1

*19 154 IB 15418-21 D-LOOP 1 0 1 1 0 0 0*20 1542B 15428, T-G D-LOOP 0 1 0 0 1 1 1*21 15495 15495-3 D-LOOP 1 0 1 1 0 0 0

iss

Page 193: (Hus domesticus. Rut t y ) - UCL Discovery

Tab le 3 . 4: Summary o-f l o c a t i o n s o f r e s t r i c t i o n s i t e s f o r 14 enzymes in

Hus dowest icu s mtDNA.

The le -fth a n d s id e o-f th e ta b le i l l u s t r a t e s th e lo c a t io n s o-f th e 230

c o n s ta n t s i t e s -for th e 14 r e s t r i c t i o n endonuc lease em ployed in t h i s s tu d y .

The r ig h th a n d s id e sum m aries th e numbers o f a l l th e s i t e s observed fo r each

o f th e 14 endonuc leases in a l l th e Hus dowesticus mtDNA ty p e s s tu d ie d :

1 and 2 l i s t s th e t o t a l number o f o f c o n s ta n t and v a r ia b le s i t e s

r e s p e c t iv e ly , d e te c te d by each p a r t i c u la r r e s t r i c t i o n endo nu c le a se .

3 l i s t s th e t o t a l number o f s i t e s (c o n s ta n t p lu s v a r ia b le ) re c o g n is e d by

each r e s t r i c t i o n endo nu c le a se .

* shows th e t o t a l number o f s i t e s (c o n s ta n t p lu s v a r ia b le ) p e r enzyme in

th e mouse mtDNA o f known base sequence (B ibb e t a i 1981) .

co rrespond t o th e s i t e s w hich a re d e te c te d by tw o r e s t r i c t i o n

enzymes which a re co un ted as one s i t e f o r p h y lo g e n e t ic a n a ly s e s , (see t e x t

in ta b le 3 .3 f o r f u l l e r d e t a i l s ) .

1 6 9

Page 194: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3 .4 * Summa ry o-f l o c a t i o n s o-f r e s t r i c t i o n s i t e s f o r 14 enzymes in tfuscfom esticus mtDNA.

ENZYME LIST OF CONSTANT SITES NUMBER OF SITES

CONSTANT1 VARIABLE2 ALL3 REF'

i i_ H lN D _ I I I i 11081, 11969, 2 1 3 3

2i _XB A _Ii 612, 953, 8529, 10907, 15973, 5 1 6 6

3 i_ H IN C _ II i 364, 1858, 5123, 5452, 7718, 5 3 8 5

4 i_ A C C _ Ii 5709, 5754, 6222, 7035, 9598, 14646, 6 5 .5 * 11.5 7

5 i_ A V A _ II i 78, 424, 2357, 3480, 3959, 6005, 6 8 14 10

^ _ F N U D _ I! i 1772, 2007, 3410, 11406, 13039, 5 5 10 8

Z i_ H P A _ II i 133, 1870, 2519, 3400, 5725, 6112, 6385, 8400, 15736, 9 3 12 11

§ i_ H A E _ II I i 84, 1053 ,1606, 2004, 2215, 2856, 5571, 4007, 4232, 6621, 6749, 7015, 7592,8182, 11118, 11192, 11526, 12417, 12450, 12666, 14708, 15156, 15739, 15801,

25 18* °a 43 35

9 i_ IA Q _ Ii 634, 2429, 3343, 5220, 5233, 5438, 6541, 6555, 7668, 9835, 1*2080, 13552, 13562, 14348, 14620, 15253, 15850,

16 5 e ,* 21 19

IQ i _M B0_Ii 1889, 2350, 2438, 3103, 3223, 3566, 4065, 5884, 6328, 6697, 6731, 6990, 7085, 7677, B165, 8937, 9238, 9385, 10729, 11323, 13592, 14452, 14749, 15330, 16175,

26 21 47 35

U iJ d IN E _ I i 729, 1367, 4689, 5635, 6034, 6514, 7367, 7434, 8893, 9220, 9432, 9837, 11571, 12082, 12277, 13009, 14251, 14668, 15994,

19 2 6 * ' * 45 30

i2 i _A LU _Ii 9 , 197, 474, 573, B71, 1033, 1197, 58 17 75 671321, 1345, 1431, 1442, 1540, 1589, 2171, 2463,3536, 3854, 3863, 4768, 4900, 5075, 6335, 6716,7068, 7115, 7219, 7331, 7625, 7708, 8293, 8409,8454, 8490, 9044, 9137, 9588, 10036, 10083,10394, 10461, 10826, 10977, 11082, 11252, 11261,11970, 12287, 12392, 12599, 12743, 12992, 13600,13843, 14912, 15362, 15388, 15490, 15759,

I 3 JLRSA_Ii 895, 1186, 1210, 1270, 2564, 2650, 2837, 28 21 49 373431, 3908, 4136, 5416, 5889, 5904, 8829, 9012,9467, 10122, 10428, 11179, 11837, 12209, 12724,13493, 14487, 15435, 15443, 15460, 16215,

14 iS A U _96_ Ii 424, 2088, 2215, 2871, 3334, 3335, 3402, 21 3480, 3870, 3871, 3959, 6005, 6020, 11192, 12450,12515, 14239, 14708, 15155, 15739, 15800,

230

5 26 25

140 370 295

1 7 0

Page 195: (Hus domesticus. Rut t y ) - UCL Discovery

IABLE_3i 5i_SIIE_GAINS_FgR_SPECIFIC_SyBSTIiyiI0NSi

1 R e s t r ic t io n endonuc lease used t o d e te c t th e lo c a t io n and n a tu re o-f th e

s i t e g a in obse rve d . 2 The p o s i t io n o-f th e s i t e g a in in th e la b o ra to ry

re fe re n c e sequence (B ib b et a l 19B1). 3 The gene lo c a t io n o-f th e s i t e

g a in in th e re fe re n c e sequence. * The e x a c t n a tu re o f th e b a s e -p a ir

s u b s t i t u t io n (A= A den ine ; G=Guanine; C= C y tos ine? T= th y m in e ) .

W ith in th e p ro te in - c o d in g re g io n s th e n a tu re o f th e g a in m u ta tio n change i s

in d ic a te d :

3 Replacement s u b s t i t u t io n s , fo l lo w e d by th e change in a m in o -a c id codon.

A S i le n t s u b s t i t u t io n , fo l lo w e d by in b ra c k e ts th e codon in v o lv e d .

Changes w ith in a re g io n n o t coded (no re a d in g fram e) i s i l l u s t r a t e d in th e

column marked NO * .

T57 T ra n s it io n (g a in m u ta t io n a l change i s 1. p u r in e t o p u r in e ie . A-G, G-A

o r 2 . p y r im id in e to p y r im id in e ie . T-C , C -T ).

TV° T ra n s v e rs io n (m u ta tio n a l change fro m p u r in e to p y r im id in e and v ic e

v e rs a ie . A-C, A -T , G-C, G - T . . e t c . ) . * in d ic a te s g a in m u ta t io n s n o t

p re v io u s ly d e s c r ib e d . * in d ic a te s th e same s i t e d e te c te d by two

r e s t r i c t i o n endonuc leases s im u lta n e o u s ly (see ta b le 3 .3 t e x t f o r d e t a i l s ) .

The amino a c id re p la c e m e n ts a b b re v ia t io n s in c lu d e : PHEN, p h e n ly a la n i in e ;

L E U ,le u c in e ; ILE , is o le u c in e ; MET, m e th io n in e ; VAL, v a l in e ; SER, s e r in e ;

PRO, p r o l in e ; THR, th re o n in e ; ALA, a la n in e ; TRP, try p to p h a n ? H IS ,

h is t id in e ; ASN, a s p a ra g in e ; LYS, ly s in e ; ASP, a s p a r ta te ; GLU, g lu ta m in e ;

CYS, c y s te in e ; TYR, t y r o s in e ; ARG, a r g in in e ; SER, s e r in e ; GLY, g ly c in e . For

changes in th e mouse mt g e n e t ic code fro m th e u n iv e rs a l code see B ibb et

al., (1981 ), however AGG and AGA codons, w h ich code f o r a r g in in e in th e

u n iv e rs a l code a re neve r used in re a d in g fram es in th e mtDNA, hence a re

denoted w ith a q u e s t io n mark in th e ta b le (no gene f o r a tRNA to decode

them has been i d e n t i f i e d , th u s p resum ab ly th e y become nonsense co do n s).

171

Page 196: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5.3 a SITE BAINS FOR SPECIFIC SUBSTITUTIONS.

ENZYME1 SITE2 GENE3 SUB* CODON position 1 2 3

REPLACE-MENT®

SILENT® TS7 subtit

TV® M3 ▼

HINC I I 7147 CO I I A-G + * (METH) +

■ 8 6 4 2 co i n T -C + * (ASN) 4-

■ 16074 D-LOOP C-G + t

ACC I 2817 ND 1 A-C + t GLU-ASP 4-

■ 4 5 1 5 * ND 2 C-G 4- t THR-SER 4-

M 12055 ND 5 A-G 4- t TYR-CSY +

» 13861 ND 6 T -C 4- * (LEU) 4-

H 15925 * D-LOOP C -T 4- t

AVA I I 6124 * CO I A-G + * GLU-GLY 4*

m 8 9 9 0 CO I I I A-G 4- * (GLU) 4*

M 10844 ND 4 A -C 4- * (SER) 4-

H 1 2 2 1 7 * ND 5 G-C 4- * ARG-PRO 4-

FNUD I I 9 5 0 8 ND 3 T -G 4- * LEU-ARG 4-

H 9 5 9 6 ND 3 A-G + * (ALA) 4-

HPA II 3281 ND 1 A-G + * (PRO) 4-

TAQ I 2 5 6 6 16s RNA A -T + *

■ 3 7 8 8 GLN tRNA T -C 4- *

m 8 3 5 7 ATPase 6 T -C 4* t (LEU) 4-

■ 15544 D-LOOP A-G 4- t

HAE i n 3 3 9 8 * ND 1 A-G 4- t (ALA) 4-

■ 5 9 0 0 CO I A-G + * (THR) 4*

1 7 2

Page 197: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3.5...C0NTINUED.

HAE in 8 6 4 8 * co m T -G + t SER—? +

M 11212* ND 4 T -C 4- * VAL-PRO +•

n 11471 ND 4 A-G » (MET) 4*

H 13482 ND 5 T -C 4- * (LEU) +

m 14090 GLU tRNA A-G +

ii 14435 CYT B A -C + * (GLY) 4*

MBO I 2 4 9 2 * 16s RNA C -T +

M 4188 ND 2 G-A 4- * GLU-ASP +

M 5019 ALA tRNA A-C +

n 7 3 7 8 CO I I I A-G + * (MET) -1-

m 9 7 9 5 ND 1 A -T + t THR-SER 4-

n 10422 * ND 4 A -C + t ASN—HIST 4-

■ 10567 * ND 4 G-C + * TRP-SER +

M 10841 ND 4 G-A + * (GLY) 4-

n 11004 ND 4 T -C + * (LEU) +

n 1 1 3 0 8 * ND 4 T -G 4- * M ET-? 4-

M 12515 * ND 5 G-A + * V A L -IL E 4-

VI 14240 CYT B G-A + * (GLY) -!-

HINF I 1523 16s RNA A-C 4-

91 2 9 9 9 ND 1 A-G + t (LEU) 4*

■ 3 3 0 8 ND 1 T -C + * (PHEN) +

H 3 5 3 7 ND 1 G -T + * ALA-SER 4-

N 4 27 6 ND 2 G-A + * (GLY) 4*

173

Page 198: (Hus domesticus. Rut t y ) - UCL Discovery

HINF I 5 4 3 5 CO I

01<X + t (LEU) 4-

M 5 7 2 9 CO I A-G + t (GLY) +

a B718 co in A-G + * ASN—ASP 4-

w B969 co m T -C + %(ILE) 4-

I f 10904 ND 4 T-G 4- t ILE —MET 4-

H 11168 ND 4 G-A 4- t (ARG) 4*

M 11255 ND 4 T-G 4- t (ALA) 4-

M 14639 CYT 8 C-A 4- t (GLY) 4-

H 15094 * CYT B C-G + * PRO-ARG 4-

I I 16179 D-LOOP A-G 4-

RSA I 107 * 12s rRNA A-C 4-

f f 7B6 * 12s rRNA C-G 4-

H 2 7 8 3 * ND 1 C-A + t (VAL) 4-

I f 3 6 7 9 * ND 1 T-G •»- t PHEN-CYST 4-

n 3 6 9 8 * ND 1 A-G + * (PRO) 4-

a 66 3 3 * CO I A-G + * MET-VAL 4-

■ 11265 9 ND 4 C-G + * LEU-VAL +

m 12495 * ND 5 B — C + « VAL-LEU +

m 13005 * ND 5 A-G + * MET-VAL 4-

M 13342 * ND 5 *7“I — L 3 4- t IL E —SER +

f l 15126 * CYT B G -C + t ALA-PRO 4-

H 15428 * D-LOOP T-G 4-

SAU 96 I 83

ALU I 1636

12s rRNA

16s rRNA

T-G

A -T

4- t

+ t

1 7 4

Page 199: (Hus domesticus. Rut t y ) - UCL Discovery

ALU I 3 5 0 9 * ND 1 A-G + t (GLLD +■

■ 5124 * ASN tRNA +

■ 5 7 9 6 * CO I T -G + * SER-ALA +

■ B 262 * ATPase 6 C -T + f (ALA) +

m 9 9 4 8 * ND 4

01U + * H IST—GLN +

n 10B35 * ND 4 T -A + t ILE —MET +

M 1 5 5 1 7 * D-LOOP G -C +

TOTAL M° COLUMNGAINS= 75 TOTALS= 14 11 3 3 2 8 3 0 4 0 3

58 1.1 si

175

Page 200: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .6 : Base s u b s t i t u t i ons r e p o n s ib le f o r s i t e ga i n s i n mouse mtDNgL

The d is t r ib u t io n o f p o te n t ia l (e xp e c te d ) and a c tu a l (o b se rve d ) r e s t r i c t i o n

c le a va g e s i t e s f o r each r e s t r i c t i o n enzyme were te s te d f o r s ig n i f ic a n c e

fro m random and c h i-s q u a re and th e p r o b a b i l i t y v a lu e s a re g iv e n .

* Dbs r e fe r s t o th e observed number o f c le a va g e s i t e s in th e k .b . s (B ibb e t

al.f 1981) f o r each r e s t r i c t i o n e ndonuc lease .

* Exp in d ic a te s th e expec ted number o f c le a va g e s i t e s c a lc u la te d fro m th e

know ledge o f th e base c o m p o s it io n o f th e l i g h t s tra n d o f th e k . b . s C/.G+C =

3 6 .3 ) , and e q u a tio n fro m Nei and L i , (1979) where th e y c o n s id e re d a mtDNA

o f mt p a i r s (16295 b a s e -p a irs in th e house mouse) w ith a G+C c o n te n t o f g .

Assuming a random d is t r ib u t io n o f n u c le o t id e s in th e DNA sequence, th e

expec ted fre q u e n c y o f r e s t r i c t i o n c le a va g e s i t e s w ith r n u c le o t id e p a ir s

i s :

a= (g /2 ) 1-1 C (1 -g ) /23

r l i s th e numbers o f g ua n in es p lu s c y to s in e s , w h i ls t r 2 i s th e number o f

A den ines and thym in es in a r e s t r i c t i o n re c o g n it io n s i t e , a d d i t io n a l l y

r l + r2 = r . Thus th e expec ted number o f r e s t r i c t i o n s i t e s i s mt a.

W ith in th e r e c o g n it io n sequences:

A Pu = p u r in e s , e i t h e r A o r G; Py = p y r im id in e s , e i t h e r T o r C.

9 X = A o r CJ Y = G o r T.

c N = any o f th e fo u r bases.

176

Page 201: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .6 ! Base s u b s t i t u t i o n s r e p o n s ib le fo r s i t e g a in s i n mouse mtPNA^

G ain m u ta t io n a lN ° s i t e s base changes

Enzyme r e c o g n it "sequence

obs 9 exp * X 2( p r o b /s ig n i- f )

T ra n s - T ra n s ­i t i o n v e rs io n

W ell re p re s e n te d s i t e s :2 .8 7 N’ BA lu I AGCT 67 5 4 .7 3 5

Hae I I I GGCC 35 17 .7 16 .95 * * * 6 2Xba I TCTAGA 6 5 .5 0 .0 4 N ,s 0 0H inc I I GTPuPyAC* 5 3 .1 1 .16 N*B 2 1Acc I GTCXY3AC® 7 3 .1 4 .91 * 3 2Ava I I GGCA/T3CC 10 5 .6 3 .4 6 N,B 2 2Sau 961 GGCN3CCc 25 17 .7 3 .01 N,B 0 1

s u b to ta l :

Under re p re s e n te d s i t e s

155

•■

107 2 1 .3 * * * 16 13 (1 .2 3 :1 )

Rsa I GTAC 37 5 4 .5 5 .6 2 * 3 9Hin-f I GACN3TCc 30 5 4 .5 11.01 * * * 9 6Mbo I GATC 35 5 4 .5 6 .9 8 * * 7 5Taq I TCGA 19 5 4 .5 23.1 * * * 3 1Fnud I I CGCG 8 17.7 5 .3 2 * 1 1Hpa I I CCGG 11 17 .7 2 .5 4 N*B 1 0H ind I I I AAGCTT 3 5 .5 1 .13 N‘ B 0 0

S u b to ta l: 143 259 5 1 .8 * * * 24 22 (1 .0 9 :1 )

12 .63 * * *T o ta l 298 366 40 35 (1 .1 4 :1 )

177

Page 202: (Hus domesticus. Rut t y ) - UCL Discovery

REGION TOTALS TRANSITIONS TRANSVERSIONS

REPLACE SILENT REPLACE SILENT

I . PROTEIN CODINGi REGIONS:A. KNOWN PROTEINS;CODON POSITION1 5 2 0 3 02 1 1 O 0 03 L4_ 0_ 11_ 1_ 2.SUBTOTAL 20 3 11 4 2

(157.) (55%) (20%) (10%)

7. MUTATION TYPE 14 (702)RATIO TS : TV

B. NADH DEHYDROGENASE SUBUNITS:CODON POSITION1 9 2 22 10 3 O3 19_ 2_ 12_TOTAL 33 5 14

(13.57.) (36.8% )

6 (30%)2 .3 : 1

574_16(42%)

7. MUTATION TYPE RATIO TS :TV

GRAND TOTAL 58

RATIO TS :TV

I I . NO READING FRAME: D-LOOP/ NON-CODING

RIBOSOMAL RNA 7

TRANSFER RNA 4

TOTAL 17

RATIO TS : TV

19 (50%)

O• o

3_3

(8%)

19 (50%)

S(13.8%)

25(43.17.)

20(34.5%)

33 (56.9%)

3(50%)1

(14.37.)3

(75%)7

(44.47.)

1 .32 : 1

(8.6%)

2 5 (43.1%)

3(50%)6(85.7%)

1(25%1>10

(55.6% )0.8

TOTAL MITOCHONDRIAL GENOME: 75 40 (53.3%) 3 5 (46.7%)

1.1 : 1

1 7 8

Page 203: (Hus domesticus. Rut t y ) - UCL Discovery

Ta b le 3.8? summary o t s i t e lo s s e s d e te c te d by each o t 14 r e s t r i c t i o n

iQdDnucieaseSi

A summary ta b le l i s t i n g v a r ia b le s i t e s c la s s e d as " lo s s e s " w ith re s p e c t t o

th e known base sequence, t o r each m a jo r m ito c h o n d r ia l gene re g io n , t o r each

o t th e 14 r e s t r i c t i o n endonuc lease w h ich d e te c ts them .

1 - New s i t e lo s s e s n o t p r e v io u s ly d e te c te d in th e B r i t i s h Hus domesticus

sam ples ( t h is s tu d y ) .

2 - The t o t a l number o t s i t e lo s s e s in Hus dowesticus mtDNA ( F e r r is e *

a im , 1983; t h i s s tu d y ) .

re p re s e n t th e same s i t e s w h ich a re d e te c te d by tw o enzymes

s im u lta n e o u s ly and a re hence o n ly coun ted once t o r p h y lo g e n e t ic a n a ly s e s

( t o r d e t a i ls see ta b le legend 3 .3 a -n ) .

179

Page 204: (Hus domesticus. Rut t y ) - UCL Discovery

T a b le 5.8s Summary o f s i t e lo s s e s d e te c te d by each o f 14 r e s t r i c t i o n endonuc leases

EnzymerRNA’ s tRNA’ s

M ito c h o n d r ia lP ro te inknown

gene re g io n co d in g genes

unknown

New1non­c o d in g

To ta ]

H ind I I I - - 1 - - - 1Xba I - - 1 - - - 1H inc I I - - - - - - -Ava I I 1 - 1 2 - 2 4Acc I - - 1 - - - 1Fnud I I 1 1 1 - - 2 3Hpa I I - - 1 1 - - 2Taq I 1 - - 0 .5 * - - 1 .5Hae I I I - - 4 6 0 .5 * 7 10.5Mbo I - - 1 8 - 2 9H in f I 1 1 3 5 .5 * - 2 0 .5Sau 96 I 2 - - 1 1 4 4A lu I 1 1 4 3 - 9 9Rsa I 1 - 2 4 2 9 9

T o ta ls 8 3 20 31 3 .5 37 6 5 .5(127.) (4.6%) (30.37.) (477.) (67.)

Page 205: (Hus domesticus. Rut t y ) - UCL Discovery

Table 3.9 : Reaional variability; aene size and number of sites.

Region y.G+Ccontent

Constantsites

variable total (obs) (exp)

X 2

Bp/ . s ite/ region bp

12s rRNA 35.3 16 7 23 21.1 0.08 Na

956 0.024

16s rRNA 35.6 31 8 39 35.4 0.36 Na

1582 0.025

ND 1 36.2 14 21 35 21.2 8.9 **

946 0.037

ND 2 34.4 9 6 15 23.53.1*®

1036 0.015

ND 3 33.6 3 7 10 7.8 0.62 Na

345 0.029

ND 4L 41 3 1 4 6.61.05 NO

294 0.014

ND 4 35.5 18 15 33 31.4 0.08 NO

1378 0.024

ND 5 36.7 22.5 16 38.5 41.30.2 Na

1824 0.021

ND 6 27.2 3.5 3 6.5 14.4 4.3 *

519 0.013

CO I 40.4 36 11 37 34.B 0.14 Na

1545 0.024

CO II 38.2 14 3 17 15.6 0.13 NH

684 0.025

CO III 38.3 9 12 21 17.8 0.57 NO

784 0.027

Cyt B 38.6 14 10 24 26.1 0.16 Na

1144 0.021

ATPase 6 35.4 8 4 12 15.5 0.8 NO

680 0.018

ftTP3 30 3 32.1 — — 4.54.5 *

204 -

L.S DRIGIN 36.1 — 0.2 0.01 Na

32

D-LOOP 36.4 14 9 23 20.7 0.26 Na

879 0.026

LL tRNA’s 36 25 7 32 33.6 0.08 Na

1481 0.022

Total /rtjenoirie 36.7 230 140 370 — 16295 0.023

1 3 1

Page 206: (Hus domesticus. Rut t y ) - UCL Discovery

Tab 1 e 3 .1 0 ; R eg iona l v a r i a b i l i t y o-f mtDNA i n Hus dowestic u s .

Data was ta k e n -from 370 r e s t r i c t i o n s i t e s d e te c te d among 57 Hus

dowesticus m ito c h o n d r ia l DNA ty p e s d ig e s te d w ith 2 -14 r e s t r i c t i o n

end onuc leases .

(a) and (d) re p re s e n t th e number o-f s i t e s ( v a r ia b le and c o n s ta n t ,

r e s p e c t iv e ly ) d e te c te d pe r Hus dowesticus m ito c h o n d r ia l DNA gene re g io n

u s in g 11 enzymes. The d a ta was p oo le d -from p a s t s tu d ie s ( F e r r is et al,f

19B3) -for m ice -from W estern E urope , th e M e d ite rra n e a n , and th e New W orld ,

w ith th o se fro m B r i t a in ( t h is s tu d y ) .

(b) and (e) i l l u s t r a t e th e number o f s i t e s ( v a r ia b le and c o n s ta n t

r e s p e c t iv e ly ) d e te c te d by 3 a d d i t io n a l r e s t r i c t i o n endonuc leases pe r mt

gene re g io n f o r th e B r i t i s h m ice o n ly .

(c ) and ( f ) show th e combined number o f s i t e s ( v a r ia b le and c o n s ta n t ,

r e s p e c t iv e ly ) d e te c te d by a l l 14 enzymes employed in th e s tu d y p e r Hus

dowesticus mt gene re g io n .

The degree o f gene v a r i a b i l i t y in each gene was c a lc u la te d by d iv id in g th e

v a r ia b le s i t e s by th e t o t a l s i t e s , th e n c o n v e rte d to p e rc e n ta g e .

1 One Taq I s i t e i s found in p a r t o f th e o v e r la p p in g re g io n s o f ND 5

and ND 6.

1 3 2

Page 207: (Hus domesticus. Rut t y ) - UCL Discovery

I 0 B L E L . 3 - 1 O S R e g i o n a l v a r i a t i o n o - f m t D N A i n H u s d o w e s t i c u s .

Number o f s i t e s P e rce n t v a r i a b i l i t yV a r ia b le C ons tan t 11 3 14

Region (a) (b) (c ) (d) (e) ( f ) i 101

I i Icr

1 I in 1

100 a+d 100 b+e 100 c+ f

R ibosom al RNA’ 512S 2 5 7 9 7 16 18.1 4 1 .7 3 0 .416S 5 3 8 15 16 31 2 9 .4 15.9 2 0 .5

T ra n s fe r RNA’ s 5 2 7 14 11 25 2 2 .2 18.4 2 1 .B

P r o te in cod ings I . Cytochrom e P ro te in s

CO I 6 5 11 19 7 26 2 4 .0 4 1 .7 2 9 .7CO I I 3 - 3 8 6 14 2 7 .3 - 17.7ATPase 6 2 2 4 4 4 8 3 3 .3 3 3 .3 3 3 .3ATPase 8 - - - - - - - - -

CO I I I 11 1 12 5 4 9 6 8 .8 2 0 .0 57. 1CYT B 8 2 10 10 4 14 4 4 .4 3 3 .3 4 1 .7

I I . NADH dehydrogenase s u b u n its s

ND 1 13 8 21 6 8 14 6 8 .4 5 0 .0 6 0 .0ND 2 6 - 6 5 4 9 5 4 .6 - 4 0 .0ND 3 6 1 7 1 2 3 8 5 .7 3 3 .3 7 0 .0ND 4L - 1 1 - 3 3 - 25 25ND 4 12 3 15 8 10 18 6 0 .0 23.1 4 5 .5ND 5 1 11 5 16 9 .5 13 2 2 .5 5 3 .7 2 7 .8 4 1 .6ND 6 l 3 - 3 2 .5 1 3 .5 5 4 .6 - 4 1 .2

D isp la ce m e n t 1 oop 4 5 9 7 7 14 3 6 .4 4 1 .7 39 .1L ig h t s tra n d o r ig in _

133

Page 208: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 3.11s Summary o-f R eg iona l va r i a t i o n 0f Hus dow esticus m it o c h o n d r ia l DNA.

Number V a r ia b le

Region (a)

o t s i t e s C o n s ta n t

(b )

V. v a r i a b i l i t y _a_ x 100 a+b

v a r i a b i l i t y Rank ( le a s t t o most v a r ia b le )A B1

T o ta l R ibosom al RNA’ s ( 12S and 16S) 15 47 2 4 .2 2 2

T ransT e r RNA’ s 7 25 2 1 .8 1 1

P ro te in co d in g re g io n s?

Cytochrom e p r o te in s 40 (CO I - I I I , CYT B, ATP 6 & 8)

71 3 6 .0 3 -

(NADH dehydrogenase s u b u n its 1 -6 , 4L) 69 73 4 8 .6 5 -

T o ta l P ro te in s 109 144 43.1 - 4

D isp la ce m e n t lo o p 9 14 39.1 4 3

T o ta l M ito c h o n d r ia lgenome 140 230 3 7 .8

1 Gene v a r i a b i l i t y ranked fro m le a s t t o most v a r ia b le t o r each gene re g io n ; A —

p r o te in co d in g genes d iv id e d in t o cy toch ro m e genes and NADH s u b u n its ; B - a l l

p ro te in - c o d in g genes re g io n s p o o le d .

184

Page 209: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .1 2 : M i to c h o n d r ia l gene v a r i a b i l i t y com par isons between mouse and

man.

Genes and n o n -c o d in g re g io n s in th e House mouse ( t h i s s tu d y ; F e r r is et a i« ,

1983) and Human (Cann, 1982) m ito c h o n d r ia l DNA was ranked -from le a s t t o

most v a r ia b le , u s in g th e p e rce n ta g e gene v a r i a b i l i t y v a lu e s (d e fin e d as

a /b , a= number o f v a r ia b le s i t e s , b= t o t a l number o f s i t e s , th e n c o n v e rte d

t o p e rc e n ta g e ) as c a lc u la te d in ta b le 3 .1 0 .

F e r r is and c o lle a g u e s (1983) d e te c te d gene v a r i a b i l i t y in W estern European,

M e d ite r ra n e a n , and th e New W orld Hus domesticus u s in g 11 r e s t r i c t i o n

e n d o nu c le a ses , w h i ls t th e B r i t i s h m ice v a r i a b i l i t y in c lu d e d th e same 11

enzymes p lu s 3 a d d it io n a l ones ( t h is s tu d y ) . Human mtDNA gene v a r i a b i l i t y

was d e te c te d u s in g 14 e nd onuc leases , e s s e n t ia l ly th e same as th o s e in th e

B r i t i s h su rve y e xcep t Hha I and Hpa I re p la c e s Acc I and Xba I .

185

Page 210: (Hus domesticus. Rut t y ) - UCL Discovery

IABLE_3JLi2 j__M itgchgndria i_g0ne_variab i_ l_ itY_com £ari5D n5_bet.w een_fnD U 5e_and_m ani

GENEREGION

Rank o-f gene v a r i a b i l i t y 2 ( le a s t t o m ost) Hus dowesticus man

( t h is s tu d y ) ( F e r r is (Cann e te t a l . , 1983) a l . , 1984)

11 1 14 1 11 1 14 1

R ibosom al genes: 12s rRNA 16s rRNA

T ra n s fe r RNA genes: a l l tRNA’ s

"C ytoch rom e" p r o te in genes: CO I 4CO I I 1CO I I I 13CYT B 11ATPase 6 6NADH dehydrogenase s u b u n its ! ND 1 14ND 2 8ND 3 15ND 4 12ND 5 10ND 6 9

3414 8 6

13915 12 11 9

J113 6 8

11111581014

813 1 5 *1011

5 *4 *127915

N on -cod in g re g io n : D -lo o p 14

1 in d ic a te s number o f r e s t r i c t i o n end o nu c le a ses used in each s tu d y t o d e r iv e th e gene v a r i a b i l i t y e s t im a te upon w h ich th e ra n k in g fro m most co nse rve d t o most v a r ia b le genes i s based.

2 Gene v a r i a b i l i t y as c a lc u la te d in t a b le 3 .1 0 and 11.

* d e p ic ts m a jo r d i f fe r e n c e s in rank p o s i t io n o f gene v a r i a b i l i t y .

186

Page 211: (Hus domesticus. Rut t y ) - UCL Discovery

F ig u re 3.1? S im o i f ie d i s o l a t i o n and v i s u a l i s a t i o n s te p s o-f mtDNA.

M ito c h o n d r ia l DNA was is o la te d and v is u a lis e d in one o-f tw o ways dependent

on q u a l i t y and q u a n t i ty D-f v a r io u s so-ft t is s u e s . In b o th ca ses , t is s u e

(h e a r t , k id n e y , l i v e r ) was chopped up and homogenised (A ), so th a t c e l l s

were ru p tu re d to re le a s e th e in t a c t c i r c u la r o rg a n e lle s . N u c le i were

p e l le te d by low speed c e n t r i f u g a t io n , le a v in g an e n r ic h e d m ito c h o n d r ia l

su spe n s io n , w h ich can th e n be p e l le te d by h ig h speed c e n t r i f u g a t io n (B ) .

I f la rg e amounts o f t is s u e w e re re a v a i la b le , th e d i f f e r e n t a l c e n t r i fu g a t io n

s te p s a re in c re a s e d and more c a re was e x e rc is e d to a v o id as much n u c le a r

co n ta m in a tio n as p o s s ib le . The m ito c h o n d r ia l p e l le t was ly s e d t o l ib e r a te

th e c i r c u la r m ito c h o n d r ia l DNA, which was r ig o r o u s ly c le a ne d w ith many

rounds o f p h e n o l, p h e n o l-c h lo ro fo rm , c h lo ro fo rm , and e th e r e x t r a c t io n s (C

I I ) . I f t is s u e was l im i t i n g o r o f poor q u a l i t y ( l i v e r ) , th e m ito c h o n d r ia l

DNA f r a c t io n was u s u a l ly s t i l l con ta m in a te d w ith n u c le a r DNA and o th e r

c e l lu la r d e b r is , w h ich can be e f f e c t i v e ly se pa ra ted o u t by is o p y c n ic C sC l-

e th id iu m b rom ide g ra d ie n ts by U l t r a c e n t r i f u g a t io n . The lo w e r band in th e

g ra d ie n t was th e s u p e rc o ile d mtDNA (C I ) .

The p u r i f ie d mt DNA by e i t h e r is o la t io n approach was c le a ve d w ith th e

a p p ro p r ia te r e s t r i c t i o n endonucleases (D ), and th e r e s u l t in g fra gm en ts

se pa ra ted by e le c t r o p h o r e s is (E) by e i t h e r agarose o r p o ly a c ry la m id e .

Agarose was used when 5 o r 6 b a s e -c u t te rs were em ployed, g iv in g few

fra gm en ts o f la rg e s iz e , whereas p o ly a c ry la m id e was used w ith 4 base-

c u t te r s g iv in g many, s m a lle r fra g m e n ts ..1

The se pa ra ted fra g m e n ts were v is u a l is e d (F) by e i t h e r e th id iu m brom ide j1

s ta in in g (under UV l i g h t ) o r by d i r e c t s i l v e r s ta in in g . Fragm ent s iz e s were \

de te rm ined by re fe re n c e to known s iz e s ta n d a rd s .

137

Page 212: (Hus domesticus. Rut t y ) - UCL Discovery

tissue

(8)—-^Differencial

centrafugation

Phenol /chloroform / ether extractions

LineJr nuclear D N A

nuclear DNA m tDNA

RNA

horizontal Agarose gel

vertical Polyacrylamide gel

PurifiedmtDNA

OR

(F)Visualize

fragments

directsilverstaining

Ethidium bromide/ U V Light \

(E)Separation by gel electrophoresisi

Size standard!

mbase sa

( 0 )Endonucleaserestrictiondigestion

4KB 05KB

95KB

138

Page 213: (Hus domesticus. Rut t y ) - UCL Discovery

FIGLIRE_3JL2j. Sequence com parison s i t e mapping methods b).M ap lo c a t io n s .

The map lo c a t io n s o-f th e unknown v a r ia n ts o-f th e Mbo I r e s t r i c t i o n s i te s

d e p ic te d in P la te 3 .1A , by th e sequence com parison method (Cann, 1982), a re

i 1 lu s t r a te d .

A: The 1344 bp fragm en t i s gene ra ted by the Mbo I s i t e s lo c a te d a t

p o s i t io n s 9385 and 10729 o f th e re fe re n c e sequence w h ich in c lu d e s coding

sequences o f p a r t o f cytochrom e o x id ase I I I gene (CO I I I ) , th e s u b u n its o f

NADH dehydrogenase (ND3 & ND4L and p a r t o f one ND 4 ) , p lu s tw o t r a n s fe r

RNAs (tRNA g ly & tRNA a rg ) . The e r ro r a sso c ia te d w ith m easuring th e new

fragm en t bands depends upon t h e i r s iz e , a la rg e e r r o r <+ 30 bp) f o r la rg e

fra gm en ts and s im i la r l y , a s m a lle r e r ro r f o r th e s h o r te r fra g m e n ts (+ 10

b p ). The a d d it io n a l s i t e g a in e x p la in in g th e o ccu rre n ce o f th e two

fra gm en ts 1175 bp and 170 bp can be searched fo r in th e two " s e m i-s ite "

a re as , e i th e r 'A ' (between s i t e p o s it io n s 9555 and 9615 in th e ND 3 re g io n )

o r fBf (between p o s i t io n s 10499 and 10559 in th e ND4 r e g io n ) . The exact

s i t e lo c a t io n s and f u r t h e r d e t a i ls a re desc ribe d in s e c t io n 3 .3 .7 .3 .6 and

ta b le 3 .3 .J .

B: The fragm ent p a t te rn s in la n e 5), P la te 3 .1 can be mapped in two p a r ts ;

I : Fragment 468 bp is gene ra ted by Mbo I r e s t r i c t i o n s i t e s lo c a te d a t 3597

and 4065 p o s i t io n s in th e re fe re n c e sequence, s im i la r l y fragm en t 31 bp is

gene ra ted a t s i t e p o s i t io n s 3566 and 3597. Thus th e lo c a t io n o f th e s i t e

lo s s p ro d u c in g th e sum o f th e two fragm ents 499 bp can be deduced to be a t

3597 in th e ND1 re g io n , no se a rch in g f o r s e m is ite s was n e ce ssa ry .

I I : F o llo w in g th e r a t io n a le in p a r t B I, the fra g m e n ts 67 bp and 598 bp can

be found a t r e s t r i c t io n s i t e s 2438 to 2505 and 2505 and 3103, re s p e c t iv e ly ,

o f th e re fe re n c e sequence. C onsequen tly , th e s i t e lo s s can be deduced to be

a t s i t e 2505. However, th e g e n e ra tio n o f fra gm en ts o f th e a pp rox im a te s ize s

60 + 10 bp and 610 + 30 in d ic a te s a s i t e g a in w ith in th e same re g io n . Hence

189

Page 214: (Hus domesticus. Rut t y ) - UCL Discovery

-SITE GAINS

SEMISITES SEARCH

SITE"10729

SITE _ |o J 9 3 8 5 * = N D 3

3 g i l , ,

ND4

II75±301175 ±30

I70±30

SITE LOSS

LOSS OF SITE 3597

SITE35664 • ND I ^ SITE

cRNA ND2 i >4065tRNA tR N AGLN

468FRAGMENTS:

499

SITE LOSS & GAIN SEMISITES SEARCH'1}JE2505

SITE 2438 • N D

6I0±20FRAGMENTS:

6I0±20

Page 215: (Hus domesticus. Rut t y ) - UCL Discovery

t h i s a d d it io n a l Mbo I r e s t r i c t i o n s i t e can map between th e p o s i t io n s 2498

and 2538 ( s e m i- s ite re g io n A, in th e 16S rRNA r e g io n ) , o r between th e

p o s i t io n s 3003 and 3043 ( s e m i- s i te re g io n B, in th e ND1 g e n e ).

These r e s t r i c t i o n maps d e p ic te d in F ig u re 3 .2 were m o d if ie d -from S to n e k in g

e t a l - , (1 9 86 ).

191

Page 216: (Hus domesticus. Rut t y ) - UCL Discovery

F ig u re 5.3? D i s t r i b u t i o n o-f t r a n s i t i o n s and t r a n s v e r s io n s i n Mus

domesticus mt DNA genome.

The c i r c u la r mouse m ito c h o n d r ia l DNA genome i s p o r tra y e d in a l in e a r

■ fashion, w ith each m ajor gene re g io n id e n t i f ie d by a b b re v ia t io n s ( d e ta i ls

see f ig u r e legend 3 .4 A ).

The lo c a t io n s o f th e base changes fro m th e 75 documented s i t e g a in s a re

in d ic a te d by th e h o r iz o n ta l l in e s . The l in e s above th e mt b a r re p re s e n t 40

t r a n s i t io n s and be low , 35 t ra n s v e rs io n s .

192

Page 217: (Hus domesticus. Rut t y ) - UCL Discovery

03

ii

i f d00n a <£>

8 ± A 0

9 Q N

coLUCO<CD

9 Q NCSJ

PQH

1 P Q HI'eaN

m o o

9 d i v : £ d i v

I IO O

00

100 — <o

2 Q N

VQH

VNa-/ S 9 t— CM

VN d^ S3L

1

Page 218: (Hus domesticus. Rut t y ) - UCL Discovery

F i g u r e 3 . 4 A '• L o c a t i o n s o-f c l e a v a a e s i t e s and - f u n c t i o n a l r e g i o n s i n Hus

d o m e s t i c u s mtDNA d e t e c t e d w i t h 11 r e s t r i c t i o n e n d o n u c le a s e s .

L o c a t i o n s o-f v a r i a b l e and c o n s t a n t c l e a v a g e s i t e s i n 53 t y p e s o-f H u s

d o m e s t i c u s m i t o c h o n d r i a l DNA -from 638 i n d i v i d u a l s ( 4 3 0 - t h i s s t u d y ; 208-

F e r r i s e t a i . , 198 3 ) , d e t e c t e d w i t h 2 -1 1 ® r e s t r i c t i o n enzymes.

The h o r i z o n t a l bar r e p r e s e n t s t h e 16295 b a s e - p a i r c i r c u l a r m i t o c h o n d r i a l

genome drawn i n a l i n e a r -form, w h ich i s o r i e n t a t e d f o l l o w i n g B ib b e t a l , ,

( 1 9 8 1 ) , t h e genes a r e i n d i c a t e d as f o l l o w s : Ribosomal RNA genes (12s and

1 6 s ) ; tR N A 's and s p a c e rs den o ted by t h e shaded b l a c k a r e a s ; genes encod ing

t h e c y to c h ro m e p r o t e i n s i n c l u d i n g , c y to c h ro m e B, c y to c h ro m e o x id a s e s I I I

and I I I and ATPase s u b u n i t s 6 and 8 (Cyt B, CO I , CO I I , CO I I I , A6 and AB

r e s p e c t i v e l y ) ; NADH dehyd rogenase s u b u n i t s 1 - 6 , 4L ( 1 - 6 , and 4 L ) ; t h e

d i s p la c e m e n t lo o p p l u s a d j a c e n t n o n - c o d in g r e g i o n s d e p i c t e d by d ia g o n a l

sh ad i ng.

The l i n e s be low t h e mt genome b a r i n d i c a t e t h e mapped l o c a t i o n s o f t h e 97

v a r i a b l e s i t e s f o r H u s d o m e s t i c u s mtDNA (see t a b l e s 3 .3 A - K f o r d e t a i l s of

n a t u r e o f t h e base c h a n g e s ) . The t r i a n g l e s i n d i c a t e t h e 26 new v a r i a b l e

s i t e s d e t e c t e d i n t h e B r i t i s h p o p u l a t i o n s w i t h same p a r t i c u l a r s e t o f

enzymes, n o t p r e v i o u s l y r e c o r d e d i n a d d i t i o n t o t h o s e a l r e a d y r e p o r t e d (the

p o s i t i v e and n e g a t i v e s i g n s show w h e th e r t h e y were g a i n o r l o s s m u ta t io n s

r e l a t i v e t o t h e known base s e q u e n c e ) . L i n e s above t h e mt b a r r e p r e s e n t the

123 c o n s t a n t s i t e s i e . s i t e s p r e s e n t i n e v e r y i n d i v i d u a l examined ( t a b l e

3 . 4 , p o i n t s 1-11 f o r a co m p re h e n s iv e l i s t i n g o f t h e s e s i t e s ) .

* H i n f I , Mbo I , Hae I I I , Taq I , Hpa I I , Fnud I I , Ava I I , H in d I I I , Hinc

I I , Xba I , and Acc I .

* ND’ s 1 -6 , 4L were p r e v i o u s l y c l a s s i f i e d u n i d e n t i f i e d r e a d i n g f rames (URR

1 - 6 , 4L5 a re now c a t e g o r i s e d as 7 NADH dehyd rogenase s u b u n i t s , w h i l s t URR

A6L. i s now c la s s e d as ATPase s u b u n i t 8.

Page 219: (Hus domesticus. Rut t y ) - UCL Discovery

I

■ = »

196

0904

Page 220: (Hus domesticus. Rut t y ) - UCL Discovery

Page

iv Y-chromsome

xiv creeingxviiixix Skskholm

Brtishxx

colnesxxi nmtDNA

EDayFrequencise

2 controversy8 homoplasmy9 Scallops14 impediemnts16 adaptabitity17 Niskioka25 indicate

51 198254 Cann,57 (1/S-1)58

627987 indiividual

93 dispersal95 (p)97 1983)99 cefficent106 Bibb et aL,107 Ferris etal.,108 asssayed 125 dfferences

E. Coli130 Greeberg131

ABSTRACTY-chromosome

TABLE OF CONTENTS screening

delete "sites"SkokholmBritishdelete "genotypes"clonesmtDNAEdayFrequencies

CHAPTER 1 controversay homoplasy

scallops impediments

adaptability Nishoika

indicates

CHAPTER TWO(1982)Cann

(1/Vs-1)delete "and as such were removed from the

data set"PROPORTIONAL SPACING!! PROPORTIONAL SPACING!!

individual

CHAPTER THREE dispersalM(1983)

coefficentBibb etal.,Ferris et al.,

assayed differences E. coli Greenberg

add "in human mtDNA"

Page 221: (Hus domesticus. Rut t y ) - UCL Discovery

140 add "* indicates fragment differences from the k.b.s. (pattern A)n

150 turn superscripts "2" on155 Britsh British156 shift "recorded)" to second column

add superscripts "1-7" to table columns159 site., site,160-168 add superscripts "1" and "2" to tables171 phenlyalaniine phenylalanine207 transitins transitions218 [ ■1 (shaded)

CHAPTER FOUR232 Brooker, Brooker,234 details detailed

of 14 the of the 14for for 3 hours for 3 hours

238 isles of Westray. isle of Westray,249 Add "Either the observed mtDNA sequence

divergences between the two races arose251 possibilty possibility261 variabilty variability264 controversy controversay265 clone (1) clone 1267 fig. 4.4 fig. 4.5281? detials details

Snanday Sanday293 add ">"298 tree trees309 Add Campbell. J.B. (19771 The Upper

Palaeolithic of Britain. Oxford Univ. Press.

CHAPTER FIVE322 outlyer outlier326 elasped elapsed339 delete definitions358 genotuype genotype

unshdaded unshaded360 see see chapter 6365 10 g 10}ig

CHAPTER SIX368 homolouous homologous370 commomly commonly372 Eday mice Eday and Orkney mice373 specfic specific

Page 222: (Hus domesticus. Rut t y ) - UCL Discovery

O/ sj u.*-f 1 /o 1 .0^-/0S=0.9456 S=0.942

378 add brackets (At the timeintroduced).

379 mtDNa mtDNA387 Hence However,391 (4) (9)

BOC BOU412 add lambda symbol

0 •

4294504-^3451i+-a.4 4-a . io

501

Natufian & Aotsuka,

C.V\fOcr>£>«\ 3G tvicAsword,

1_«nrewA O-XX\svi p\

x = <f\2t

CHAPTER SEVEN Naufian (?)& Aotsuka,V\ <-o ‘■>'O Serna .\sword

<nQ

APPENDIX TWO CHECK EQ. 3

X =<72t [3]

were

J

Page 223: (Hus domesticus. Rut t y ) - UCL Discovery

196

Page 224: (Hus domesticus. Rut t y ) - UCL Discovery

F ig u re 3 .4B (o v e r la y ) s L o c a t io n s o f c le a v a g e s i t e s and - fu n c t io n a l re g io n s

in th e B r i t i s h House mouse u s in g th re e a d d i t io n a l r e s t r i c t i o n

endonuc leases .

The 16295 b a s e -p a ir c i r c u la r mouse mtDNA genome has been drawn as a l in e

s t a r t in g a t th e th e - f i r s t 5 ’ n u c le o t id e o-f th e tRNApH* gene as in th e

p u b lis h e d re fe re n c e sequence (B ib b et al., 1981), and a n n o ta te d as in

f ig u r e 3 .4A . The l in e s be low th e mt genome bar i l l u s t r a t e th e 43 v a r ia b le

(L is te d in d e ta i l in ta b le 3 .3 L -N ; + and - in d ic a te s g a in o r lo s s

m u ta t io n s ) , d e te c te d in 430 B r i t i s h House m ice u s in g th e a d d i t io n a l

r e s t r i c t i o n endonuc leases A lu I , Rsa I and Sau 96 I . The l in e s above th e

ba r re p re s e n ts th e 107 c o n s ta n t s i t e s d e te c te d (L is te d ta b le 3 .4 , p o in ts

1 2 -1 4 ).

197

Page 225: (Hus domesticus. Rut t y ) - UCL Discovery

EIGyR E_3^5i D is t r ib u t io n o f c le a va g e s i t e s (c o n s ta n t and v a r ia b le ) a c ro ss

th e mouse mtDNA genome f o r each o f th e fo u r te e n r e s t r i c t i o n endonuc leases .

The lo c a t io n o f 370 c le a v a g e s i t e s (140 v a r ia b le ; 230 c o n s ta n t) d e te c te d in

Hus domesticus mtDNA mapped s e p a ra te ly f o r each o f th e fo u r te e n r e s t r i c t io n

endonuc leases used. The mt genome has been l in e a r iz e d and a n n o ta te d as

i l l u s t r a t e d in f i g . 3 .4 A .

The d is t r i b u t io n o f c le a va g e s i t e s a c ro ss th e mt genome p e r r e s t r i c t io n

enzyme was te s te d t o d e te rm in e w he ther th e observed p a t te r n s d e v ia te fro m

random e x p e c ta t io n s . C h i-s q u a re , p r o b a b i l i t y and C.D v a lu e s a re g iv e n f o r each

d is t r ib u t io n by each enzyme.

1 3 8

Page 226: (Hus domesticus. Rut t y ) - UCL Discovery

'ND III

e>A i

INC II

CC I

VA II

NUD II

-iPA II

V - 1

% = I H ni (R)

V-1, c- 2

^ 3.1»ns ( f t )

tv-3

ir)

oo; to

KILOBASES

JAQ I

HAE llll

HINF I

MfiO I

ALU I

RSA il

SAU<96 I-

JL

i

.fi

i *-

m n f

t

1 1<

: Z• cc •' *-" Q

2: i__

U .

TT

iT O

i r

rf

T7!u .

i !j

- - I

■ ■ I I

+ + fi i1 JL•T.ri Mi• i

. L i - l ii T! i'l‘‘

F T! *:J l

I 1 If, 1

\ - " J lI . ' I l l

TTT

11 !! i l III ITTII II! i *! i i !

n

rp r r -wX, = 3.0lns (R)

QZ

- : i“ * *° • - i ' j y i— - . = | i*”* .*•o £ £ 6 9 Qo < < o 2 2

C- 17X --!.r (R)

9X,= 2.45ns IR)

CD= i.k

CD ='

_L 10 12 14KILOBASES

16

199

Page 227: (Hus domesticus. Rut t y ) - UCL Discovery

E I§yB I_3» .^ i_ D is t r ib u t io n o f c le a va g e s i t e s among th e mouse m ito c h o n d r ia l

gene re g io n s .

The number o-f c leavage s i t e s ( v a r ia b le , c o n s ta n t, t o t a l , g a in and lo s s

m u ta tio n s - g raphs A-E, r e s p e c t iv e ly ) a re shown to be h ig h ly c o r re la te d

w ith th e s iz e o f th e gene re g io n ( in b a s e -p a ir s ) .

The a b b re v ia t io n s a re as fo l lo w s f o r g ra ph s A-C:

ND 1 - 6 ,4L - NADH dehydrogenase s u b u n its ; A6 and 8 - adenos ine t r ip h o s p h a te

(ATPase’ s ) ; CO I —I I I - cy toch rom e o x id a s e s u b u n its ; CYTB - cy toch rom e B; DL

and LS - m ajor noncod ing re g io n s , th e D -lo o p and l i g h t s tra n d o r ig in o f

r e p l ic a t io n ; tRNA - a l l th e t r a n s fe r RNA’ s ; 12s and 16s -1 2 s and 16s

r ib o so m a l RNA’ s .

The s iz e o f each gene re g io n in b a s e -p a irs were c a lc u la te d from th e k .b .s

(B ibb et al.f 1981).

B .P .R . - base p a ir s pe r gene re g io n .

------------- upper and low er 95V. c o n fid e n c e l i m i t s , r e s p e c t iv e ly .

A b b re v ia t io n s f o r g raphs E & F:

NONC : n on -co d ing re g io n (D -lo o p and l i g h t s tra n d o r ig in ) .

tRNA : T ra n s fe r RNAs ( a l l 2 2 ) .

rRNA : Both 12S and 16S r ib o so m a l RNAs.

KP ; Cytochrom e p ro te in co d in g genes (CO I - I I I , Cyt B, ATPase 6 & 8 ) .

NADH ; NADH dehydrogenase s u b u n its (1 -6 & 4 L ) .

200

Page 228: (Hus domesticus. Rut t y ) - UCL Discovery

A. V A r \ l A b L b

NDI

ND 5

ND 4comUJ •CO/

9I6S•tRNA

CYTND 3

ND2ND4L

r=0.07, fvolue = 5.71*

400 •00 1200 IS00BPRB CONSTANT

40 H IBS

•CO/ND 5

12 SCO//uotuK- •CYTB

ND2

r=0.54> lv a lu e s 4 2 .5 * * * “

400 000 1200BPR

C TOTAL

I6S

t R N Auj

CYT

NDJND 3

ID4Lr= 0.85, f va lu e r50.4 * * *

400 800 1200BP R

Page 229: (Hus domesticus. Rut t y ) - UCL Discovery

5«o r s 0<95 f u i ' f Valu'*200q ---

2500 --------------------Jooo ----____3500 _<00Qflpft <500 *_

5000 - ♦ ................ •55o0 -----(5000 T “ * » .tf5oo

GA//V

HADHh o n c

t R kl A

Page 230: (Hus domesticus. Rut t y ) - UCL Discovery

F ia u re 5 .7 : D i s t r i b u t i o n o-f v a r i a b le s i t e s w i t h in mouse m i to c h o n d r ia l

genes.

The lo c a t io n D f 140 v a r ia b le s i t e s d e te c te d in 638 m ice w ith 2 -14

r e s t r i c t i o n e ndonuc leases , d iv id e d in t o each m ito c h o n d r ia l gene re g io n i s

shown. The le n g th o-f th e l i n e drawn re p re s e n ts th e a p p ro p r ia te gene, and i s

p r o p o r t io n a l t o th e s iz e in b a s e -p a irs o-f th a t re g io n (a p p ro x im a te s c a le ;

lcm= lOObp). Coding re g io n s a re a lig n e d to t h e i r 5 ’ ends, see - f ig u re 3 .4A

■for a b b re v ia t io n s . A l l 22 t r a n s fe r RNA’ s a re poo led and s i t e s mapped in

a p p ro x im a te p o s i t io n s o n ly .

The d is t r ib u t io n o f th e v a r ia b le s i t e s per gene re g io n was te s te d to

d e te rm in e w he ther th e observed p a t te rn d e v ia te s s ig n i f i c a n t l y fro m a random

d i s t r i b u t i o n . C h i-s q u a re v a lu e s and p r o b a b i l i t y e s tim a te s a re g iv e n f o r

each gene. The c o e f f ic e n t o f d is p e rs io n (C.D. <1 = u n ifo rm CU3; >1 -

clum ped CC3) i s shown where d is t r ib u t io n s d i f f e r s ig n i f i c a n t l y fro m random

Page 231: (Hus domesticus. Rut t y ) - UCL Discovery

ND5 r- JjL

16SRNA-

COI -

ND4

CYTB.

ND 2.

ND1 -

12SRN|J

• +D LOOpIL

com If. I c o n _

ATPase6.

ND6.

ND3.

ATPase 8-

1 J_L32

T TP T I 1 ill

CD=i.n(c)

CD=i 7(0

' Y r T * -* Z * 7 *x j = S.M * * C D » u (C)

OC,2= 12 46 * * * CD= 1.11(C)

= 3 7 1 * * CD= 1 76 (C)

X ,2 = i«ins ( * )

OX-f = 5 10 C D = 0 . 4 0 (U)

“X^ = 2-90nS (ft)

i 1 iy j = * . T l + * CD = 133 (C)

lllf 1= 2.93ns (R )

X jf = > » ns (R)

T 1

- ♦ ▼ 1 1

111x j = 0176ns (R )

% 1 = 1.65n s (R)

‘’X j j = 2.73 (R)

(ND)

N D 4 l . (ND)

204

Page 232: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 5 .8* O rg a n is a t io n o f th e D - loo p c o n ta in in g re g io n i n m ice .

The n in e v a r ia b le s i t e s , d e te c te d by a l l r e s t r i c t io n enzymes used, a re

shown mapped ac ross th e l in e a r iz e d mt D -loo p re g io n in Mus dowesticus. The

m a jo r non -co d ing re g io n , th e D -loo p in mtDNA in th e mouse spans from the

t r a n s fe r RNA PHE gene to th e t r a n s fe r RNA PRa gene. The c e n t r a l p o r t io n

( in d ic a te d by th e heavy l in e ) i s th e most conserved re g io n c a l le d th e

" c e n t r a l conserved re g io n " (CCR). The "conserved sequence b lo c k s " (CSB)

and " te rm in a l a s s o c ia te d sequences" (TAS) a re in d ic a te d by boxes on th e

l e f t and r ig h t o f th e d - lo o p re g io n , r e s p e c t iv e ly .

1. and 2. re p re s e n t e n la rg e d d e ta i le d re g io n s o f secondary s t r u c tu r e a t

th e 5 ’ end (u n d e r lin e d sequences in d ic a te th o se lo c a te d in th e CSB1) and 3 '

end (u n d e r lin e d sequences co rrespond to th e te m p la te sequenecs im p lic a te d

in th e a r re s t o f th e D -loo p in th e TAS a rea) o f th e D -lo o p , r e s p e c t iv e ly .

On b o th 2° s t r u c tu r e s th e lo c a t io n and n a tu re o f th e v a r ia b le s i t e s noted

in Hus dowesticus a re d e p ic te d .

[D iag ram m o d if ie d from C a n ta to re & Saccone, (1 9 87 ); Brown et a l (1986 );

Saccone e t aim, (1 9 8 7 ) . ]

205

Page 233: (Hus domesticus. Rut t y ) - UCL Discovery

OJO0

1Q«•

ZooUJcCOz8tzozcco<z

m

COi/ll

"OcreV ^

JS * * 0 .0

u o£*o .O OJ ^c - o s > l> «j re re D > G 4o-fc o l5? yi i- -o o*" ° £ U

-re ^

uo £ Q<

c o4J £O 4J

u ulH q_

coac^ a. i o U < ^ U U H ^

I

Page 234: (Hus domesticus. Rut t y ) - UCL Discovery

FIGLJRE_3jl9 : S u b s t i tu t io n r a te m a tr ic e s .

A. In t r a s p e c i - f i c s i l e n t r a t e s oi s u b s t i t u t i o n w i t h in th e house mouse,

i n d i c a t i n g th e predom inance o-f A < -> G and C -> G t r a n s i t i o n s and th e slow

a c c u m u la t io n o-f C -> T t r a n s i t i o n s p lu s G -> T. C <-> A t r a n s v e r s io n s .

Dashes on th e a rro w s in d i c a t e th e a c tu a l numbers o-f each ty p e o-f base

change observed in th e p r o te in - c o d in g genes in Hus dowesticus ( t h i s

s t u d y ) . Whereas C <-> G and T < -> A a re never observed .

B. In t r a s p e c i - f i c non-synonymous (a m in o -a c id rep lace m en ts ) s u b s t i t u t i o n

m a t r ix in Hus domesticus> r e v e a l in g th e - fa s te s t r a t e s in v o lv e a b ia s

to w a rd s A -> G t r a n s i t i n s and G < -> C, p lu s T -> G t r a n s v e r s io n s . Slower

r a t e s a re seen in A <-> T, A < -> C, G -> A t r a n s v e r s io n s and C-> T

t r a n s i t i o n s . In a d d i t i o n i t appears C -> T and G -> T t r a n s i t i o n s and

t r a n s v e r s io n s r e s p e c t i v e l y a re never seen.

C. I n t e r s p e c i f i c s i l e n t r a t e s among mouse, r a t and b o v in e mtDNA’ s , showing

a p re -p o n d e ra n ce (- fas t a c c u m u la t io n ) o-f C < -> T and A < -> G t r a n s i t i o n s , in

a d d i t i o n t o a s low o cc u r re n c e A -> C o r T t r a n s v e r s io n s . Unobserved changes

(d e p ic te d by la c k o-f a rrow s in th e m a t r ix ) in c lu d e G <-> C and G < -> T

t r a n s v e r s io n s (Lanave et a l 1984, 1985; C a n ta to re & Saccone, 1987).

I n te r s p e c i - f i c and in t r a s p e c i - f i c s i l e n t (synonymous) s u b s t i t u t i o n s agree

v e ry w e l l (compare A and C m a t r ic e s ) .

207

Page 235: (Hus domesticus. Rut t y ) - UCL Discovery

A.

4 - T

V ....................... "*---------------------- ♦v v ✓

N x '^ X ✓

\ N /n x /

^ * Xjb /V 0✓ ' -

✓ v v/ N X✓ N X

j / V------------------------- iim m iiu i ■ — a

m --------------------

B.

\X

C.

► SLOW

» FAST

x x N N N N X

x N

T

4— -

xx N

X > NN N N NX

* ; ♦

208

Page 236: (Hus domesticus. Rut t y ) - UCL Discovery

PLAIE_3JLii_Seguence_com2§[:i5on_5i. te_rnaeeing_methgd5_a)_i _Gel__£icturei

Mbo I f ra g m e n ts , f rom a number o f mouse mtDNAs from d i f f e r e n t B r i t i s h

l o c a l i t i e s , were s e pa ra te d by e le c t r o p h o r e s is th ro u g h a 5V. p o ly a c ry la m id e

ge l and s i l v e r s ta in e d . The f ragm en t s iz e s o f th e known r e fe r e n c e sequence

( th e la b o r a to r y mouse; B ibb et a i 1981) c u t w i th Mbo I i s d e p ic te d

a d ja c e n t t o la n e 1.

A ( la n e 5 ) : i n d ic a t e s a s in g le base change accoun ts f o r th e d i f f e r e n c e s

between th e known re fe r e n c e p r o f i l e found in la n e s 1 & 6. The v a r ia n t

p a t te r n ( la n e 5) la c k s a 1344 bp f ragm en t wh ich i s p re s e n t in th e known

sequence ( la n e 6 ) , y e t has in i t s p la c e two new bands o f a p p ro x im a te ly 1179

bp (1175 > 30 bp) and 165 bp (170 + 30 b p ) . F ig u re 3 .2 e x p la in s how t h i s

s i t e ga in can be i n f e r r e d t o map to a p r e c is e lo c a t i o n where th e

s u b s t i t u t i o n r e s p o n s ib le f o r chang ing th e f ragm en t p a t t e r n s o c c u r re d .

B ( la n e 2 ) : T h is fragm en t p a t t e r n i s more complex t o e x p la in , i n v o lv in g

s u b s t i t u t i o n s in two a reas o f th e mtDNA genome, f i r s t l y , a s i t e lo s s i e .

th e lo s s o f f ra gm en ts 468 bp and 31 bp and th e subsequent g a in o f a

fragm en t s iz e d 499 bp, wh ich i s th e sum o f th e l a t t e r two f ra g e m ts ( f i g .

3 . 2 b l ) . The lo s s o f 598 bp and 67 bp f ra g m e n ts p lu s th e appearance o f

f ra g m en ts s iz e d 614 bp (610 + 10 bp) and 51 bp (50 + 10 bp) in v o lv e s a lo s s

o f one s i t e and a g a in o f a new s i t e (see f i g . 3 . 2 b I I , f o r a f u l l e r

e x p l a i n a t i o n ) .

Lanes 3 & 4 re p re s e n t mice w i th mtDNA w i th p r o f i l e s i d e n t i c a l t o th e

la b o r a to r y re fe re n c e sequence ( p a t te r n A ).

The mouse samples used in th e g e l in c lu d e ; la n e 1 & 6 - in b re d s t r a i n ,

C 5 7 /b l /6 ; la n e 2 - H a rra y , M a in land Orkney; Lane 3 - B u r t o n - o n - t r e n t ,

S t a f f o r d s h i r e ; lane 4 - B irm ingham ; la n e 5 - East G r in s te a d , K en t.

209

Page 237: (Hus domesticus. Rut t y ) - UCL Discovery

IN 6145S 598-IN 499- _SS 468 -

LO S S 67 ~ GAIN SI „ LOSS

LABORATORY MOUSE REFERENCE PROFILES

U N K N O W N N E W VARIANTS

M B O

13441179

165

Page 238: (Hus domesticus. Rut t y ) - UCL Discovery

Hind I I I r e s t r i c t i o n f ragment o-f B r i t i s h Hus dom esticu*

mtDNA.

Mi t o c h o n d r i a l DNA -from th e House mouse ( H u s d o m e s t i c u s ) -from v a r i o i s

B r i t i s h l o c a t i o n s , i s o l a t e d by u l t r a - c e n t r i f u g a t i o n in a sw in gou t r c t o r in

a cesium c h l o r i d e g r a d i e n t . The p u r i f i e d mtDNA was d ig e s te d w i t h

r e s t r i c t i o n endonucleases Hind I I I and HPA I I , t h e f ra g m e n ts were separated

on 0.75'/. agarose g e l s and e th id iu m bromide s t a i n e d ( M a n i a t i s e t a l . , 1982).

M o le c u la r we ig h t s tan d a rd s are i n d i c a t e d t o the r i g h t i n p i c t u r e 1 (lambda

c u t w i t h Hind I I I ; s i z e s of f ra g m e n ts in k i l o b a s e s ) and t o t h e l e f t o f the

gel p i c t u r e 2 (1 k i l o b a s e l a d d e r ; s i z e s i n b a s e - p a i r s ) .

Hind I I I : The r e fe r e n c e sequence (C57/BL/6) d ig e s te d w i t h t h i s enzyne was

run as an a d d i t i o n a l s i z e marker in bo th g e l s ( la n e 9; p i c t u r e 1 anc lane

8; p i c t u r e 2) the s i z e s o f wh ich , i n b a s e - p a i r s , a re shown a d ja c e n t t o lane

9 i n p i c t u r e 1. B r i t i s h mice show two p a t t e r n s w i t h t h i s hexanuc l eot i de

r e s t r i c t i o n enzyme, th e r e fe r e n c e sequence p a t t e r n A ( l a n e 2 ,4 ; p i c t u r e 1

and lane 5 j p i c t u r e 2) and a v a r i a n t p a t t e r n B ( la n es 1, 6 -8 ; p i c t u r e 1

and la nes 4 , 6 , 7 ; p i c t u r e 2 ) . P a t t e r n B r e s u l t s f rom a s i n g l e s i t e loss,

t h e f ra gm en ts 13462 and 1945 bp j o i n i n g t o produce th e l a r g e r f ragment

15407 bp.

HPA I I : Fragment p r o f i l e s produced by d i g e s t i o n w i t h t h i s t e t r a n u c l e o t i d e

r e s t r i c t i o n enzyme are i l l u s t r a t e d i n gel p i c t u r e 2 showing t h e two

p a t t e r n s A and D which are e x p la in e d i n more d e t a i l i n f i g u r e 3 .8 .

Lane d e s i g n a t i o n s :

2 1 . 1

Page 239: (Hus domesticus. Rut t y ) - UCL Discovery

212

Page 240: (Hus domesticus. Rut t y ) - UCL Discovery

P ic t u r e 1 - H ind I I I d ig e s t s ; la n e 1, DAN4 (D an ish mouse), la n e 2 , I .o - f.M S

( I s l e o-f May, F i r t h o-f F o r th , n o r th e a s t S c o t la n d ) , la n e 3 , B0T9 (B u r to n -o n -

T r e n t , S ta - f - fo rd s h ire ; shows a p a r t i a l d i g e s t i o n , when r e ru n p a t t e r n A was

obse rved ) , la n e 4 , NUT7 ( N u t - f ie ld , S u r re y , E n g la n d ) , la n e 5 , WH1 (West

Humble, S u r re y ; u n d e r lo ad e d sample, d e s ig n a te d p a t t e r n A when r e r u n ) , la n e

6, BARD6 (B a rn a c la v a n , C a ith n e s s , n o r th S c o t la n d ) , la n e 7, HARR10 (H a r ra y ,

M a in land O rk n e y ) , and la n e B, NG10 (N o r th G r in a b y , W es tray , O rkn ey ) .

P i c t u r e 2 - HPA I I d ig e s t s ; la n e 1, WEST4 (S k e lw ic k , W estray , O rk n e y ) , la n e

2, IRE7 (B e l- fa s t , N. I r e l a n d ) , la n e 3, C 57 /B L /6 ( l a b o r a t o r y r e fe r e n c e

sequence ); H ind I I I d ig e s t s ; la n e 4 ,7 , IRE11 and IRE7 ( B e l f a s t , N.

I r e l a n d ) , la n e 5 , B0T6 (B u r to n -o n T r e n t , S t a f f o r d s h i r e ) , and la n e 6, EDAY8

(N ew b igg in , Eday, O rkn ey ) .

213

Page 241: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 5 . 3? Xba I r e s t i c t io n fra g m e n ts Df B r i t i s h Hus do aes ticu s mtDNA.

The f ra g m e n ts p roduced by d ig e s t io n o f B r i t i s h Hus doaesticus mtDNA w i th

th e h e x a n u c le o t id e r e s t r i c t i o n enzyme Xba I a re shown a f t e r e le c t r o p h o r e s is

ins (1) a 57. p o ly a c ry la m id e ge l ( f i g . 3 .2 .1 ) s ta in e d w i th s i l v e r

(T e g le s tro m , 1986), and (2) a 0.77. agarose ge l ( f i g . 3 .2 .1 ) s ta in e d w i th

e th id iu m b rom ide (M a n ia t is et a i . , 1982).

A l l samples examined were i n v a r ia n t f o r t h i s enzyme, d is p la y in g o n ly th e

la b o r a t o r y re fe r e n c e sequence p a t te r n A [ C 5 7 /b l / 6 , la n e 1, f i g . 3 .2 .2 1 . In

t h i s f i g u r e p a t t e r n A i s re p re s e n te d by W15 [W es tray , Orkneys la n e s 2 in

f i g . 3 .2 .1 and 3 .2 .2 1 and T16 [T a u n to n , Somersets la n e s 3 i n bo th f i g u r e s ] .

The m o le c u la r w e ig h t m arkers a re in d ic a te d t o th e l e f t (1 K i lo b a s e la d d e r

i n b a s e -p a i r s ) and th e r i g h t hand s id e s (lambda H ind I I I i n K i lo b a s e s ) o f

th e g e ls , f i g u r e s 3 .2 .1 and 3 .2 .2 r e s p e c t i v e l y . A d d i t i o n a l l y th e e xac t

r e s t r i c t i o n fra gm en t le n g th s o f th e re fe r e n c e sequence ( p a t te r n A) a re

shown a d ja c e n t t o la n e 3 f i g . 3 .2 .1 .

T h is f i g u r e i l l u s t r a t e s i t i s p o s s ib le t o v i s u a l i z e th e d ig e s t io n p a t t e r n s

u s in g e i t h e r agarose o r p o ly a c ry la m id e g e ls . However, te n t im e s as much

mtDNA was r e q u i r e d f o r d e te c t io n in agarose g e ls (40-50 n g ) , whereas o n ly

1-5 ng mtDNA i s needed f o r s e n s i t i v e s i l v e r s t a i n i n g o f p o ly a c ry la m id e

g e ls . A lso , a l th o u g h agarose g e ls r e s o lv e f ra g m e n ts g re a te r than 5KB,

f ra gm en ts le s s than 500bp (average s iz e s o f most f ra g m e n ts produced by 4 -

base c u t t e r s ) a re more c l e a r l y d i f f e r e n t i a t e d u s in g p o ly a c ry la m id e .

?.1 a

Page 242: (Hus domesticus. Rut t y ) - UCL Discovery

XBA I

L W 1K T

75765066

394344

220 *

200 -

*

*

t

*

455341

75

I 2 3 PATTERN A

XBA I

-23 .1

j6.6

«-4 4

I , 20

0.56

1 2 3 4 P A T T E R N A_________

215

Page 243: (Hus domesticus. Rut t y ) - UCL Discovery

P L A T E ^ ^ f^ HPA I I r e s t r i c t i o n fra gm en t p r o f i l e s in some B r i t i s h

Hus dom esticus mtDNA.

T h is f i g u r e , o f a s i l v e r s ta in e d 57. p o ly a c ry la m id e g e l , shows th e p ro d u c ts

o f d ig e s t io n w i th th e t e t r a n u c le o t i d e r e s t r i c t i o n enzyme HPA I I . The

m o le c u la r w e ig h t marker lambda Bgl I f ra g m e n ts a re l i s t e d t o th e l e f t o f

th e gel in b a s e - p a i r s . A l l mice show th e c h a r a c t e r i s t i c p a t t e r n D which

d i f f e r s from th e r e fe r e n c e sequence ( p a t t e r n A) by a s in g le s i t e lo s s .

Hence, w i th th e lo s s o f f ra gm en ts 813 bp and 68 bp, a s in g le la r g e r

fragm en t e q u iv a le n t t o t h e i r sum, 881 bp i s ga ined (+ in d ic a t e s p o s i t i o n in

th e g e l ) .

Lane 2 - Ml ( I s l e o f May, F i r t h o f F o r t h ) ;

Lane 3 - E l (Eday, O rkney) ;

Lane 4 - W1 (W estray , O rkn e y ) ;

Lane 5 and 6 - F1,F2 (Fa ray , O rkney) ;

EA r e p r e s e n ta t i v e p r o f i l e o f HPA I I p a t t e r n A can be seen in p l a t e 3 .2 .2 ,

la n e s 2 and 3 on a 0.757. agarose ge l s ta in e d w i t h e th id iu m brom ide. 3

216

Page 244: (Hus domesticus. Rut t y ) - UCL Discovery

HPA II

ABGLI M

1 2 - 3 - 4 - 5 - 6 -PATTERN D

217

Page 245: (Hus domesticus. Rut t y ) - UCL Discovery

^aq I d ig e s ts o-f B r i t i s h ft us dcm esticus mtDNA.

E le c t r o p h o r e s is o-f Taq I mtDNA f ra g m e n ts on a s i l v e r s ta in e d 57.

p o ly a c ry la m id e g e l .

Lane 1 - Ml ( I s l e o-f May, F i r t h o-f F o r th ) shows p a t t e r n A, th e same p r o f i l e

as th e r e fe r e n c e sequence, th e s iz e s o f wh ich a re i n d ic a t e d t o th e l e f t i n

b a s e - p a i r s .

Lane 2 - E l (Eday, O rkn e y ) ; Lane 3 - W1 (W estray , O rk n e y ) ; Lane 4 and 5 -

F I , F2 (F a ra y , O rkn ey ) ; a l l show th e v a r i a n t p a t t e r n D. T h is d i f f e r s from

p a t t e r n A by a s in g le s i t e lo s s a t 9577, w i th th e r e s u l t a n t lo s s o f

f ra gm e n ts 1907 and 258 bp, and th e g a in o f a la r g e r 2167 bp f ra g m e n t .

C : i n d i c a t e s th e d i f f e r e n c e s between th e two p r e v io u s l y d e s c r ib e d

f ragm en t p a t t e r n s . 3

218

Page 246: (Hus domesticus. Rut t y ) - UCL Discovery

TAQ I

E, W,

22451 7 7 31403

m

1 2 3 4 5A B B B B

Page 247: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 5 . 6 i Hae I I I r e s t r i c t i o n p r o f i l e s o f B r i t i s h Hus dowesticus mt

DNA.

Fragments produced by th e d ig e s t io n o f mouse mtDNA w i t h th e r e s t r i c t i o n

enzyme Hae I I I on a s i l v e r s ta in e d 57. p o ly a c ry la m id e g e l . T h is ge l shows

f o u r d i f f e r e n t mtDNA p a t t e r n s from f o u r i n d i v i d u a l s each r e p r e s e n ta t i v e o f

t h e i r r e s p e c t iv e p o p u la t io n s . The re fe r e n c e sequence (C 5 7 /b l /6 ) e x h i b i t s

p a t t e r n A and was used as th e m o le c u la r w e ig h t s ta n d a rd ; i t i s shown in

la n e 1 (o n ly some o f th e fragm ent s iz e s , g ive n i n b a s e - p a i r s , a re in d ic a te d

a lo n g s id e ) . Lane 4 (EG5! East G r in s te a d , Kent) shows th e s im p le s t p a t te r n

(U ) , a t t r i b u t a b l e t o th e lo s s o f one s i t e , which la c k s f ra g m e n ts 550 bp and

33 bp bu t has ga ined a 583 bp f ra g m e n t.

EG6 (East G r in s te a d , K e n t ) , la ne 3, shows p a t t e r n T wh ich in v o lv e s two s i t e

lo s s e s . One la r g e r f ra g m e n t , 1574 bp, has been ga ined w i th th e consequent

d isa pp earence o f t h r e e s m a l le r f ra g m e n ts , 945, 5 6 0 ,and 69 bp.

BIRM5 (B irm ingham, West M id la n d s ) , la n e 5, shows p a t t e r n V, which a ls o

in v o lv e s two s i t e lo s s e s , s i t e s 15189 and 12378, w i t h th e subsequent lo s s

o f two s m a l le r f ra g m e n ts f o r each, 550 and 33 bp, 852 and 39 bp, and th e

r e s u l t a n t g a in o f two l a r g e r f ra g m e n ts , 583 bp and 891 bp r e s p e c t i v e l y .

F i n a l l y th e most complex p a t te r n (R ), la n e 2 - HARR3 (H a rray , M a in land

O rkney) , in v o lv e s th e lo s s of f ra gm en ts 1362 bp and 945 bp and th e g a in o f

a la r g e r fra gm en t 2307 bp, accounted f o r by one s i t e lo s s . A d d i t i o n a l l y ,

t h e lo s s o f s i t e 7541 r e s u l t s i n the d isa pp e a ra n ce o f f ra gm en ts 526 bp and

51 bp, re p la c e d by th e sum of th e s e , 577 bp.

2 2 0

Page 248: (Hus domesticus. Rut t y ) - UCL Discovery

H A E III

221

Page 249: (Hus domesticus. Rut t y ) - UCL Discovery

H in f I d ig e s ts o-f Hus dow esticus mtDNA.

Fragment p a t t e r n s p roduced by d ig e s t io n o-f mtDNA w i t h th e r e s t r i c t i o n

endonuc lease Hin-f I , s e p a ra te d by e le c t r o p h o r e s is on a s i l v e r s ta in e d 57.

p o ly a c ry la m id e g e l . Lane 1 shows th e re - fe re nce sequence p r o - f i l e ( p a t te r n

A ), used as th e m o le c u la r w e ig h t m arke r, th e s iz e s o-f w h ich a re in d ic a te d

t o th e r i g h t o-f th e g e l .

Lane 2 - HARR3 (H a r ra y , M a in land O rkn ey ) ; Lane 3 - B0T3 (B u r to n -o n - T r e n t ,

S ta - f - fo rd s h i re ) ; Lane 4 - DERB1 (Derby, D e r b y s h i r e ) ; Lane 5 - EG9 (East

G r in s te a d , K e n t ) ; Lane 6 - BIRM5 (B irm ingham , West M id la n d s ) .

Lanes 3 ,5 -6 (B0T3, EG9, and BIRM5 r e s p e c t i v e l y ) a l l sha re th e same s i t e

lo s s a t 11938, w h ich i s c h a r a c te r iz e d by th e d is a pp e a ra n ce o-f f ra gm en ts 539

and 920 bp and th e appearance o f a new f ra g m en t o f 1459 bp. Lane 3 (BGT3)

has o n ly t h i s s i t e lo s s and i s d e s ig n a te d p a t t e r n Z, w h i l s t EG9 ( la n e 5)

and BIRM5 ( la n e 6) b o th share t h i s lo s s p lu s an a d d i t i o n a l b u t d i f f e r e n t

s i t e lo s s each. Hence P a t te r n 3 ( la n e 6) in c o r p o r a te s th e p r e v io u s ly

d e s c r ib e d s i t e lo s s i n a d d i t i o n t o th e lo s s o f s i t e 7973 w i th th e

subsequent d isa p p e a ra n c e o f f ra g m e n ts 367 and 144 bp and th e emergence o f a

new 511 bp s iz e d f ra g m e n t . P a t te rn S ( la n e 5) i s p roduced by th e s i t e lo s s

11938 p lu s a 1055 a t s i t e 6882 which causes th e appearance o f ano the r new

f ragm en t 853 bp, th e p ro d u c t o f th e m is s in g two f ra g m e n ts 368 and 485 bp.

Lane 2 (HARR3) shows p a t t e r n C which has two e n t i r e l y d i f f e r e n t s i t e

lo s s e s , a t 9526 and 9574, r e s u l t i n g in th e lo s s o f t h r e e f ra g m e n ts 263, 946

and 48 bp and th e consequent appearance o f one l a r g e r , 405 bp f ra gm en t.

Lane 4 (DERB1) i l l u s t r a t e s th e i n v a r i a n t p a t t e r n A, i d e n t i c a l t o th e

re fe re n c e sequence t y p e ( la n e 1 ) .

2 2 2

Page 250: (Hus domesticus. Rut t y ) - UCL Discovery

BIR

MH I N F I

LDO)

OLU

COccLUQ

h -°° 00T DC COO DC

CD< lD —1I (J CD

6

(a)

1993

223

Page 251: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 3.B? MBO I d ig e s ts o f Mus dom esticus mtDNft.

Fragment p a t t e r n s o b ta in e d a f t e r d ig e s t io n w i t h th e t e t r a n u c le o t i d e

r e s t r i c t i o n endonuc lease Mbo I f rom s ix Mus domesticus mtDNA’ s.

Lambda DNA d ig e s te d w i t h Bgl I was used as th e f ra g m e n t s iz e marker ( lane

7 ) , th e s iz e s o f wh ich a re in d ic a te d on th e r i g h t i n b a s e - p a i r s .

Lane 1 - Ml ( I s l e o f May, F i r t h o f F o r t h ) , i l l u s t r a t e s p a t t e r n W, which

d i f f e r s from th e r e fe r e n c e sequence p a t t e r n (A) by a s i n g le s i t e ga in a t

10564. T h is r e s u l t s i n th e f i s s i o n o f th e 1344 bp f ra g m e n t i n t o two s m a l le r

f ra g m e n ts , 1034 and 310 bp.

A l l th e Orkney I s l e s have p a t t e r n 0 ( la n e s 2 -6 ; E l , W1 and W2, FI and F2

from Eday, W estray , and Faray r e s p e c t i v e l y ) . T h is d i f f e r s f ro m the

re fe r e n c e sequence p a t t e r n by th r e e s i t e d i f f e r e n c e s , two lo s s e s and one

g a in . The lo s s o f s i t e 3599 le a ve s f ra g m e n ts 468 and 31 bp jo in e d to

p roduce a 499 bp f ra g m e n t . W h i ls t th e lo s s o f s i t e 2505 accou n ts f o r th e

d isa pp e a re n ce o f f ra g m e n ts 598 and 67 bp and th e g a in o f s i t e 2489 produces

two f ra g m e n ts o f 614 and 51 bp.

224

Page 252: (Hus domesticus. Rut t y ) - UCL Discovery

MBO I

F 1 ABgl 1 [base pair.s]

9649

2256

1650

Page 253: (Hus domesticus. Rut t y ) - UCL Discovery

EL£*IE_3-.9£ Rsa I d ig e s ts o f B r i t i s h Hus dom esticus mtDNA.

E le c t r o p h o r e s is o-f Rsa I mtDNA fra g m e n ts on a s i l v e r s ta in e d 5V.

p o ly a c ry la m id e g e l , f rom f i v e m ice. Lane 1 i s th e l a b o r a to r y mouse

re fe r e n c e sequence ( p a t te r n A) f ra g m e n t s iz e s o f which a re in d ic a te d t o t h e

r i g h t ( in b a s e - p a i r s ) . Lane 4 - DERB1 (D erby, D e rb y s h ire ) a ls o shows

p a t t e r n A.

P a t te r n C seen in la n e 3, B0T3 (B u r to n -o n -T r e n t , S t a f f o r d s h i r e ) has bcth

a lo s s and g a in a t s i t e s 9545 and 11265 r e s p e c t i v e l y , c h a r a c te r iz e d by he

d isappea rance o f f ra g m e n ts 577, 658 and 78 bp and th e appearance o f

f ra gm en ts 655, 572 and 86 bp.

Lane 5 , EG9 (East G r in s te a d , K en t) shows p a t t e r n D, which has two s i t e

lo s s e s and two s i t e g a in s . Fragments 275 and 240 bp were re p la c e d by 28-

and 232 bp, s i m i l a r l y f ra g m e n ts 274 and 495 bp were re p la c e d by tho se o

281 and 488 bp.

P a t te r n E re p re s e n te d by HARR3 (H a r ra y , M a in land Orkney) has n in e g a in s and

f i v e lo s s e s o f s i t e s compared t o th e r e fe r e n c e sequence ( p a t t e r n A ).

D e t a i l s o f th e s e can be found in T a b le 3N (Rsa I v a r ia b le r e s t r i c t i o n

s i t e s ) and f i g u r e 3a - l i s t o f f ra g m e n ts .

0 : in d ic a t e s th e m ajor fra g m en t d i f f e r e n c e s .

- o r + : i n d ic a t e s a lo s s o r g a in o f a f ra g m e n t .

226

Page 254: (Hus domesticus. Rut t y ) - UCL Discovery

CDOLU

RSA I

CDQCLUa

co

oCD

QCCC<X

CO

CD

CD"•s.r">in

O

308/6

2 2 7

Page 255: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE_3i 1 0 i A lu I d ig e s ts o-f B r i t i s h Hus dom esticus mtDNA.

Fragment produced by d ig e s t i o n o-f mtDNA w i th th e t e t r a n u c le o t i d e

r e s t r i c t i o n enzyme A lu I , se p a ra te d on a s i l v e r s ta in e d 57. p o ly a c ry la m id e

g e l .

The la b o r a t o r y mouse (C 57 /BL /6) was run i n la n e 1 as th e m o le c u la r w e igh t

m a rke r, shows th e r e fe r e n c e sequence p a t t e r n A, th e s iz e s o-f some o f th e

f ra g m e n ts i l l u s t r a t e d t o th e l e f t in b a s e - p a i r s . Lanes 4, 6, DERB1

(D e r b y s h i r e ) , and BIRM5 (B irm ingham , West M id la n ds ) a ls o show th e i n v a r ia n t

p a t t e r n A.

P a t te rn G seen in la n e 5, EG9 (East G r in s te a d , Ken t) v a r ie s from p a t t e r n A

by one s i t e lo s s a t 10826 and one s i t e g a in a t 10835. T h is i s shown by th e

lo s s o f f ra g m e n ts 365 and 30 bp, re p la c e d by f ra g m e n ts 374 and 21 bp.

P a t te rn H ( la n e 3; B0T3, B u r to n -o n - T r e n t , S t a f f o r d s h i r e ) in v o lv e s two s i t e

lo s s e s a t 6233 and 6291, ca us ing th e lo s s o f t h r e e f ra g m e n ts 450, 58 and 44

bp, s u b s t i t u t e d by a l a r g e r f ra g m e n t , th e sum o f th e s e , s iz e d 552 bp.

HARR3 (H a rra y , M a in land Orkney) as seen in la n e 2 i l l u s t r a t e s p a t t e r n B,

which a r is e s f rom a s i t e lo s s and s i t e g a in a t 3143 and 9947. S ubsequen t ly

f ra g m e n ts 650 and 45 bp a re l o s t re p la c e d by 725 bp, s i m i l a r l y 448 bp

fra gm en t i s m is s in g , re p la c e d by th e two f ra g m e n ts 359 and 89 bp. In

a d d i t i o n t o th e s e , p a t t e r n B has two more s i t e lo s s e s a t 5122 and 5253,

p lu s two more s i t e g a in s a t 5129 and 8259 r e s p e c t i v e l y . Fragments 654 and

54 bp were re p la c e d by 659 and 49 bp, w h i l s t th e f ra g m e n ts 545 and 40 bp

were s u b s t i t u t e d by th o s e o f 551 and 34 bp.

+ o r - i n d i c a t e s m a jo r d i f f e r e n c e s between p r o f i l e s .

22H

Page 256: (Hus domesticus. Rut t y ) - UCL Discovery

ALU ICO

\< Dh— . L O -J QDQ

QCQC<X

COI

01

CO

COQCLUQ

CO

9UJ

5QC00

in

B

Page 257: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

CHAPTER FOUR: P h v lo q e o q ra p h ic p o p u la t io n s t r u c t u r e o f B r i t i s h house mouse

eQ £y !§ t iD ns_ £ rg m _ an a l¥ 5 is_ g f_m itgch g nd r i.a !_D N A i

4i i i _ I o t r g d u c t i g n i

Animal m i to c h o n d r ia l DNA (mtDNA) i s s m a l l , m a te r n a l l y i n h e r i t e d ( G i le s et

aim, 1980; G y l le n s te n , e t aim, 1985), e a s i l y p u r i f i e d , la c k s re c o m b in a t io n ,

has a s im p le sequence o r g a n iz a t io n and e v o lv e s a t a h ig h e r base sequence

r a t e (1 -10 t im e s ) tha n do n u c le a r genes (Brown e t aim, 1979; Brown, 1983;

Vawter & Brown, 1986). These q u a l i t i e s make i t t h e " d e f i n i t i v e " m o le c u la r

marker f o r t r a c i n g m a te rna l g e n e a lo g ie s (W ilson e t aim, 1985, 1989; A v is e ,

1986; H a r r is o n , 1989). I t i s e s p e c ia l l y u s e fu l i n d i f f e r e n t i a t i n g among

c lo s e l y r e la t e d c o n s p e c i f i c s ; e x te n s iv e i n t r a s p e c i f i c , g e o g r a p h ic a l l y

p a r t i t i o n e d mtDNA v a r i a t i o n has been dem ons tra ted i n p o p u la t io n s o f

mammals, a m p h ib ians , f r e s h w a te r f i s h e s and c ra b s ( r e v ie w s - see A v is e et

aim, 1987a; A v is e , 1989 ). Such m a jo r " d i v i s i o n s ’' w h ich d i s t i n g u i s h some

groups o f p o p u la t io n s i l l u s t r a t e t h a t d is p e r s a l and gene f lo w have no t

o v e r r id d e n h i s t o r i c a l in f lu e n c e s on p o p u la t io n s u b d iv i s i o n s , as re v e a le d by

mtDNA p h y lo g e n e t ic r e c o n s t r u c t io n s (Saunders et aim, 1986; Bermingham &

A v is e , 1986).

The p re sen t day d i s t r i b u t i o n o f sm a ll ro d e n ts i n t h e B r i t i s h I s l e s has le d

t o innummerable d eba tes and s p e c u la t io n s about t h e i r o r i g i n s (L e v e r , 1969;

C o rb e t, 1969; Ya lden , 1982). E a r ly w o rke rs (H in to n , 1910; B a r r e t t - H a m i l t o n

& H in to n , 1910-21) suggested i s la n d p o p u la t io n s o f r o d e n ts re p re s e n t

g l a c i a l r e l i c s , some o f which were i s o la t e d when la n d - b r id g e s were b roken ,

su bse q ue n tly re p la c e d on th e m a in lands by new fo rm s m ig r a t in g from Europe

230

Page 258: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

as th e i c e r e t r e a t e d . However, t h i s c o n c lu s io n has been re p e a te d ly

c h a l le n g e d (B e i rn e , 1952: Matthews, 1952; B e r ry et a J 1967). I t i s h i g h l y

u n l i k e l y t h a t ro d e n ts -from N o rth A t l a n t i c i s la n d s c o u ld have s u r v iv e d th e

l a s t g l a c i a t i o n , as th e whole o-f S c o t la n d , t o g e th e r w i th th e m a jo r i t y o-f

I r e la n d and a s s o c ia te d i s la n d s , were co ve red by ic e d u r in g th e t im e o-f th e

P le is to c e n e g l a c i a l maximum. T h is su g g e s ts t h a t th e e a r l i e s t p o s s ib le

c o lo n i s a t i o n o f B r i t a i n would have been a p p ro x im a te ly 10,000 B.P (b e fo re

p r e s e n t ) , t h e end o f t h e W eichsch ian s ta g e o f th e P le is to c e n e . A ls o , th e

maximum e u s t a t i c lo w e r in g o f th e s e a le v e l was about 70-100 m e tre s , th u s th e

S h e t la n d s , O rkneys and th e Outer H e b r id e s were never connected t o th e

m a in land d u r in g o r s in c e th e l a s t g l a c i a l phase.

C o rbe t (1961) sugges ted an a l t e r n a t i v e h y p o th e s is , t h a t r o d e n ts (a t l e a s t

i s l a n d fo rm s ) may have been a c c id e n t a l l y in t r o d u c e d by man, a t any t im e

s in c e th e M e s o l i t h i c , i n a d v e r t a n t l y t r a n s p o r t e d i n t h e i r l i v e s t o c k fo d d e r .

T h is id e a was su p p o r te d by B e r ry (1 9 69 ) , who suggested t h a t t h e m a jo r i t y o f

is la n d f i e l d m ice (Apodeuus spp) were t r a n s p o r t e d by th e agency o f man.

Through i t s commensal a s s o c ia t io n s w i t h man, th e house mouse (Hus

domesticus Rutty) i s a h ig h l y s u c c e s s s f u l , o p p o r t u n i s t i c , c o lo n iz in g

s p e c ie s . House mice occupy h a b i t a t s v i r t u a l l y w o r ld -w id e , w i t h th e

e x c e p t io n o f p o la r r e g io n s and c e n t r a l A f r i c a (B e r ry , 1981b). T h is s p e c ie s

i s t r a d i t i o n a l l y th o u g h t t o have f i r s t in va de d Europe, f rom th e M id d le

E a s t , le s s tha n 8 ,0 0 0 ye a rs ago, as commensals o f N e o l i t h i c fa rm e rs and

fo l lo w e d th e spread o f human g r a in c u l t u r e n o r th w a rd s (Schwarz & Schwarz,

1943; B ro th w e l1, 1981; G y l le n s te n & W i ls o n , 1987).

231

Page 259: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

E v idence f ro m b io c h e m ic a l , m i to c h o n d r ia l DNA and H-2 p o lym orph ism s has

d e m o n s tra te d , th u s - fa r , v e ry l i t t l e m a c ro g eo g rap h ica l s t r u c t u r i n g o-f

commensal p o p u la t io n s th ro u g h o u t t h e s p e c ie s ’ range (B e r ry 8c P e te r s , 1977;

B r i t t o n - D a v id i a n , 19B5; F e r r i s et al•, 1983; Nadeau et a l 1988 ). T h is has

been a t t r i b u t e d t o i t s re c e n t and e x te n s iv e range e x p a n s io n , and

h i s t o r i c a l l y s t r o n g gene f lo w . However, marked m ic ro g e o g ra p h ic s t r u c t u r i n g

i s e v id e n t i n most domesticus p o p u la t io n s on a more lo c a l s c a le ( K le in et

al•, 1981; F e r r i s e t aim, 1983; G y l le n s te n 8c W ils o n , 1987; N a va jas Y

N a va rro 8c B r i t t o n - D a v id i an, 1989).

The aim o f t h i s work i s t o i n v e s t i g a t e th e e x te n t and o r i g i n s o f ra c e s o f

th e B r i t i s h house mouse u s in g mtDNA a n a ly s i s . M orphom etr ic e v id e n c e (D a v is ,

1983) i n d i c a t e s t h a t C a ith n e ss and Drkney house m ice W u s domesticus

R u t ty ) a re g e n e t i c a l l y d i s t i n c t f ro m o th e r B r i t i s h m ice , s u g g e s t in g t h a t

th e s e n o r th e rn fo rm s a re descended f ro m i n t r o d u c t i o n s . T h is i s i n g e n e ra l

agreement w i t h k a r y o lo g ic a l and h i s t o r i c a l e v id e n ce (B ro o k e r , 1982; Nash

et a lm , 1983; Renfew, 1985; B e r ry , 1985b). Each mtDNA m o le c u le c a r r i e s i n

i t s sequence th e h i s t o r y o f i t s l in e a g e , unhampered by c o m p l ic a t io n s

a r i s i n g f rom re c o m b in a t io n , which have dogged a t te m p ts u s in g d i p l o i d

n u c le a r DNA m arke rs , hence, i t can be used f o r t r a c i n g p a t t e r n s o f

c o lo n i s a t i o n , i n t r o d u c t i o n and gene f l o w . T h is approach has been

s u c c e s s f u l l y a p p l ie d t o a w ide range o f s p e c ie s in c lu d in g humans (H o r ia &

Matsunaga, 1986; Cann et a im , 1987; W i lso n et a im , 1987b; S to n e k in g 8c

W ils o n , 1989; Jones, 1990; S to n e k in g et a l . , 1990; H e r tz b e rg e t a im , 1989),

sm a ll mammals (A sh le y 8c W i l l s , 1987; MacNeil 8c S tro b e c k , 1987; B o u rs o t et

a im , 1985; Yonewaki et a im , 1986, 1988 ), l a r g e mammals (Baker et a im , 1990;

232

Page 260: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

S teve n s e t al,, 1989), in s e c ts (H a l l & M u ra l id h a ra n , 1989; Sm ith e t al,,

1989) and r e p t i l e s (Bowen e t al,, 1989), t o name b u t a -few.

H ig h ly p u r i f i e d mtDNA, f rom each o f 430 B r i t i s h house m ice , f ro m 7 Orkney

I s l e s and 35 l o c a l i t i e s e lsew here in th e B r i t i s h I s l e s , was i s o la t e d and

mapped, u s in g th e h ig h r e s o lu t i o n r e s t r i c t i o n method (Cann, 1982; Cann e t

al,, 1982; Cann e t al,, 1984; S to n e k in g e t al,, 1986), w i t h r e s p e c t t o th e

p u b l is h e d sequence o f mouse mtDNA (B ibb e t al,, 1981). I have used

r e s t r i c t i o n a n a ly s is o f mtDNA t o c h a r a c t e r i s e th e g e o g ra p h ic p o p u la t io n

s t r u c t u r e o f th e B r i t i s h house mouse and hence assess th e r o l e o f

h i s t o r i c a l b io g e o g ra p h ic a l f a c t o r s in shap in g i t s g e n e t ic s t r u c t u r e .

S e c o n d ly , I employed mtDNA r e s t r i c t i o n f ragm en t p o lym orph ism s as m arkers

f o r e s t im a t in g p ro b a b le p a t t e r n s o f c o lo n i s a t i o n among th e N o r th e rn I s le s

(O rkney) and a d ja c e n t m a in land p o p u la t io n s o f house m ice . In p a r t i c u l a r I

s h a l l examine th e m ic ro g e o g ra p h ic s t r u c t u r e o f th e s e mtDNA po lym orph ism s,

compared w i t h tho se o b ta in e d from n u c le a r DNA a n a ly s e s .

4i 2i _ M a te r ia ls_ a nd _ m e th g d s i

M ice^

Three hundred and t h i r t y f o u r mice were o b ta in e d by e i t h e r 1i v e - t r a p p in g

(u s in g Longworth t r a p s ) i n o r around b u i l d i n g s , in one t o two t r a p - n i g h t s ,

Dr handcaught a t t h r e s h in g f ro m 40 B r i t i s h l o c a l i t i e s , encompassing 16

c o u n t ie s . One hundred and se v e n ty f o u r o f th e se m ice were c o l l e c t e d from

s ix i s la n d s in Orkney (on W estray , Eday, and M a in land Orkney c o l l e c t i o n s

were made a t 2 -5 lo c a t i o n s per i s l a n d , each s i t e s e p a ra te d by s e v e ra l

k i lo m e t r e s - F ig u re 4 . 1 . 2 , s i t e s 1 -5 , 7 -8 & 11-12, r e s p e c t i v e l y ) , 43 mice

233

Page 261: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

■from seven l o c a l i t i e s i n th e n e ig h b o u r in g m a in land c o u n t ie s o-f C a i th n e s s

and S u th e r la n d ( F i g . 4 .1 .1 ) and 117 i n d i v i d u a l s from n in e te e n sa m p lin g s i t e s

i n th e r e s t o f th e B r i t i s h I s l e s . A l i s t o f a p p ro x im a te l o c a t i o n s , sample

s iz e and c a p tu re d a te s a re o u t l i n e d i n Tab le 4.1 (more d e t a i l s sam p ling

l o c a l i t i e s a re g iv e n i n Tab le 2 .2 , Chapter 2 ) . In a d d i t i o n , m ice were

c o l l e c t e d f rom m a r k - r e le a s e - r e c a p tu r e e x p e r im e n ts f ro m tw o f e r a l , i s la n d

p o p u la t io n s o f th e house mouse; 61 m ice f ro m th e 75ha i s la n d o f Faray

(5 9 °N ) , f rom 157 t r a p s i n 14 s i t e s w i th between 5 -1 5 t r a p s p e r s i t e (F ig u re

4 . 2 ) , f rom th r e e c o n s e c u t iv e y e a rs (1984, 1985, and 1986 ); 35 mice f rom th e

100 ha Is la n d o f Skokholm (51°N ), f rom 100 t r a p s i n g roups o f f i v e a t 20

s i t e s a l l o ve r th e i s l a n d , in autumn 1986 (F ig u re 4 . 3 ) .

^iiiii-kibgratgr^procedureSiU sing d i f f e r e n t i a l c e n t r i f u g a t i o n p ro c e d u re s (Lansman et a i . , 1981) and

C s C l-e th id iu m b rom ide g r a d ie n t u l t r a - c e n t r i f u g a t i o n (C a rr & G r i f f i t h ,

1987), h ig h ly p u r i f i e d mtDNA was i s o la t e d f ro m th e 430 house m ice from

e v e ry l o c a t i o n ( i s o l a t i o n s te p s summarised i n f i g u r e 3 .1 c i , c h a p te r 3 ) .

Each i n d i v id u a l DNA sample was d ig e s te d w i t h each o f 14 th e r e s t r i c t i o n

enzymes u t i l i s e d ( l i s t e d i n Tab le 4 . 1 ) , a c c o rd in g t D m a n u fa c tu re rs

d i r e c t i o n s (BRL, Bethesda Research L a b o r a to r i e s ) . The f ra g m e n ts were

s e pa ra ted on 57. p o ly a c ry la m id e g e ls ru n f o r f o r 3 h o u rs , and v i s u a l i z e d by

s i l v e r s t a i n i n g (T e g e ls t ro m , 1986). R e s t r i c t i o n f ra g m e n ts r e s u l t i n g f rom

H ind I I I d ig e s t s o f Lambda DNA and th e c o m m e rc ia l ly bought 1 K i lo b a s e

Ladder (BRL), were used as m o le c u la r w e ig h t m a rke rs .

^ i 2 i 3i _ D a ta _ A n a ly s is i

A l l d i s t i n c t i v e mtDNA r e s t r i c t i o n f ragm en t d ig e s t io n p r o f i l e s produced by a

g iv e n r e s t r i c t i o n enzyme were d e s c r ib e d by uppe rcase l e t t e r d e s ig n a t io n s .

234

Page 262: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

A lp h a b e t ic a l p r o x im ity o-f two p a t te rn s does n o t n e c e s s a r i ly r e f l e c t g e n e t ic

s i m i l a r i t y ; however ’ A* i s re s e rv e d by c o n v e n tio n f o r th e mtDNA known base

sequence (K .B .S . -B ib b e t a l . f 1981). C o n s id e r in g a l l r e s t r i c t i o n enzymes

used in t h i s s tu d y , each mouse was a ss ig ne d a co m p o s ite mtDNA geno type o f

14 l e t t e r s . Any in d iv d u a ls s h a r in g a common mtDNA c o m p o s ite geno type was

assumed t o b e lo n g t o th e same mtDNA m a t r i l i n e a l c lo n e , a lth o u g h t h i s o n ly

a p p l ie s t o th e p a r t i c u la r r e s t r i c t i o n s i t e s s u rv e y e d . The mtDNA fra gm en t

p a t te r n s on th e g e ls c o n s t i t u t e th e raw d a ta . Each r e s t r i c t i o n fra gm en t

d ig e s t io n p r o f i l e was s i t e mapped u s in g th e h ig h r e s o lu t io n sequence

com parison te c h n iq u e ( f o r d e t a i ls see F ig u re 2 .5 , C hap te r 2 & F ig u re 3 .2 ,

C hap te r 3 ; Cann e t a l 1982; Cann & W ils o n , 1983).

P a irw is e e s t im a te s o f p e rc e n t sequence d iv e rg e n c e C/.dm) between mtDNA's

were made fro m th e f r a c t io n o f shared s i t e s (S -v a lu e ) , u s in g e q u a tio n 16 o f

Nei & L i (1 9 7 9 ). S e p a ra te e s tim a te s were c a lc u la te d f o r r e s t r i c t i o n

e nd onuc leases re c o g n is in g fo u r -b a s e , f iv e - b a s e and s ix -b a s e n u c le o t id e

sequences, and th e s e v a lu e s were w e ig h te d a c c o rd in g t o th e t o t a l number o f

b a s e -p a irs re c o g n is e d by each ty p e o f r e s t r i c t i o n enzyme. Phenograms were

c o n s tru c te d fro m th e d v a lu e m a tr ic e s u s in g th e u n w e ig h te d p a i r group

method (UPGMA) u t i l i z i n g a programme w r i t t e n u s in g S t a t i s t i c a l A n a ly s is

System s (SAS I n s t i t u t e . In c , 1985) s o ftw a re .

A p re sen ce -a bse n ce d a ta m a tr ix c o n ta in in g each r e s t r i c t i o n s i t e o f e v e ry

mtDNA co m p o s ite g e n o typ e , was used in an u n d ire c te d pa rs im o ny a n a ly s is

u s in g th e PAUP program (P h y lo g e n e tic A n a ly s is U sing P ars im ony - S w o ffo rd ,

1985 ). In PAUP a n a ly s is th e s h o r te s t t r e e ( s ) was fo u n d u s in g th e 'G lo b a l '

235

Page 263: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

b ra n c h -s w a p p in g o p t io n , w ith ’ M u lp a rs '. M u lp a rs o p t io n i n i t i a t e s a search

t o r m u l t ip le e q u a lly p a rs im o n io u s t r e e s v ia b ra n c h -s w a p p in g . S p e c i f ic a t io n

o f t h i s o p t io n o f te n r e s u l t s in th e d is c o v e ry o f s h o r te r t r e e s th a n co u ld

o th e rw is e be found w ith such la rg e d a ta s e ts (o p e ra t io n a l taxo n om ic u n i t s

COTU'sD > 1 2 ) . A consensus t r e e r e f le c t i n g th e in fo r m a t io n shared by a l l

t r e e s , was c o n s tru c te d , when two o r more t r e e s o f equa l le n g th were fo u n d ,

u s in g b o th th e Adams (Adams, 1972) and S t r i c t (R o h lf , 1982) consensus

m ethods in th e Paup package. N e tw orks were ro o te d a t th e m id p o in t o f th e

g r e a te s t p a t r i s t i c d is ta n c e .

A na lagous t o h e te ro z y g o s ity o r gene d iv e r s i t y a t n u c le a r lo c i (N e i, 1978 ),

th e d i v e r s i t y o f mtDNA lin e a g e s w i t h in a p o p u la t io n was e s tim a te d u s in g an

in d e x o f n u c le o n d iv e r s i t y ( h ) , fro m Nei & T a jim a ’ s (1981) e q u a tio n 9:

h = - i - " 6- -ZL\n-1 \ i = l

where X*t i s th e fre q u e n c y o f th e i t h ty p e o f mtDNA in a p o p u la t io n sam ple

o f n spec im ens and J i s th e number o f mtDNA ty p e s . N ucleon d iv e r s i t y v a lu e s

a p p ro x im a tin g z e ro in d ic a te la c k o f mtDNA co m p o s ite gen o typ e d iv e r s i t y ,

w hereas v a lu e s c lo s e to one i l l u s t r a t e h ig h d iv e r s i t y .

fL 3 i_R esu l tSjj.

5i3iIi_Mitgchgndrial_DNA_variatign_in_Bri.taini

Two r e s t r i c t i o n endonucleases (H inc I I , Xba I ) re v e a le d no v a r ia t io n in th e

B r i t i s h sam p les, and b o th enzymes showed th e same d ig e s t io n p r o f i l e as th e

in b re d la b o r a to r y s t r a in s , ’ p a t te rn A’ ( r e p r e s e n ta t iv e g e l p ic t u r e o f th e

monom orphic enzyme Xba I i s i l l u s t r a t e d in P la te 3 .3 , in c h a p te r 3 ) . The

236

Page 264: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

re m a in in g 12 enzymes were p o ly m o rp h ic (- fo r exam ples see c h a p te r 3 , P la te s

3 .2 , 3 .4 - 3 .1 0 in c lu s iv e -for H ind I I I , Hpa I I , Taq I , Hae I I I , Mbo I , Rsa

I , and A lu I d ig e s ts , r e s p e c t iv e ly ) . S in g le enzyme p a rs im o ny n e tw o rk s can

be c o n s tru c te d u s in g a l l v a r ia b le s i t e s f o r each enzyme (T a b le 3 .3 A -N ,

c h a p te r 3 ) , as i l l u s t r a t e d in f ig u r e 4 .4 . A rrow s in d ic a te th e d i r e c t io n o f

r e s t r i c t i o n s i t e lo s s e s o r g a in s , and n o t th e d i r e c t io n o f e v o lu t io n . The

g e o g ra p h ic d i s t r i b u t i o n o f mtDNA g en o typ e s re v e a le d by each o f th e tw e lv e

p o ly m o rp h ic enzymes i s shown in f ig u r e 4 .5 (1 -1 2 ) . For exam ple , H ind I I I

p a t te r n ’ B* (n=291) was common t o O rkney, C a ith n e s s , S u th e r la n d , I r e la n d

and th e I s le o f Man. W h ils t H ind I I I p a t te r n 'A ' was obse rved in th e 139

in d iv id u a ls fro m th e r e s t o f th e B r i t i s h m a in la n d . The d i s t r i b u t i o n o f Taq

I g e n o typ e s was id e n t ic a l t o t h i s . O th e r enzymes g e n e r a l ly c o n firm e d th e

" n o r th - s o u th " g e n e tic d i f f e r e n t i a t i o n , a lth o u g h more th a n one p a t te r n was

obse rved f o r each N o rth /S o u th m a t r ia r c h ia l l i n e . For exam ple , geno types

fro m Mbo I show b o th ’ 0* and * /* p a t te r n s in th e n o r th e rn ty p e , w h i ls t ?A’ ,

'W ', ’ ST and ’ X* were found in th e r e s t o f B r i t a in (s o u th e rn ty p e -s e e F ig

4 .5 C83). O n ly Acc I , Hpa I I and Rsa I d e v ia te d fro m th e g e n e ra l d iv is io n .

For exam ple , p o p u la t io n s fro m th e F i r t h o f F o r th and th e M id la n d s had th e

* D* as opposed to th e ’ A* Hpa I I p a t te r n , obse rved in s o u th e rn B r i t a in

(F ig . 4 .5 C53). The s in g le enzyme p a rs im o n y n e tw o rk s (F ig . 4 .4 ) in d ic a te

t h a t o n ly a few r e s t r i c t i o n s i t e lo s s e s o r g a in s p ro du ce th e d i f fe r e n c e s

w i t h in th e " n o r th e rn '1 o r "s o u th e rn " ty p e s , whereas a la r g e number a re

obse rved between th e s e two m a jo r d iv is io n s (N and S ).

A t o t a l o f 23 d i f f e r e n t mtDNA co m p o s ite g en o typ e s o r c lo n e s (d e s c r ib e d by a

fo u r te e n l e t t e r code) were observed in B r i t a in , th e f re q u e n c ie s o f th e se

237

Page 265: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

g e n o typ e s f o r each sam ple l o c a l i t y a re g iv e n ta b le 4 . 1 (T a b le 4 . 2 summaries

th e f re q u e n c ie s o f mt c lo n e s pe r l o c a l i t y ; sam ple s i t e s in each o f th e

n o r th e rn O rkney I s le s a re p o o le d ) . F ig u re 4 . 6 i l l u s t r a t e s th e g e o g ra p h ic a l

d i s t r i b u t i o n o f th e 2 3 mtDNA co m p o s ite g eno types a c ro s s B r i t a in . F iv e

g e n o typ e s (c lo n e s 1 - 5 ; n= 2 7 8 ) were obse rved in O rkney, C a ith n e s s and

S u th e r la n d , th e most common o f w h ich (n= 2 4 9 ) i s c lo n e 1 ; c lo n e s 2 - 5 are

much r a r e r (n = 2 9 ) . Three f u r t h e r g en o typ e s , c lo n e s 6 - 8 were obse rve d in

th e I r i s h sam ples <n= 1 3 ) . F if te e n g en o typ e s (c lo n e s 9 , Sc 1 1 - 2 3 ) were found

in th e re m a in d e r o f th e B r i t i s h m a in la nd sam ples (n= 1 5 2 ) .

4 jL 3 i2 £ _ M itg c h g n d ria i_ D N A _ y a ria tio n _ in _ 0 rk n e y _ a n d _ th e _ n e ig h b g u rin g _ m § iQ l§ Q d

c o u n t i§ s _ o f _C a i.thness_and_Suther£and£

F iv e mtDNA co m p o s ite g eno types were found among 2 3 5 O rkney m ice examined

f o r th e 1 4 r e s t r i c t i o n enzymes used in t h i s s tu d y ; o n ly tw o o f th e s e mtDNA

gen o typ e s (c lo n e s 1 Sc 2 ) were observed among 4 3 in d iv id u a ls fro m th e

n e ig h b o u r in g m a in land o f C a ith n e s s and S u th e r la n d . C lone 1 was observed a t

e v e ry sa m p lin g lo c a t io n , w ith th e e x c e p tio n o f one s i t e , H a rra y on M a in land

O rkney. C lone 2 was p re s e n t in low fre q u e n c ie s on th e n o r th e rn Orkney

i s le s o f W estray . Eday and F aray ( ta b le 4 . 2 ) , and o n ly fo u n d in one

in d iv id u a l in K e is s , n o r th -e a s t C a ith n e s s . C lone 3 was e x c lu s iv e ly

r e s t r i c t e d t o mid W e s tra y , s im i la r l y , c lo n e s 4 Sc 5 were o n ly found a t

H a rra y , M a in land O rkney. On Sanday, S tro n s a y and Papa W estray o n ly th e

u b iq u ito u s c lo n e 1 was seen, how ever, th e sam ple s iz e s were q u i te low (n=

2 , 3 and 1, r e p e c t iv e ly ) . The d i s t r ib u t io n o f th e s e f i v e mtDNA c lo n e s among

sam ple lo c a t io n s in O rkney and N.E S c o tla n d a re shown in f ig u r e 4 .6 , th e

f re q u e n c ie s o f each a re i l l u s t r a t e d by a p i e - c h a r t . T a b le 4 .1 i l l u s t r a t e s

th e f re q u e n c ie s o f each c lo n e in each is la n d and m a in la nd sam ple s i t e ,

238

Page 266: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

sum m arised in T a b le 4 .2 ( s i t e s w ith in an is la n d were p o o le d ) . A l l mtDNA

c lo n e s obse rved d i f f e r e d -from each o th e r by 2 t o 6 r e s t r i c t i o n s i t e lo s s e s

o r g a in s .

To compare in t r a p o p u la t io n a l mtDNA co m p o s ite g en o typ e d i v e r s i t y , e s t im a te s

o-f n u c le o n d iv e r s i t y were c a lc u la te d . H e te ro g e n e ity (h) ranged fro m 0 .0 0

t o 0 .4 6 f o r O rkney is la n d sam ples, w ith a mean o f 0 .2 1 , y e t v a lu e s were

c o n s id e ra b ly lo w e r in th e n e ig h b o u r in g c o a s ta l c o u n t ie s o f C a ith n e s s and

S u th e r la n d . O n ly one s i t e (K e is s ) had more th a n one g e n o typ e ,

h e te r o g e n e it ie s ra n g in g from 0 .0 0 to 0 .0 6 , w ith a mean o f 0 .001 (T a b le

4 .2 ) . In c o n t r a s t , h e te ro g e n e ity (h) in th e re m a in in g s o u th e rn B r i t i s h

m a in land p o p u la t io n s i s com parab le t o th a t found in th e O rkneys, ra n g in g

fro m 0 .0 0 t o 0 .6 4 , w ith a mean o f 0 .2 5 .

i i 3 i 3 s ._ P h y l.g g e n e tic _ c g n 5 id e ra t ig n s i

5 i3 i 3JLi i_ M ic r g g e g g r a p h ic _ s t r u c tu r in g i

In t o t a l , 370 d i s t i n c t r e s t r i c t i o n s i t e s were mapped f o r th e 14 r e s t r i c t i o n

enzymes used in t h i s s tu d y o f 430 B r i t i s h house m ice . P r io r t o p h y lo g e n e t ic

a n a ly s is , 230 monomorphic s i t e s (p ie s io m o rp h ic - p re s e n t in a l l

p o p u la t io n s ; see T a b le 3 .4 , c h a p te r 3 f o r f u l l d e t a i l s o f c o n s ta n t s i t e s )

were removed fro m th e d a ta s e t . Of th e re m a in in g 140 v a r ia b le s i t e s (T a b le

3 .3 A -N , c h a p te r 3 ) , 78 were a u tapom orph ic ( s i t e s u n iq u e t o a p a r t i c u la r

sa m p lin g l o c a l i t y ) and were a ls o e x c lu d e d . F in a l l y , 62 p h y lo g e n e t ic a l ly

in fo r m a t iv e s i t e s (synapom orph ic - b e in g p re s e n t in o r a bsen t from a t le a s t

two p o p u la t io n s ) were coded as p re s e n t o r a b s e n t, t r e a te d as uno rde red

c h a ra c te rs and used in th e c la d i s t i c a n a ly s is . T a b le 4 .3 l i s t s th e 62

in fo r m a t iv e s i t e s by r e s t r i c t i o n enzyme, f o r a l l 23 mtDNA com p os ite c lo n e s .

239

Page 267: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

The G lo b a l b ra n ch -sw a p p in g o p t io n (w ith M u lp a rs ) in PAUP was used to

c o n s t r u c t th e most p a rs im o n io u s t r e e -from th e s i t e d a ta . The t r e e was

ro o te d a t th e m id p o in t between th e most d iv e rg e n t ta x a . A minimum o-f 100

t r e e s o-f equa l le n g th (81 s te p s ) and c o n s is te n c y (c o n s is te n c y in d e x , C l =

0 .7 6 5 ) were fo u n d . F ig u re 4 .7 re p re s e n ts an Adams consensus t r e e f o r a l l

th e t r e e s o f equa l le n g th . The S t r i c t consensus t r e e was id e n t ic a l t o th e

Adams consensus t r e e . A l l t re e s gave th e same o v e r a l l to p o lo g y and o n ly

changed m in o r t o p o lo g ic a l fe a tu re s w i t h in th e m a jo r c lu s te r s o f th e n e tw o rk

shown.

Two m a jo r g e n e t ic assem blages were p roduced (d e p ic te d by th e t r ia n g le and

squa re sym bo ls in th e f ig u r e 4 .7 ) , one re p re s e n t in g c lo n e s 1 -8 & 10, th e

o th e r , c lo n e s 9 & 11 -23 . The pa rs im ony n e tw o rk was i n i t i a l l y c o n s tru c te d

w ith o u t p r io r re fe re n c e t o th e c o l le c t io n s i t e s . I t was o b v io u s , how ever,

when th e n e tw o rk was superim posed o ve r th e sam ple s i t e s , t h a t th e re was an

a p p a re n t g e o g ra p h ic o r ie n ta t io n o f c lo n e s . The mtDNA geno types 9 & 11-23

occupy a p p ro x im a te ly a d ja c e n t p la c e s in th e t r e e , r e f le c t i n g t h e i r

g e o g ra p h ic p r o x im it y and re p re s e n t in g th e "s o u th -e a s te rn assem b lage",

c o m p r is in g a l l s i t e s s o u th o f th e G rea t G len F a u lt on th e B r i t i s h m a in la n d ,

w ith th e e x c e p t io n o f th e in d iv id u a l fro m Gatehouse o f F le e t . S im i la r ly ,

c lo n e s 1 -8 ?< 10 fo rm th e "n o r th -w e s te rn " assem blage, in c lu d in g n o r th e rn

sam ples fro m O rkney (c lo n e s 1 -5 ) , C a ith n e s s (c lo n e s 1 & 2 ) , and S u th e r la n d

(c lo n e 1 ) , and w e s te rn samples (c lo n e s 6 -8 & 10) fro m n o r th & sou th

I r e la n d , I s le o f Man and Gatehouse o f F le e t , D u m frie s . The g e o g ra p h ic

d i s t r ib u t io n o f th e s e tw o m ajor g e n e tic ty p e s a re shown in f i g . 4 .7 ( in s e t )

and f ig u r e 4 .6 (shaded and unshaded c i r c l e s re p re s e n t th e "N-W" and th e "S -

240

Page 268: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

E" m a t r ia r c h ia l l in e a g e s , r e s p e c t iv e ly ) . One unexpected r e s u l t o-f t h i s

i a n a ly s is i s th a t c lo n e 10 (G atehouse o-f F le e t , D u m frie s ) f a l l s in to a s u b -i

c lu s t e r w i th in th e ' n o r th e rn -w e s te rn ' g e n e t ic g ro up , y e t , 10 o u t D f th e 12

r e s t r i c t i o n enzymes w h ich produced v a r ia b le d ig e s t io n p r o f i l e s , in d ic a te d

t h a t t h i s p o p u la t io n be longed in th e ' s o u th e rn -e a s te rn ' c la d e . Enzymes Fnud

I I and Rsa I appear to be re s p o n s ib le f o r t h i s . To sum m arise, th e ’ N -S '

g e n e t ic b reak a p p a re n t fro m th e s in g le enzyme pars im ony n e tw o rks o v e r la y e d

o ve r th e g e o g ra p h ic a l l o c a l i t i e s , i s c o n co rd a n t w ith th e MN-W and S-E"!

c lu s te r s , produced fro m th e m u l t ip le enzyme n e tw o rks .

| The p ro p o r t io n o f s i t e s shared (S -v a lu e ) among in d iv id u a ls , f o r a l l

| fo u r te e n r e s t r i c t i o n enzymes used in th e s tu d y , was used t o e s tim a te th e

i mtDNA sequence d iv e rg e n c e (d B) , u s in g Nei ?< L i ' s e q u a tio n s (T a b le 4 .4 a ) ,

T a b le 4 .4 b shows th e d is ta n c e m a tr ix o f sequence d iv e rg e n c e s (d B) f o r

p a irw is e com parisons o f th e 23 d i s t i n c t mtDNA co m p os ite g en o typ e s . In th e

j UPGMA phenogram (F ig u re 4 .8 ) , c o n s tru c te d fro m th e e n t i r e m a tr ix o f

sequence d iv e rg e n c e s , tw o m a jo r g e n o ty p ic c lu s te r s , d is t in g u is h e d by

a p p ro x im a te ly 1.427. sequence d iv e rg e n c e (v a lu e s ra n g in g fro m 0 .0 7 3 to

2 .1 1 ) , were o b ta in e d , w ith n e a r ly id e n t ic a l to p o lo g y to th e Wagner

n e tw o rk s , based upon th e p resence -absence r e s t r i c t i o n s i t e d a ta (F ig u re

4 .7 ) . The mean 7.da w i t h in th e N.W and S.E c la d e s , r e s p e c t iv e ly , a re 0.277.

f and 0.487. ( ra n g in g fro m 0 .0 0 t o 0.47. f o r th e fo rm e r and 0 .0 3 8 to 1.217. f o r

th e 1a t t e r ) .

The m agnitude o f sequence d iv e rg e n c e observed between th e tw o m a jo r g e n e t ic

Page 269: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

assem blages in B r i t a in a re in c o n s is te n t w ith th e d iv e r s i t y a c c u m u l- t in g

’ i n s i t u ’ s in c e t h e i r a r r i v a l in B r i t a in , as N o rth e rn Europe was g la c ia te d

and u n in h a b ita b le by house m ice u n t i l a t th e e a r l i e s t between a p p ro x im a te ly

1 0 -8 ,0 0 0 BP (K e r r , 1983 ). Thus d a ta fro m mtDNA s u p p o r ts th e h y p o th e s is th a t

B r i t i s h m ice a re descended fro m a t le a s t tw o s e p a ra te c o lo n is a t io n e v e n ts .

4i 3 i 3 i 2 i_ M a c rg g e g g ra p h ic _ 5 tru c ty r in g i

In an a tte m p t t o f in d p o s s ib le a n c e s tra l p o p u la t io n s o f th e ’ n o r th e rn ty p e ’

in B r i t a in , d a ta fro m F e r r is e t a i - , (1983) was used. Where p o s s ib le l e t t e r

d e s ig n a t io n s f o r d ig e s t io n p a t te r n s , in t h i s s tu d y , fo l lo w e d th o s e

e s ta b l is h e d by F e r r is & c o lle a g u e s (1 9 8 3 ). They re p o r te d on mtDNA v a r ia t io n

in 190 Hus dom esticus fro m w ild caugh t (o r la b o r a to r y r a is e d desce n de n ts

o f w i ld m ic e ) , p lu s v a r io u s in b re d s t r a in s , fro m 46 l o c a l i t i e s in N.W.

Europe and th e New W o rld . However, a few d ig e s t io n p a t te r n s fro m s e v e ra l

enzymes were n o t d i r e c t l y com parab le t o th o s e d e s c r ib e d by F e r r is and

c o lle a g u e s (1 9 8 3 ). N e v e r th e le s s , d e s p ite m ino r d i f fe r e n c e s , th e m a jo r i t y o f

th e p a t te rn s d e s c r ib e d by F e r r is & c o lle a g u e s (1983) a re c o n g ru e n t w ith

th o s e obse rved in t h i s s tu d y .

T w e n ty -s ix mtDNA co m p o s ite geno types fro m 77 ft us dom esticus in d iv id u a ls

u s in g 11 r e s t r i c t i o n end o nu c le a ses , nam ely, H ind I I I , Xba I , H inc I I , Acc

I , Ava I I , FnuD I I , Hpa I I , Hae I I I , Taq I , Mbo I and H in f I , fro m s e v e ra l

w o r ld w id e l o c a l i t i e s were re c o rd e d by F e r r is e t a l (1 9 8 3 ). N in e te e n mtDNA

g e n o typ e s were observed among th e B r i t i s h m ice exam ined in t h i s s tu d y ,

u s in g th e same s e t o f enzymes, none o f w h ich had been p r e v io u s ly r e p o r te d .

A t o t a l o f 220 r e s t r i c t i o n s i t e s were mapped in th e 45 mtDNA g e n o ty p e s , 123

o f w h ich were in v a r ia n t , and th e r e fo r e e xc lu d e d fro m th e d a ta s e t .

242

Page 270: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

S im i la r ly , in th e re m a in in g 97 v a r ia b le s i t e s , 48 w ere a u ta p o m o rp h ic , and

were a ls o d e le te d . The 49 p h y lo g e n e t ic a l ly in - fo rm a t iv e s i t e s ( l i s t e d in

T a b le 4 .5 ) were used in th e c la d i s t i c a n a ly s is . An Adams consensus t r e e

d e p ic t in g th e g e n e a lo g ic a l r e la t io n s h ip s fro m a l l t r e e s o f equa l le n g th (85

s te p s ) and c o n s is te n c y (0 1 = 0 .5 7 6 ), found by u s in g th e G lo b a l b ra n c h -

sw apping o p t io n , i s i l l u s t r a t e d in f ig u r e 4 .9 . The S t r i c t consensus t r e e i s

th e same as th e Adams, e xce p t t h a t c lo n e s 36, 45 and 29 ( fro m : G iza , E g yp t;

P osch ia vo , S w itz e r la n d ; and E rfo u d , M orocco, r e p e c t iv e ly ) were found

c lu s te r e d to g e th e r , as a s e p a ra te l in e a g e . G eograph ic d i s t r i b u t i o n o f th e

45 mtDNA geno types a re p o r tra y e d in f ig u r e 4 .1 0 and th e fo u r <I —IV )

a r b i t r a r i l y chosen m a jo r c lu s te r s o f th e t r e e a re d e p ic te d . I n d iv id u a ls

fro m th e "N.W" and th e "S.W" b ranches in th e B r i t i s h p h y lo g e n y , appear t o

c lu s t e r w ith sam ples fro m Y u g o s la v ia it C a l i f o r n ia (B ranch I I , F ig . 4 .9 &

4 .1 0 ) , and th e in b re d la b o r a to r y s t r a in s (B ranch I , F ig . 4 .9 & 4 .1 0 ) ,

r e s p e c t iv e ly . A hand drawn p a risom y n e tw o rk , u s in g a l l r e s t r i c t i o n s i t e

d if- fe re n c e s in c lu d in g a u tapom orph ies (u n iq u e s i t e s ) , i l l u s t r a t e s th e c lo s e

r e la t io n s h ip between mtDNA ty p e s from th e N-W ra c e w ith th o s e fro m

Y u g o s la v ia and C a l i f o r n ia (F ig u re 4.1 IB ) .

M ito c h o n d r ia l DNA fro m 113 a d d i t io n a l m ice from s e v e ra l new sam ple s i t e s ,

d ig e s te d w ith th e in fo r m a t iv e enzymes H in f I and Mbo I , re v e a le d 8 e x tr a

mtDNA geno types ( F e r r is e t a i* , 1983). A lto g e th e r , F e r r is it c o lle a g u e s

(1983) re co rd e d 31 mtDNA c lo n e s u s in g th e s e two r e s t r i c t i o n enzymes,

how ever, 3 ty p e s ( I L , KL, and IP ) gave id e n t ic a l in fo r m a t iv e s i t e s once th e

u n iqu e s i t e s had been e x c lu d e d , th u s were coun ted as o n ly one "OTU"

(o p e ra t io n a l taxo n om ic u n i t ) ; a ls o 'A T ' ty p e ( in b re d s t r a in S L /N ia ) gave

243

Page 271: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

th e same s i t e s as th e common in b re d ty p e ’ AA’ a -fte r rem oval o f

au tapom orph ic s i t e s . Using o n ly Mbo I and Hin-f I enzymes, n in e

m ito c h o n d r ia l DNA c lo n e s were observed in th e B r i t i s h sam ples, y e t , f i v e

typ e s (OC, OU, AZ, AA, and XY) had been p re v io u s ly documented in th e 28

d is t in c t i v e mtDNA c lo n e s d esc rib e d by F e r r is e t e l ; (1983 ). The f in a l 32

mtDNA c lo n e s u s in g the se two enzymes gave a t o t a l o f 92 r e s t r i c t io n s i t e s ,

a f t e r removal o f in v a r ia n t and unique s i t e s , o n ly 28 in fo r m a t iv e s i t e s

( l i s t e d in T ab le 4 .6 ) were used in th e a n a ly s is (coded as p re s e n t o r absent

and tre a te d as unordered c h a ra c te rs ) . F ig u re 4 .1 2 re p re s e n ts a S t r i c t

consensus t r e e c o n s tru c te d from a l l p a rs im o n iou s t r e e s o f equal le n g th (45

s te p s ) and c o n s is te n c y (C I=0.622) found. M ito c h o n d r ia l c lo n e s from O rkney,

C a ith n e ss , S u th e rla n d and Ire la n d (N.W branch in B r i t a in ) appear to c lu s te r

w ith those from Norway (Branch I I , F ig 4 .1 2 ) , in a d d it io n to th o se from th e

sou the rn M e d ite rran e an re g io n and Am erica, as p re v io u s ly m en tioned . W h ils t ,

mtDNA c lo n e s from th e S.E lin e a g e in B r i t a in a re found grouped w ith samples

from Denmark, and Germany (Branch I , F ig . 4 .1 2 ) . F ig u re 4 .1 3 shows th e

geog raph ic d is t r ib u t io n o f these mtDNA c lo n e s .

There was concordance between th e t re e b u i l t on th e b a s is o f th e H in f I and

Mbo I mtDNA r e s t r i c t i o n p a tte rn s enzymes a lo n e (F ig . 4 .1 2 ) , and th a t based

on 11 r e s t r i c t io n endonucleases (F ig u re 4 .1 0 ) ; th e fo u r m ajor branches ( I -

IV) a re c le a r ly d is c e r n ib le , except th a t th e p o s i t io n s o f b ranches have

s h if te d lo c a t io n w ith in th e t re e s . Indeed, th e a d d it io n a l com pos ite mtDNA

genotypes d e te c te d u s in g these two enzymes m ere ly form ed e x tra ,,tw ig 5 ,,

a tta ch e d to th e m a jo r branches a lre a d y appa ren t u s in g 11 enzymes.

S im i la r ly , th e g e n e a lo g ic a l re la t io n s h ip s i l l u s t r a t e d by th e t r e e o f

244

Page 272: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

B r i t i s h Hus domesticus mtDNAs on th e b a s is o-f 14 enzymes (F ig u re 4 .7 ) , a re

c o n s is te n t w ith tho se found in th e two t re e s u s in g m ice from European and

w o rld w id e l o c a l i t i e s , in th a t th e ’ N.W’ and ’ S .E ’ c lu s te r s a re conco rdan t

w ith two o-f th e m ajor branches des igna ted I I and I as d e p ic te d in F ig u re s

4 .9 & 4 .1 2 . Im p o rta n t d if- fe re n c e s in c lu d e an in d iv id u a l from Gatehouse o-f

F le e t , Dum-fries (c lo n e 10, F ig . 4 .7 ; c lo n e 6 , F ig . 4 .9 ; 'A X ' l in e a g e , F ig .

4 .1 2 ) , whose g e n e a lo g ic a l p o s it io n i s s l i g h t l y d i f f e r e n t in a l l th re e

t r e e s . I t g roups w ith th e n o rth -w e s te rn ra c e in B r i t a in , on th e b a s is o f

th e two in fo rm a t iv e enzymes Mbo I and H in f I , a ls o , w ith th e s e t o f

fo u r te e n r e s t r i c t i o n endonucleases (Branch I I , f i g . 4 .1 2 & 4 .7 ) ; whereas i t

c lu s te r s w ith th e B r i t i s h s o u th -e a s te rn ty p e s , u s in g e leven r e s t r i c t io n

enzymes (Branch I , F ig . 4 .9 ) . S im i la r ly , th e Morocco mouse ( ’ EF’ lin e a g e in

f i g . 4 .1 2 ; c lo n e 29 in F ig . 4 .10 ) s h i f t s i t s p o s i t io n from branch IV in th e

t r e e based on two enzymes to branch I I on th e b a s is o f 11 enzymes, in th e

l a t t e r t r e e i t grouped w ith mice from th e B r i t i s h N-W ra ce (Orkney & I r is h

m ic e ).

I

I

I|

II

245

Page 273: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

i jL-QiicyssioQiP re se n t p a t te rn s o-f g e n e tic v a r ia t io n are s t ro n g ly a f fe c te d by h is t o r ic a l

e v e n ts . Indeed , h is t o r ic a l c o lo n is a t io n s can o-ften be in te r r e d by exam in ing

c u r re n t p a t te rn s o f v a r ia t io n in r e la t io n to a ta x o n ’ s e x ta n t d is t r ib u t io n .

The m ajor r e s u l t s o f t h i s work a re , th e f in d in g o f m ic ro g e o g ra p h ic

s t r u c tu r in g o f mtDNA c lo n e s w ith in th e B r i t i s h house mouse and c o n f irm a tio n

o f th e g ene ra l la c k o f m acrogeographic s t r u c tu r in g over N-W Europe. A ls o ,

com b in ing mtDNA r e s t r i c t i o n fragm ent le n g th polym orph ism s d a ta w ith n u c le a r

DNA a n a ly s e s , th e most l i k e l y c o lo n is a t io n p a tte rn s among th e N o rth e rn

is le s (O rkney) and n e ig h b o u rin g m ain land a re p o s tu la te d .

4 i 3 iIi_y i£C Q Q eQ 9C iE b ic a l_ S tru c tu r in g ._ in _ B r i ta in . .

G eographic p a t te rn s o f mtDNA r e s t r i c t io n s i t e po lym orph ism s have been

documented f o r a number o f t e r r e s t r ia l (A v ise e t a l . , 1979; Lansman e t a l . ,

1983; M acNeil & S tro b e c k , 1987; T e ge ls tro m , 1987a) and f re s h w a te r sp e c ie s

(A v is e e t a l . , 1984a; Saunders e t a l . , 1986; A v is e , 1987; Bermingham &

A v is e , 1986; Ovenden e t a l . , 1988) assayed over a com parable geog raph ic

range (see A v ise e t a l . , 1987a and A v ise , 1989 f o r re v ie w s ) . However,

n o ta b le e x c e p tio n s to t h i s in c lu d e many m arine ta xa (Graves e t a l . , 1984;

A v ise e t a l . , 1986; A v ise e t a l . , 1987a; f o r a re v ie w see - A v is e , 1987),

b ir d s (K e s s le r Sc A v is e , 1984, 1985; T e ge ls tro m , 1987bj B a ll e t a l . , 1988),

and to some e x te n t man (Johnson e t a l . , 1983; Cann e t a l . , 1987; S tonek ing

e t a l . , 1990). In a d d it io n , house mice ( F e r r is e t a l . , 1983) and v o le s

(Thomas & Beckenbach, 1986; P la n te e t a l . , 1989a) have a ls o been quoted as

la c k in g any s u b s ta n t ia l geograph ic s t r u c tu r in g , suggested t o r e f l e c t re c e n t

p o p u la t io n and range expans ions, o r e x te n s iv e d is p e rs a l c a p a b i l i t ie s and

p o p u la t io n f lu c tu a t io n s . T h is i s c e r t a in ly th e case fo r w o rld w id e su rveys

246

Page 274: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

o-f Mus dom esticus , however, t h i s s tud y i l l u s t r a t e s q u i te e x te n s iv e

g eog raph ic s t r u c tu r in g on a more lo c a l, m ic rog e og ra p h ic s c a le in th e

B r i t i s h house mouse. Indeed, in B r i t a in two main fo rm s a re re co gn ise d (see

f i g . 4 .7 ) , a "n o r th e rn " and a "so u th e rn " c lo n e ; o r ra th e r "n o r th -w e s te rn "

and "s o u th -e a s te rn " c lo n e s , as, on th e b a s is o f mtDNA v a r ia t io n , I r is h m ice

a re g e n e t ic a l ly s im i la r t o Orkney m ice.

The p a t te rn o f m ito c h o n d r ia l DNA v a r ia t io n in th e B r i t i s h house mouse i s

c o n s is te n t w ith ev idence from o th e r g e n e tic m arkers. R o b e rtso n ian

t r a n s lo c a t io n s were found th roughou t C a ithness and in th re e Orkney

p o p u la t io n s , y e t , no o th e r c e n t r ic fu s io n s have been found in B r i t a in ,

sou th o f C a ith n e ss (B ro o ke r, 1982; Nash e t a l , , 1983; S c r iv e n & B rooke r,

1990). From m orphom etric d is ta n c e e s tim a te s c a lc u la te d f o r B r i t i s h m ice,

C a ith ne ss and Orkney m ice are re la te d to each D ther and to th e Hebridean

m ice, y e t a re q u i te d i s t in c t from a l l D ther B r i t i s h m a in land and is la n d

m ice (D a v is , 1983). B e rry & P e te rs (1977) examined 27 p o p u la t io n s o f house

mice from Faroe, S h e tla n d , Orkney, m ain land B r i t a in , and th re e sm all

o f fs h o re s u b - a r c t ic is la n d s , e le c t r o p h o r e t ic a l ly a t 22 a llo zym e lo c i .

N e ith e r , th e average h e te ro z y g o s it ie s nor th e d is t r ib u t io n o f a l le le

fre q u e n c ie s produced any d is c e rn ib le p a t te rn s . However, when th e B r i t i s h

p o p u la t io n s a re s u b je c t to UPGMA c lu s te r a n a ly s is o f R oger’ s (1972)

e s tim a te s Df g e n e tic d is ta n c e based on 19 a llo zym e lo c i , tw o branches

c o n s is te n t w ith th o se found by mtDNA data a re observed (Bauchau, pers

com m .,). However, th e da ta a re o f l im ite d use in e s ta b lis h in g r e la t io n s h ip s

among more lo c a l p o p u la t io n s . Thus, t h is s tu d y v e r i f i e s o th e rs in showing

th a t mtDNA is ve ry u s e fu l fo r d i f f e r e n t ia t in g among a l lo z y m a t ic a l ly s im i la r

247

Page 275: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

ta x a , in which r e la t io n s h ip s have been d i f f i c u l t to re s o lv e u s in g o th e r

m o le c lu la r te c h n iq u e s (A v ise e t a im , 1979; K e ss le r St A v is e , 1984, 1985).

The most l i k e l y e x p la n a tio n to r major g e n e tic d is c o n t in u i t ie s , and th e

geog raph ic o r ie n ta t io n th e y show, whereby c o n s p e c if ic p o p u la t io n s occupy

e a s i ly re c o n g is a b le branches on an in t r a s p e c i f ic t r e e , i s th e presence o f

lo n g te rm e x t r in s ic ( ie . zoogeograph ic) b a r r ie r s to gene f lo w . The apparent

d iv is io n o f th e tw o mtDNA groups appears to map to th e G reat G len, S co tland

(C o rb e t, 1961). Y e t, a lth o u g h t h is is not an o bv ious to p o lo g ic a l b a r r ie r ,

th e house mouse appears to be r e s t r ic te d by b io lo g ic a l ra th e r than p h y s ic a l

fa c to r s . Indeed, m ice a re though t to be poor in t e r s p e c i f ic c o m p e tito rs

( L id ic k e r , 1966; D elong, 1967; B e rry & T r ic k e r , 1969; B e rry e t aim, 1982;

Dueser and P o t te r , 1986) and areas where th e y a re n o t fo u n d , a re p ro b a b ly

occup ied by o th e r s m a ll mammals. House mice avo id open f i e l d s , w ith ve ry

l i t t l e c o v e r, c h a r a c te r is t ic o f h a b ita t around th e a rea marked by th e G reat

G len. Hence, th e poor re c o rd s o f house mice around t h i s a re a , reco rded in

th e U n ite d Kingdom Mammal Survey (C orbe t, 1971; A rn o ld , 1978), may no t be

e n t i r e ly due to la c k o f docum entation and poor sa m p lin g , b u t co u ld be

because here t h i s sp e c ie s i s g en u in e ly ra re (Y a lden , 1980). Hence, th e

h a b ita t may be u n s u ita b le f o r th e house mouse, e s p e c ia l ly as th e above

su rvey shows a preponderance o f f i e ld mice a t the se s i t e s . Thus, mice in

C a ithness and th e co as t D f S uthe rland cou ld be e f f e c t i v e ly is o la te d from

tho se in th e n e ig h b o u rin g c o u n tie s by h ig h m oorland, from w hich th e y are

p ro b a b ly exc luded by abundant Apodewus. A d d i t io n a l ly , th e re i s the

p o s s ib i l i t y th a t t i g h t s o c ia l s t ru c tu re and t e r r i t o r i a l i t y in th e house

mouse l im i t s gene f lo w between g e n e t ic a l ly d i f f e r e n t ia t e d p o p u la tio n s

248

Page 276: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

anyway (b u t see ch ap te r 6 ; B e rry , 1986; L id ic k e r & P a tto n , 1987).

M ito c h o n d r ia l DNA m u ta tio n s are though t to accum ula te s te a d i ly th rough tim e

(Brown e t aim, 1979, 1982; W ilson e t aim, 1985, 1989), th u s rough e s tim a te s

o-f t im e s s in c e mtDNA d ive rgence can be c a lc u la te d from t = d /2 A (Nei &

L i , 1979), where d i s th e es tim a ted percen t sequence d iv e rg e n c e , and A is

th e ra te o f e v o lu t io n (a p p ro x im a te ly 0 .02 - 0 .04 s u b s t i tu t io n s /base p a i r /

m i l l io n y e a rs ) . E s tim a te s suggest th a t mtDNA c lo n e s b e lo n g in g to th e N.W

and S.E groups o f th e B r i t i s h house mouse la s t shared a common a nce s to r

(mean Y.d = 1 .4 ) about 350,000 to 177,500 years ago. S im i la r ly , c lo n es

w ith in each m a jo r assemblage d ive rged about 92,500 to 46,250 yea rs ago

(mean Zd = 0 .3 7 ) . There i s a long s tan d in g debate as to whether mice

e vo lve more r a p id ly than do o th e r mammals (Jaeger e t a i 1 9 B 6 ; B r i t t e n ,

1986; L i S< Tamimura 1987; C a tz e f l is e t aim, 19B7; f o r a re v ie w see W ilson

e t aim, 1987), th u s th e low er e s tim a te s o f d ive rge n ce tim e a re p ro b a b ly th e

more r e a l i s t i c v a lu e s . However, because o f th e la rg e s tan d a rd e r ro rs

in v o lv e d in c a lc u la t in g sequence d ive rgences and th e a d d it io n a l u n c e r ta in ty

D f th e average base s u b s t i tu t io n ra te in ro d e n ts , the se da tes are p ro b a b ly

h ig h ly in a c c u ra te , and th u s should be t re a te d as a gu ide ra th e r than as

a b s o lu te e s tim a te s . Hence, th e re is no t a m ajor g e n e tic "b re a k "

d is t in g u is h in g th e two mtDNA c lones ( ie . no t g re a te r than 27. sequence

d ive rg e n ce - c a te g o ry I in A vise e t aim, 1987a; A v is e , 1989) in B r i t a in .

R a ther th e y a re s u f f ic e n t ly d is s im i la r as to be c o n s is te n t w ith A v ise k

c o lle a g u e s ’ d e f in i t io n o f p o p u la tio n s th a t have expe rienced h is t o r i c a l l y

l im i te d gene f lo w , bu t n o t subd iv ided by lo n g te rm z o o g ra p h ic a l b a r r ie r s to

d is p e r s a l.

Page 277: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

by th e a ccum u la tio n o f base s u b s t i tu t io n s in s itu - fo llo w in g t h e i r

in t r o d u c t io n , o r th e y re - f le c t v a r ia t io n p r e x is t in g in th e o r ig in a l

c o lo n is in g p o p u la t io n s , o r as th e r e s u l t o-f v e ry re c e n t m ig ra t io n .

D u rin g th e g la c ia l maximum (Devensian in B r i t a in ; s y c h ro n ise d w ith th e

W eichsel in S ca n d in a v ia , and Wurm in th e A lp s ) th e ic e sh ee ts extended as

-far sou th as th e south Wales c o a s t, a long th e eas t co a s t o f E ng land,

c o v e r in g a l l o f S c o tla n d , and most o f I re la n d (W est, 1977; see f ig u r e

4 .1 4 ) , w h i ls t th e r e s t o f England expe rienced p e r ig la c ia l c o n d it io n s . Thus,

i t seems h ig h ly im p robab le th a t any sm a ll ro d e n t co u ld have s u rv iv e d the se

c o n d it io n s , a t le a s t in N orth B r i t a in . Thus, th e e a r l ie s t p o s s ib le d a te o f

c o lo n is a t io n o f the se re g io n s would have been a p p ro x im a te ly 10,000 ye a rs

ago. However, f o s s i l ev idence has dated th e c o lo n is a t io n o f Is ra e l by Mus

douesticus t o be about 10,000 B.C. (A u ffra y e t al~, 1988), s u b s e q u e n tly ,

t h i s sp e c ie s was b e lie v e d to have been c o n fin e d to th e w este rn

M e d ite rran e an bas in d u r in g th e Bronze Age (3 ,000 B .C .) , o n ly f i n a l l y

re a c h in g th e fa r n o r th -w e s t o f Europe, in c lu d in g B r i t a in (C o rb e t, 1974) and

F rance , in th e Iro n Age (1 ,000 B .C .) (rev iew ed by A u ffra y e t a i . , 1989).

W ith th e m e tho d o log ie s a v a ila b le f o r sc re e n in g mtDNA v a r ia t io n in th e

B r i t i s h house mouse i t i s h ig h ly u n l ik e ly th a t th e few base s u b s t i t u t io n s

a ccu m u la tin g ' i n s i t u ' d u r in g th e s h o r t t im e s in c e th e e a r l ie s t p o s s ib le

p o s t - g la c ia l c o lo n is a t io n o f B r i t a in , would be d e te c ta b le . C onsequen tly , i t

would appear th a t d ive rge n ces o f th e m agnitude observed between lin e a g e s

from th e N-W and S-E suggest th e re were d if fe re n c e s between th e p o p u la t io n s

b e fo re th e y c o lo n is e d B r i t a in , th u s p ro v id in g ev idence th a t th e two fo rm s

o r ig in a te d from se pa ra te in t ro d u c t io n e ven ts from d i f f e r e n t a n c e s tra l

250

Page 278: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

sources . The p resence o f a ’’b a r r ie r " in S co tla n d p ro b a b ly p re v e n ts any

s u b s ta n t ia l in te r m ix in g D f th e two fo rm s.

E ith e r s tro n g b io g e o g ra p h ic b a r r ie r s , o r h is t o r ic a l b iogeography per se

such as p o p u la t io n s o f th e same sp ec ies w ith d i f f e r e n t e v o lu t io n a ry

h is t o r ie s co n ve rg in g on th e same landmass, sh ou ld be expected to shape th e

g e n e tic s t r u c tu r e o f o th e r in d e p e n d e n tly e v o lv in g , e c o lo g ic a l ly s im i la r

sp e c ie s ( ie . sm a ll mammals) in a conco rdan t fa s h io n , such th a t s im i la r

p a t te rn s o f g eog raph ic v a r ia t io n shou ld be appa ren t amongst them (A v ise ,

1989). There a re no s im i la r s tu d ie s o f geo g ra ph ic v a r ia t io n o f mtDNA o f

sm a ll mammals in B r i t a in , w ith which to compare and c o n tra s t th e p a tte rn s

observed in th e house mouse, a ltho u gh o th e r g e n e tic m arkers have been used.

B e rry (1975, 1985) suggested , us ing m u lt iv a r ia te m orphom etric ev idence ,

th a t th e re a re two ra ce s o f Apodemus s y lv a tic u s in B r i t a in ; a 'w e s te rn &

n o r th e rn ' fo rm and an 'e a s te rn ' fo rm , th e l a t t e r be ing c lo s e ly re la te d to

th e French Apodemus f s im i la r r e s u l t s were a ls o o b ta in e d by Del any &

W h itta k e r , (1969) f o r th e same sp e c ie s , and a ls o f o r th e common shrew

(Sorex araneus ) by S e a rle & Thorpe, (1987 ). D is t r ib u t io n s b e a rin g c lo s e

resem blance to th a t d esc rib e d above a re observed bo th in Clethrionymus

g lareo lus (C o rb e t, 1964) and Hicrotus a g re s tis (Evans, 1977), bo th

ana lyses u s in g u n iv a r ia te m orphom etries. The geog raph ic v a r ia t io n s

recoun ted above in a l l cases are o n ly s l i g h t , w eakly c o r re la te d , ra th e r

than r e f le c t in g h ig h ly d iv e rg e n t fo rm s, d is c o u n t in g th e p o s s ib i l t y o f a

m ajor p h y s ic a l b a r r ie r between p o p u la t io n s , in d ic a t in g the se p o p u la tio n s

are th e p ro d u c ts o f d i f f e r e n t c o lo n is a t io n s . M oreover, th e o r ig in s o f bo th

th e f i e l d mouse and th e bank v o le , in n o r th B r i t a in have been a t t r ib u te d to

Page 279: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

a c c id e n ta l in t r o d u c t io n s by man, and a re p ro b a b ly o f Norse descent (C o rbe t,

1961; B e rry , 1969), whereas th e so u th e rn fo rm s may o r ig in a te from the

nearby C o n tin e n t.

C o n ve rse ly , S e a rle St W ilk in s o n (1987) d e s c r ib e th re e k a ry o ty p ic races o f

Sorex araneus in B r i t a in ; a n o r th w estern ra ce (Aberdeen ra c e - a ’ C e lt ic

f r in g e ’ ) , a c e n t ra l and e a s te rn race (O xfo rd ty p e ) , and an in te rm e d ia te

ra ce (H e rm ita g e ). They conc luded , however, th a t t h i s d is t r ib u t io n s u p p o rts

th e h y p o th e s is th a t th e races spread in t o B r i t a in a t th e end o f th e la s t

g la c ia t io n in su cce ss ive waves, th e O xfo rd ra ce p a r t l y d is p la c in g the

H erm itage ra c e , which in tu rn d is p la c e d th e Aberdeen ra c e . Y e t, the y d id

acknow ledge, u s in g a llo zym e d a ta , th a t th e n o r th -w e s te rn ra c e may have had

an independent o r ig in . The r e la t i v e l y lo n g e r t im e s c a le env isaged fo r shrew

c o lo n is a t io n o f Europe (100,000 ye a rs a g a in s t B000 fo r m ice) means th e re

may have been s u f f ic e n t t im e fo r a s e r ie s o f shrew in v a s io n s (S e a r le , 1988;

S e a rle e t aim, 1990), indeed shrews were a t th e f o r e f r o n t o f p o s tg la c ia l

c o lo n is a t io n s , an im p la u s ib le s c e n a rio f o r th e house mouse c o n s id e r in g i t s

re c e n t and ra p id range expansion in Europe.

A no ther d e te rm in is t ic e x p la n a tio n o f th e geog raph ic s t r u c tu r in g o f t h i s

sp e c ie s in B r i t a in in c lu d e s th e p o s s ib i l i t y th a t n a tu ra l s e le c t io n a c tin g

on mtDNA genotypes may d i f f e r d ra m a t ic a lly from n o r th t o s o u th . M aterna l

in h e r ita n c e o f mtDNA e f f e c t iv e ly t i g h t l y l in k s a l l o f i t s genes, and

a lth o u g h i t i s assumed th a t these m arkers a re n e u tra l th e y may be c a r r ie d

to h ig h fre q u e n c ie s by h i t c h h ik in g w ith any s u f f i c e n t ly advantageous

m u ta tio n . T h is seems h ig h ly im p robab le in th e B r i t i s h p o p u la t io n s as th e re

252

Page 280: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

is no c o r r e la t io n between race typ e and la t i t u d e o r lo n g itu d e .

The a l t e r n a t iv e , s to c h a s t ic v iew , i s th a t due to random lin e a g e e x t in c t io n ,

th e in te rm e d ia te genotypes may be lo s t in a w id e ly d isp e rs e d sp e c ie s , w ith

l im i te d d is p e rs a l and gene f lo w c a p a b i l i t ie s . N e ig e l and A v ise (1986)

m odelled t h i s and concluded th a t mtDNA c lo n es would show g re a te r

s u b d iv is io n tha n n u c le a r genes; th e l a t t e r , due to sexua l re p ro d u c t io n and

re c o m b in a tio n , would n o t be expected to show any m ajor g e n e tic

d is c o n t in u i te s . Again t h i s seems im p la u s ib le f o r th e house mouse in v iew o f

i t s h ig h m o b i l i t y th ro u g h i t s commensal t ie s w ith man. I f p o p u la t io n s have

been sepa ra ted f o r lon g p e r io d s by zoogeographic b a r r ie r s (p h y s ic a l o r

b e h a v io u ra l) th e y would be expected to accum ulate co n co m ita n t d if fe re n c e s

in th e n u c le a r genome (A v ise e t a l . r 1987a). M o rphom e tric , k a ry o ty p ic and Y

chromosome DNA ev id en ce (see ch ap te r 5) fo r B r i t i s h house mouse p o p u la tio n s

are conco rdan t w ith mtDNA da ta , d iv id in g th e p o p u la t io n s in t o two d is t in c t

g e n e tic assem blages.

4i 4i 2 i_M acrog e gg ra B h ic_s tru c ty rin g i_ ev i.d e nce _ frgm _o the r_ E u rgB e an _ M ice _ in

th e _ se a rch _ f g r_ g g e u la t ig n s _ a n c e s tra l_ tg _ th e _ B r it i s h jig u s ^ m g u s e ..

There i s a p p a re n t ly l i t t l e macrogeographic s t r u c tu r in g o f mtDNA typ e s in

European and A sian c o l le c t io n s o f house mice ( t h is study? F e r r is e t a l . f

1983; M oriw aki e t aim, 1984). For example, n o r th e rn m ice ( th e N orth -W este rn

race in B r i t i s h and Norwegian samples) c lu s te re d w ith so u th e rn

M e d ite rranean p o p u la t io n s and no t w ith samples from th e in te rv e n in g

re g io n s . However, F e r r is & co lle ag u es (1983) p o s tu la te d th a t th e n o rth e rn

c lo n e s o f mtDNA may have southern ro o ts , and suggested th e fo rm e r a rose in

th e sou th in p r e g la c ia l tim es and moved no rth w a rd s in Europe as th e ic e

253

Page 281: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

sh ee ts re t re a te d . Thus, the a n c e s tra l o r ig in s o f th e N o rth e rn is la n d m ice

may be more re c e n t ly -from S cand inav ia , but u l t im a te ly from th e

M e d ite rran e an re g io n s . A l t e r n a t iv e ly , conve rgen t e v o lu t io n may account f o r

th e s im i l a r i t i e s between th e N-W race and Y u g o s la v ia , however, t h i s i s

u n l ik e ly c o n s id e r in g th e la rg e number D f r e s t r i c t io n enzymes and

r e s t r i c t i o n s i t e s in v o lv e d ( f ig u r e 4 .1 1 B ). S im i la r ly , B e rry & Rose, (1975)

u s in g da ta from e p ig e n e tic v a r ia n ts o f th e s k e le to n , showed th e Orkney v o le

p o p u la tio n s were more s im i la r to Y ugos lav ian ones than to any o th e r

c o n t in e n ta l sam ples. They concluded th a t th e v o le s p ro b a b ly o r ig in a te d from

so u th e rn o r e a s te rn M ed ite rranean re g io n s . Orkney v o le s (H icro tus a r v a lis )

are g e n e ra lly tho u gh t to have been in tro d u c e d by th e agency o f man, y e t ,

th e id e n t i t y o f th e a n c e s tra l p o p u la tio n rem a ins s p e c u la t iv e (C o rb e t,

1 9 8 6 ) .

The weak tendency f o r m acrogeographic s t r u c tu r in g o f mtDNA v a r i a b i l i t y in

Hus domesticus i s c o n s is te n t w ith i t s commensal t i e s to h ig h ly m ob ile

human p o p u la tio n s (human mtDNA a ls o e x h ib i t s l i t t l e m acrogeographic

s t r u c tu r in g - Cann Sc W ilson , 1 9 8 3 ) and is conco rdan t w ith a r e la t i v e l y

e x te n s iv e and re c e n t range expansion and th e h ig h d is p e rs a l c a p a b i l i t ie s o f

th e s p e c ie s . Indeed, Hus domesticus, as a commensal o f man, has much o f

i t s re c e n t e v o lu t io n a ry h is to r y t ie d up w ith human a c t i v i t i e s , s in c e b e fo re

th e advent o f a g r ic u l tu r a l p ra c t ic e s (B ro th w e ll, 1 9 8 1 ; Tchernov, 1 9 8 1 ) .

Thus an u n d e rs ta n d in g o f th e h is to r y and sequence o f c o lo n is a t io n o f th e

house mouse i s in co m p le te w ith o u t h is t o r ic a l and g e n e tic a l a n th ro p lo g ic a l

knowledge o f th e s e q u e n tia l demic spread o f fa rm in g in to Europe from th e

M id d le East (Sokal Sc M enozzi, 1982). T h is has been shown to be a s low and

254

Page 282: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

re g u la r p ro cess , e x te n d in g a p p ro x im a te ly from 9000 B.P to 5000 B .P , a r a te

o f advance o f about one k ilo m e tre per year (Menozzi e t aim, 1978; Bodmer 5c

C a v a l l i - S fo r z a , 1979).

There were a t le a s t f i v e main groups o-f c o lo n is ts in N orth S co tla n d and th e

Orkneys s in c e th e la s t g la c ia t io n ( M i l le r , 1976; Renfew, 1985; B e rry ,

1985b), many o f whom co u ld have b rough t th e house mouse w ith them; some are

more l i k e l y ca n d id a te s than o th e rs . Evidence suggests th a t th e f i r s t

c e r ta in s e tt le m e n t o f Orkney was begun b e fo re 3500 B.C. by N e o l i th ic

fa rm e rs . N e o l i th ic man c o lo n is e d N.W. Europe fo l lo w in g th e r e t r e a t o f th e

P le is to c e n e ic e -s h e e ts , northw a rds . I t i s p o s tu la te d th a t he was

te c h n ic a l ly i l l equipped to deal w ith th e ta sk o f fo r e s t c le a re n c e in

C e n tra l Europe and England. Thus, he advanced n o rth w a rd s from th e

M e d ite rra n e a n , by sea, g e n e ra tio n by g e n e ra tio n , fo l lo w in g c o a s t l in e s ,

in c lu d in g th e A t la n t ic , u n t i l e v e n tu a lly he reached th e f e r t i l e lo w la n ds o f

Orkney which were la r g e ly devoid o f t re e s . He e s ta b lis h e d lo c a l v e rs io n s o f

h is c u ltu r e a long th e way, le a v in g m em oria ls , such as s ta n d in g s tones and

ro ck c u t tombs (M e g a lith s ) , as ev idence o f h is p resence . House mice may

have been in a d v e r ta n t ly in tro d u ce d a long w ith dom estic l iv e s to c k , such as

goa ts and sheep, in t h e i r feed and bedd ing . Around 700 B.C. (A .D . 297) in

th e Iro n Age, th e n ex t c o lo n is ts , c a lle d th e " p ic t s " o r th e "p a in te d ones"

a r r iv e d , d e fin e d by th e numerous "B rochs" (d e r iv e d from th e word "B o rgs"

meaning d e fe n c e s ), carved symbol s tones and in s c r ip t io n s u s in g Ogam

(P ic t is h ) a lp h a b e t. E a r ly 7 th c e n tu ry b rough t th e C e lt ic C h r is ta in s from

I r e la n d , a lth o u g h t h e i r in f lu e n c e was emphemeral. Then came th e Norse

in f lu e n c e , which i n i t i a l l y took th e form o f p eace fu l s e tt le m e n ts , however,

Page 283: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

by th e b e g in in g o f th e 8 th c e n tu ry , th e re was a -flood o-f a g g re s s iv e ra id s

by th e V ik in g s , am ounting to m ass-m ig ra tion which c e r t a in ly made a g re a t

im pact on th e is la n d s (see T a y lo r , 1938 fo r a modern t r a n s la t io n o-f th e

O rkneyinga Saga, w r i t t e n 1192-1206). Orkney was used as a base fo r r a id s on

n o r th S co tla n d , th e H e b rid es , and th e I s le o f Man. The e xa c t d a te s o f th e

V ik in g e ra in th e Orkneys a re unknown, however, th e S cand inav ian in f lu e n c e

la s te d lo n g e r here than anywhere e ls e in B r i t a in . In England th e r a id on

L in d is f ra n e in 793 re p re s e n ts th e b e g in in g and th e b a t t le o f H a s tin g s in

1066 as th e end o f V ik in g in f lu e n c e . The la s t two decades o f th e 8 th

c e n tu ry is surposed t o re p re s e n t th e s t a r t o f V ik in g r a id s in I re la n d , and

th e Norman in v a s io n o f I re la n d in 1172, o r th e b a t t le o f C lo n ta r f in 1014,

th e end o f th e S cand inav ian predom inance. In th e I s le o f Man, th e re ig n o f

th e S cand inav ian k in g , Magnus, ended in 1263. The O rkneys, fo r m a lly

rem ained under th e Norse r u le u n t i l th e im p ig n o ra t io n D f th e I s le s in 1468-

9. Y e t, th e nex t phase o f c o lo n is ts , p ro b a b ly began th e p ro cess o f

’ S c o t t i f i c a t io n ’ in 1231, w ith a success ion o f S c o t t is h e a r ls in th e Orkney

Earldom .

To summarise, ju s t as C orbet (1986) b e lie v e s th e re i s no b a s is a t p re sen t

f o r id e n t i f y in g any p a r t ic u la r c o n t in e n ta l p o p u la t io n o f v o le s as be ing

a n c e s tra l t o th e Orkney v o le , so to o t h is appears to be th e case fo r th e

N-W ra ce o f th e B r i t i s h house mouse. Both g e n e tic , a n th ro p o g ic a l and

h is t o r ic a l ev idence sugges ts a Norse in f lu e n c e , conco rdan t w ith th a t

p o s tu la te d from o th e r sm a ll mammal s tu d ie s (B e rry , 1969, 1970, 1975, 1985,

1986b; Delany & W h it ta k e r , 1969; C orbe t, 1964; Evans, 1977).

256

Page 284: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

The la rg e number o-f d i f f e r e n t mtDNA c lo n e s , and h ig h d iv e r s i t y found in the

S-E ra ce in B r i t a in , i s c o n s is te n t w ith a s e r ie s o f m u lt ip le c o lo n is a t io n

e ve n ts . Hus domesticus mtDNA typ e s found in so u th e rn B r i t a in were grouped

w ith tho se from Denmark and Germany, su gg e s ting p o s s ib le c o lo n is a t io n o f

B r i t a in from th e c o n t in e n t across the E n g lish c h a n n e l, p o s s ib ly p a r a l le l in g

th e movements o f man. B e fo re t h i s the house mouse c o u ld , perhaps, have

crossed th e channel on i t s own. The e u s ta t ic lo w e r in g o f th e s e a - le v e l,

uncovered a w ide land co nn e c tion between B r i t a in and th e c o n t in e n t across

th e n o r th sea and E n g lis h channel from th e south o f Denmark to th e n o r th o f

F rance. At i t s maximum, s e a - le v e l was about 70-100 m etres below th a t o f

p re s e n t. When warmer c o n d it io n s ensued (approx. 7600 B.C) B r i t a in was s t i l l

connected to th e c o n t in e n t , a llo w in g the re p le n ish m e n t o f th e B r i t i s h fauna

by w a rm th - lo v in g s p e c ie s . I re la n d , however, d id n o t re c e iv e t h i s p o s t­

g la c ia l in v a s io n o f s p e c ie s , p ro ba b ly due to th e narrowed I r i s h sea. The

thaw ing o f th e ic e sh e e ts re s u lte d in a r is e in s e a - le v e l s u f f ic e n t to

sever B r i t a in from th e c o n t in e n t about 6600 B.C. Once B r i t a in became an

is la n d a g a in , any f u r th e r a r r iv a l o f new sp ec ies excep t f o r those th a t

co u ld f l y , would have occu rre d v ia in t ro d u c t io n s by man in boa ts o r

in d e p e n d e n tly by " r a f t in g " .

A rc h a e o lo g ic a l ev idence suggests many ro d e n ts d id manage to spread to

England b e fo re th e la n d b r id g e connec ting B r i t a in w ith th e c o n t in e n t was

severed , however, in fo rm a tio n from s u b fo s s il d a ta ar? d i f f i c u l t to

in te r p r e t because burrow s may in tru d e in to o ld e r s t r a ta . One re co rd

c o n firm s th e presence o f the house mouse in pre-Roman Iro n Age, bu t a f t e r

th e severance o f th e la n d b r id g e ; based on th e ro s tru m o f two an im a ls and

257

Page 285: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

one m and ib le , id e n t i f ie d from a s i t e a t Gussage A l l S a in ts , D o rse t. T h is

e v idence i s p ro b a b ly r e l ia b le because th e y were found in a sea led la y e r

w ith o th e r sm a ll mammals, and th e re was no s ig n o f subsequent d is tu rb a n c e

(C o rb e t, 1974; L eve r, 1985).

4i 4i 3 _ P a tte rn s _ o f _co l.gn i5a ti.gQ _5ugge5 ted_by_m itochondria l_D N A _ana lyses i

Hus domesticus in O rkney, N.E. S co tla n d (C a ith n e ss and S u th e r la n d ) ,

I re la n d and th e I s le o f Man, have mtDNA com pos ite genotypes n o t observed

among samples from th e r e s t o f th e B r i t i s h m a in land and a s s o c ia te d is la n d s

( I s le o f May, Skokholm, and In c h k e ith ) , sou th o f th e G reat Glen f a u l t (b u t

see Gatehouse o f F le e t sample, D u m frie s ). The d is t r ib u t io n o f p a r t ic u la r

r e s t r i c t io n fragm ent p a t te rn s , produced e i t h e r by s in g le r e s t r i c t io n

endnucleases o r in com b ina tion (com posite g e n o ty p e s ), can p ro v id e p o s s ib le

c lu e s about th e e v o lu t io n a ry r e la t io n s h ip s among th e races o f m ice and

suggest te n ta t iv e s c e n a rio s fo r th e sequence o f c o lo n is a t io n e ven ts .

U sing fo u rte e n r e s t r i c t io n enzymes, f i v e mtDNA c lo n e s were observed in th e

O rkneys and n e ig h b o u rin g m ain land c o u n t ie s . Based upon th e mtDNA a n a lyse s ,

th e re appears to be a c lo s e r e la t io n s h ip between a l l seven Orkney is le s

sampled and in a l l s i t e s in C a ithness and S u th e r la n d ; C lone 1 was found

p re d o m in a n tly in a l l s i t e s , even e x c lu s iv e ly in some cases. O nly one s i t e

on M ain land Orkney (H a rray) c lo n e 1 was n o t fou n d , two un ique c lo n es (4 &

5) were fou n d , however, o n ly 10km away on th e same is la n d c lo n e 1 was

observed a t th e Yaphur s i t e . Evidence from p ro te in polym orph ism d a ta , based

on 24 a llozym e lo c i , o f mice from C a ith ne ss and th re e Orkney is le s

(W estray, Eday and S tro n sa y , r e s p e c t iv e ly ) , show th e l a t t e r is la n d

p o p u la tio n s to be a subse t o f th e n e ig h b o u rin g m ain land p o p u la t io n s (Nash

258

Page 286: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

e t aim, 1983). D if fe re n c e s in a l l e le fre q u e n c ie s between is la n d p o p u la tio n s

were d e te c te d , bu t w ith one s in g le e x c e p tio n , a l l a l le le s p re s e n t in th e

is la n d p o p u la t io n s were a ls o p re s e n t in th e C a ithness m ice. The a l le le Smg-

l b (p ro te a s e lo c i , lo c a te d on chromosome 7) was observed in S tronsay and

W estray, bu t was n o t d e te c ted in th e C a ith ne ss p o p u la t io n , however, t h i s

s in g le C a ith ne ss sam pling s i t e may n o t be re p re s e n ta t iv e o f th e coun ty in

g e n e ra l.

The g e o g ra p h ic a lly a d ja ce n t n o r th e rn Orkney is la n d s o f W estray, Eday and

Faray share a no the r mtDNA com posite genotype (c lo n e 2 ) ; K e is s , N.E

C a ith n e ss , was th e o n ly o th e r s i t e where t h i s genotype was observed , over

80km away from th e N o rthe rn Orkney I s le s . I t i s h ig h ly u n l ik e ly th a t th e

complex r e s t r i c t io n fragm ent p a t te rn s c h a ra c te r is in g c lo n e 2 co u ld a r is e by

co nve rg e n t e v o lu t io n , in bo th th e n o r th e rn Is le s and th e m a in land s i t e ,

a l ik e and i s in d ic a t iv e o f a p o s s ib le c o lo n is a t io n ro u te l in k in g W estray,

Eday, F a ray , and th e N.E. co rn e r o f C a ith ne ss on th e b a s is o f c lo n e 2. T h is

mtDNA c lo n e ty p e occurs a t a much h ig h e r frequency in W estray (0 .1 2 , n=10),

and i s m a rg in a lly h ig h e r in Faray (0 .0 5 , n=3) and Eday (0 .0 4 , n = 3 ), than in

K e iss (0 .0 2 , n = l) . A s t r ik in g p a r a l le l e x is ts when t h is da ta i s compared

w ith k a ry o ty p ic in fo rm a tio n . R o b e rtso n ian t ra n s lo c a t io n s were reco rded in

th e same th re e Orkney p o p u la t io n s , and th ro u g h o u t C a ith ne ss (B ro o ke r,

1982). A l l th e o th e r Orkney is la n d s , S u th e rla n d and th e r e s t o f B r i t a in do

n o t have any c e n t r ic fu s io n s , hav ing th e normal 2n=40 k a ry o ty p e . A l l th e se

mice w ith R obertson ian fu s io n s share R b(9-12) su gg e s ting th e y have a common

o r ig in (S c riv e n & B rooke r, 1990). A d d i t io n a l ly Rb(4-10) was found on Eday

and C a ith n e s s , bu t no-where e ls e . T h is fu s io n may have a r is e n in d e p e n d e n tly

Page 287: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

in b o th p la c e s , however, th e re i s no ev idence th a t t h i s p a r t i c u la r

a s s o c ia t io n i s -favoured over any o th e r -fu s io n , o r , as seems more l i k e l y ,

th a t th e se two p o p u la tio n s share a common o r ig in .

Nash e t aim, (1983) compared Orkney p o p u la tio n s -from W estray, Eday and

S tro n sa y w ith a p o p u la tio n from C a ith n e ss , on th e b a s is o f m orphom etric ,

k a ry o ty p ic and a llozym e v a r ia t io n . They co n firm e d from t h e i r chromosomal

o b s e rv a tio n s th e c lo s e r e la t io n s h ip between Eday and C a ith n e s s , in a d d it io n

to th a t between Eday and W estray. A lso , th e y found s tro n g l in k s between

W estray and Eday, and between S tronsay and C a ith n e ss , based upon

m orphom etric ev idence . I f th e m ice a re p o s tu la te d to have a r r iv e d w ith man,

th e n th e f i r s t t ra n s lo c a t io n to have a r is e n a f te r t h e i r a r r i v a l would

p ro b a b ly have been Rb (9 -1 2 ) , hence mice would have f i r s t c o lo n is e d

W estray , and then Eday (Nash e t aim, 1983).

S p e c if ic r e s t r i c t io n fragm ent d ig e s t io n p a tte rn s suggest o th e r p o s s ib le

p a t te rn s o f c o lo n is a t io n . D is t in c t m ito c h o n d r ia l com pos ite genotypes un ique

to W estray and to H array (C lone 3 & 5, re s p e c t iv e ly ) share an A lu I

p a t te rn des igna ted "D" , which d i f f e r s from th e common * B" p a t te rn by two

s i t e d if fe re n c e s , su g g e s tin g a c lo s e r l in k than f i r s t th o u g h t. However,

t h i s p a t te rn may have a r is e n in each p o p u la tio n in d e p e n d e n tly by convergen t

e v o lu t io n , e s p e c ia l ly as th e Rsa I p a t te rn s do no t su p p o rt a c lo s e r l in k ;

c lo n e 1 shows Rsa I p a t te rn "B" , w h i ls t c lo n es 3 & 5 show p a t te rn s "G" and

"E " , r e s p e c t iv e ly , in v o lv in g s ix base d if fe re n c e s between th e l a t t e r two

p a t te rn s , to o co m p lica te d to in d ic a te a c lo s e r r e la t io n s h ip . C lones 3 & 5

appear to re p re s e n t d i f f e r e n t c o lo n is a t io n e ve n ts , from th e same a n c e s tra l

280

Page 288: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

source as th e common ty p e s found in th e O rkneys.

V a r ia b i l i t y o f mtDNA a t th e m ainland lo c a l i t i e s was c o n s id e ra b ly low er than

t h a t found in some o f th e Orkney is la n d s . Only one com pos ite mtDNA genotype

was observed among th e 7 mainland lo c a l i t i e s w ith th e e x c e p tio n o f two a t

K e is s , where th e second c lo n e was o n ly re p re se n te d by one mouse. In

com parison , th re e com pos ite genotypes were observed in two Orkney is la n d s ,

and two genotypes in a fu r th e r two is la n d s , o n ly 3 Orkney is la n d s surveyed

were monomorphic as re g a rd s c lo n a l ty p e s . Values o f h e te ro g e n e ity (h)

averaged 0.21 fo r th e is la n d s , and 0.001 fo r th e m a in land p o p u la t io n s . T h is

extrem e re d u c tio n in mtDNA v a r ia b i l i t y in C a ith n e ss , i s n o t r e f le c te d in

th e n uc lea r-co d ed a llo z y m ic v a r ia b i l i t y (B e rry 8c P e te rs , 1 9 7 7 ; Nash e t

1 9 8 3 ) ; o v e ra ll h e te ro z y g o s ity va lues per lo c u s ranges up to 1 1 .4 7 . in

C a ith ne ss p o p u la t io n s , w ith an average o f 5X among th e O rkneys. M oreover,

th e average fo r Hus domesticus p o p u la tio n s in B r i t a in i s a p p ro x im a te ly 67 .,

w h i ls t th e average f o r a l l ro d en ts i s 5 .6 7 . (S e lande r and Kaufman, 1 9 7 3 ) .

Thus, th e re appears to be no re d u c tio n o f h e te ro z y g o s ity in e i th e r m ain land

o r is la n d p o p u la t io n s . G e n e ra lly , th e main consequence o f fou n de r even ts is

e ro s io n o f g e n e tic v a r i a b i l i t y . A f i n i t e number o f c o lo n is e rs fo u n d in g a

p o p u la tio n would be expected to have le s s v a r ia t io n , w hich i s observed in

most is la n d p o p u la tio n s o f sm all ro d e n ts (Peromyscus spp - Aquadro 8c

K i lp a t r i c , 1 9 8 1 ; Hus domesticus - B e rry 8c P e te rs , 1 9 7 7 , and B e rry e t a i . ,

1 9 7 8 ) . However, e x c e p tio n s to t h is r u le have been fou n d . An in c re a s e in

a llo zym e v a r i a b i l i t y was observed in H aw aiian m ice (B e rry , e t a i» , 1 9 8 1 ) ,

a ls o Navajas Y N avarro 8c B r it to n -D a v id ia n , ( 1 9 8 9 ) showed th e re was no

re d u c t io n in a llo zym e v a r ia b i l t y in m ice from M e d ite rran e an is la n d s

261

Page 289: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

compared to th e Hus domesticus p o p u la tio n s on th e n e ig h b o u rin g m a in land ,

w ith th e e x c e p tio n o-f one on a v e ry t in y is la n d (6 h a ) , in which o n ly one

t h i r d o-f th e a n c e s tra l v a r i a b i l i t y was lo s t . The s e v e r e ity o-f a founder

e f f e c t i s more dependent on th e p o s t c o lo n is a t io n r a te D f p o p u la tio n

in c re a s e , ra th e r than th e s iz e o f th e fou n de r p o p u la t io n (Nei e t a l . f

1975). The m aintenance o-f v a r ia t io n fo l lo w in g a fo u n d e r e ven t i s p ro b a b ly

due to a m u lt ip le in t r o d u c t io n p a t te rn o-f c o lo n is a t io n in th e se is la n d s ,

and ra p id p o p u la tio n g row th fo l lo w in g each c o lo n is a t io n e v e n t. Mice from

a l l o f the Orkney is la n d s have been shown to be re m a rka b ly homogenous w ith

re s p e c t to a llo zym e v a r ia t io n , which has been a t t r ib u te d to th e h igh mouse

d e n s it ie s and e x te n s iv e fa rm in g a c t i v i t e s (B e rry & P e te rs , 1977) found on

these is la n d s .

Why shou ld founde r e f f e c t s cause a g re a te r re d u c t io n in m ito c h o n d r ia l than

in n u c le a r gene v a r ia b i l i t y ? One e x p la n a tio n is th a t p o p u la t io n b o tt le n e c k s

a re much more extrem e fo r m ito c h o n d r ia l genes than f o r autosom al genes

(W ilson e t a l 1985) . T h is i s a consequence o f th e tra n s m is s io n g e n e tic s

o f m ito c h o n d r ia l DNA. A s in g le p regnant fem ale c o lo n is t w i l l c a rry a la rg e

amount o f nuclear—encoded v a r ia t io n (a u to so m a l), b u t o n ly a s in g le

m ito c h o n d r ia l geno type . M ito c h o n d r ia l DNA is m a te rn a lly in h e r i te d (F is c h e r

L in d a h l, 1985), th u s mtDNA genes can o n ly be passed th ro u g h fem ale

lin e a g e s , assuming th e re i s no p a te rn a l leakage (G y lle n s te n e t a i» , 1985)

and s t r i c t homoplasmy. H eterop lasm y (two o r more mt genotypes c o e x is t in g

w ith in an in d iv id u a l) i s e x tre m e ly unusual in anim al mtDNA (Bermingham, e t

a i . , 1986). Only one case o f he te rop lasm y has been documented in th e house

mouse, thu s f a r (B ou rso t e t a l 1987). B irk y e t a l (1983, 1989) have

262

Page 290: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

shown, assuming equal sex r a t io s , m a te rn a l, h a p lo id in h e r i ta n c e o f mtDNA,

th a t th e e f f e c t iv e p o p u la tio n s iz e f o r m ito c h o n d r ia l genes w i l l be one

q u a r te r th a t o f d ip lo id nuc lea r-e n cod e d genes. As a consequence, th e mear

t im e t o f i x a t io n o r lo s s o f new m ito c h o n d r ia l m u ta tio n s w i l l be

a p p ro x im a te ly tw ic e th a t o f n u c le a r ones. Hence p o p u la t io n s w i l l be

expec ted to be su b d iv id e d fo r m ito c h o n d r ia l genes, a t m ig ra t io n ra te s a t

w h ich th e n u c le a r genes a re p a n m ic t ic ; t h i s e f f e c t i s a cce n tu a te d i f males

d is p e rs e more than fem a les . F ie ld s tu d ie s have suggested th e re i s no

e v id e n ce o f p r e fe r e n t ia l d is p e rs a l by males in th e house mouse (B e rry ,

1968), a lth o u g h i t i s suspected (see c h a p te r 6; B u t le r , 1980). However,

equal d is p e rs a l does n o t n e c e s s a r ily equa te w ith equal gene f lo w . When

p re g n a n t fem a les d is p e rs e , t h i s causes th e f lo w o f bo th male and fem a le

genomes, w h i ls t male d is p e rs a l a llo w s th e spread o f m a le -d e r iv e d genomes

o n ly . Thus an equal system o f d is p e rs a l causes m a le -b ia sed gene f lo w , i f

th e d is p e rs in g fem a les a re in se m in a te d (D e s a lle e t a i . , 1987). P regnant

fem a les have been reco rded among house mouse e m ig ra n ts (M yers, 1974).

Sum m arising ev idence from mtDNA endonuclease d ig e s t io n p a t te rn s , to g e th e r

w ith o th e r g e n e tic d a ta , th e Orkney I s le s appear t o have have expe rie n ced

a t le a s t two se p a ra te c o lo n is a t io n s o f house m ice, from th e same a n c e s tra

so u rce . The m ajor sequence o f e ve n ts deduced from th e mtDNA d a ta appears :o

be an i n i t i a l c o lo n is a t io n even t on Mid to South W estray, fo l lo w e d by

spread to th e n e ig h b o u rin g is la n d o f Eday. The sm a ll is la n d between Eday

and W estray, Faray was p ro b a b ly c o lo n is e d by mice from bo th n e ig h b o u rin g

is la n d s , a lth o u g h mtDNA p a tte rn s have shown th a t one c lo n a l ty p e (c lo n e 2

was found p re d o m in a n tly in th e west o f th e is la n d ; y e t th e la n d in g j e t t y s

263

Page 291: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

s itu a te d to th e fa r south o f th e is la n d , a p p ro x im a te ly e q u i- d is ta n t to th e

two n e ig h b o u rin g is la n d s . However, due t o i t s sm a ll s iz e (7 5 h a ), th e re is

p ro b a b ly random m ix ing o f in d iv id u a ls , over th e whole is la n d . However,

c lo n e 2 was found to p e r s is t on Faray a long th e w es te rn c o a s t, where i t was

m o n ito red in a p p ro x im a te ly th e same area in th re e c o n s e c u tiv e sam p ling

ye a rs ( f ig u r e 4 .2 ) . The is la n d has been pe rm anen tly u n in h a b ite d by man

s in c e 1940, from which t im e i t has o n ly been used as p a s tu re f o r sheep from

W estray.

M ice p ro b a b ly c o lo n is e d C a ithness o r ig in a l l y in th e N .E. c o rn e r , fo l lo w in g

a p a th from Eday v ia e i th e r e a s te rn M a in land Orkney o r S tro n s a y . On t h e i r

a r r i v a l , th e mice p ro b a b ly spread sou th and west th ro u g h C a ith n e ss to

S u th e r la n d . M ice, fo l lo w in g man, p ro b a b ly ra d ia te d o u t from th e n o rth e rn

is le s t o a l l th e o th e r is la n d s s e q u e n t ia l ly . Another independan t

c o lo n is a t io n even t may have o ccu rre d in West M ain land O rkney, founded a t

a p p ro x im a te ly th e same t im e , as un ique b u t d e r iv e d c lo n e s were observed

h e re . Yet th e y were g e n e t ic a l ly ve ry c lo s e ly re la te d to th e common c lo n e

found th ro u g h o u t th e Orkney and n e ig h b o u rin g m ain land a re a , and, c lo s e ly

r e la te d to a un ique c lo n e found on W estray. M ain land Orkney may have been

c o lo n is e d from W estray and th e documented v a r ia t io n re p re s e n ts e v o lu t io n

subsequent to t h e i r s e p a ra tio n . One l i k e l y c o lo n is a t io n s c e n a r io suggested

by t h i s s tud y i s g ive n in F ig u re 4.15A . I t i s shou ld be noted th a t t h i s i s

n o t th e o n ly pathway th a t can be env isag e d , m ere ly th e most pa rs im o n iou s .

The I r i s h fauna has long posed a prob lem fo r b iogeographers (Moore, 1987).

Indeed , th e re has been c o n tro v e rs y as to whether e x ta n t sp e c ie s e ith e r

ii

264

Page 292: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

s u rv iv e d in g la c ia l r e fu g ia in p e rm a fro s t—fre e a reas o f I r e la n d , o r

d is p e rs e d to I re la n d a f t e r th e la s t g la c ia l p e r io d ove r a la n d b r id g e , o r

were in a d v e r ta n t ly in tro d u c e d by man (Y a lden , 1982). The presence o f th e

house mouse and th e bank v o le (Clethrionomyus glareolus) has been

a t t r ib u te d to th e la s t o f the se (S e a r le , 1989; F a ir le y , 1971; Smal &

F a ir le y , 1978). Indeed, th e e r r a t ic co m p o s itio n o f I r i s h fauna g e n e ra lly

sugges ts a s e r ie s o f chance in t r o d u c t io n s , ra th e r tha n an o rd e r ly sequence

o f c o lo n is a t io n s from a r t i c to tem pera te faunsa which was a b ru p t ly

te rm in a te d by th e severance o f a land c o n n e c tio n .

Three mtDNA c lo n e s were found in I re la n d , two (c lo n e s 6 & 7; n^ 11) in

N o rth e rn Ire la n d and one (c lo n e 8; n = l) in Southern I r e la n d , on th e b a s is

o f 14 r e s t r i c t io n endnucleases. The I s le o f Man and one s i t e in N o rthe rn

I re la n d shared a c lo n e ; th e l a t t e r s i t e a ls o shared a n o th e r c lo n e w ith a

s i t e fu r th e r n o r th in N .I re la n d . Too few m ice were examined to make any

f i r m s ta tem en ts about c o lo n is a t io n based upon th e p a t te rn s observed from

th e th re e c lo n a l typ e s a lo n e . However, one c lo n e (6) co u ld o n ly be

d is t in g u is h e d from c lo n e (1 ) , common in th e O rkneys, on th e b a s is o f a

s in g le r e s t r i c t io n s i t e d i f fe re n c e , re v e a lin g a c lo s e r l i n k between Orkney

and I re la n d , than between th e common Orkney c lo n e and th e o th e r 4 c lo n a l

ty p e s observed in Orkney and N.E S co tland (see f ig u r e 4 .1 1 A ).

I would t e n ta t iv e ly su gg e s t, based on mtDNA ev idence (see f ig u r e 4 .1 5 B ),

th a t th e re were p ro b a b ly a minimum o f two fo u n d in g e ven ts in I re la n d .

Assuming, th e c o lo n is a t io n s arose p r im a r i ly from th e n o r th , one event

re s u lte d in c o lo n is a t io n o f th e east coast o f I re la n d and th e I s le o f Man,

265

Page 293: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER FOUR

how ever, th e d ir e c t io n o f movement between th e I r is h and Manx c o a s ts i s

d i f f i c u l t to assess. There was p ro b a b ly ano the r fo u n d in g even t on th e west

co a s t o f I r e la n d , about th e same tim e as th e fo rm er and from th e same

a n c e s tra l s o u rce . A no ther un ique c lo n e was observed on th e S c o t t is h

m a in land a d ja c e n t to I r e la n d , a t Gatehouse o f F le e t , D u m frie s ; a lth o u g h

t h i s mtDNA genotype c lu s te r s w ith th e N.W. race based upon fo u r te e n

r e s t r i c t io n enzymes, i t i s c o m p a ra tiv e ly d is t a n t ly r e la te d and p ro b a b ly

re p re s e n ts a c o m p le te ly se p a ra te in t r o d u c t io n e ven t.

In c o n c lu s io n , a lth o u g h th e re appears to be no s u b s ta n t ia l m acrogeographic

s t r u c tu r in g o f w o rld w id e house mouse p o p u la tio n s , m ic rog e og ra p h ic

s t r u c tu r in g i s apparen t in th e B r i t i s h p o p u la t io n s , d e m o n s tra tin g th a t

th e re i s a p h y lo g e o g ra p h ic component to p o p u la tio n s t r u c tu r e . T h is

in d ic a te s th a t gene f lo w i s n o t s tro n g enough to c o m p le te ly homogenise

mtDNA genotypes across th e e n t i r e sp e c ie s range. Thus, i t would appear th a t

h is t o r ic a l b iogeography i s im p o rta n t in shap ing mtDNA geog raph ic

d is t r ib u t io n s even in a h ig h ly m o b ile sp e c ie s , th a t has e xpe rienced re c e n t

and ra p id range expans ion . Indeed, mtDNA has proved e s p e c ia l ly u s e fu l f o r

re c o n s tru c t in g th e p ro b a b le c o lo n is a t io n p a tte rn s and th e e v o lu t io n a ry

h is t o r y o f th e B r i t i s h house mouse.

Page 294: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 4.1 ■ The mtDNA com pos ite genotypes (mt c lo n e s ) obseryed_amgnq_samples

o f B r i t i s h house m ice ( tfu s domesticus) .

1 - L e t te r s d e s c r ib in g mtDNA com posite genotypes from l e f t t o r ig h t , r e fe r

to r e s t r i c t io n fragm en t p a t te rn s fo r th e r e s t r i c t i o n endonucleases Hind

I I I , Xba I , H inc I I , Acc I , Ava I I , FnuD I I , Hpa I I , Hae I I I , Taq I , Mbo I ,

H in f I , A lu I , Rsa I and Sau 961, r e s p e c t iv e ly .

The number in b ra c k e ts r e fe r s to th e mtDNA com pos ite number (C lone number)

and th e g e o g ra p h ica l d is t r ib u t io n o f th e se a re i l l u s t r a t e d in F ig u re 4 .4 .

The number o f m ice sampled th a t show a p a r t i c u la r mtDNA com pos ite genotype

from a p a r t ic u la r c o l le c t in g s i t e a re g iv e n .

2 - Frequency o f a p a r t i c u la r mtDNA com pos ite genotype w ith in a g iven

p o p u la tio n sample per sample ye a r.

267

Page 295: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 4 .H

mtDNA genotype (c lo n e N ° )1 N° fre q u e n cy c a p tu re d a te?< c a p tu re lo c a t io n o f m ice o f mt c lo n e 2

(1 ) . BAAAJADXBOCBBB O rkney:

W estray, Noup W estray, Quoy W estray, Hammars W estray, G rinaby W estray, S ke lw ick Papa W estray, H o lla n d Eday, NewbigginIt II

II IIEday, Ruah FarayIIII

S tron sa y , H o lland Sanday, Newark Yaphur, M ain land Orkney

C a ith n e ss :John ’ 0 ’ G roatsIIThurso, O lr ig C a s tle to w n , G reenland Barnaclavan K e iss

S u th e rla n d :AchiemoreArmadale

(2 ) . BAAAJADXBOCCGC Orkney:

W estray, Quoy W estray, Hammars Eday. Ruah FarayIIII

C a ith n e ss :K e iss

(3 ) . BAAAJADXBOUDGC O rkney:

W estray, Quoy(4 ) . BAAAJADRBOCBEC O rkney:

H array , M ain land Orkney(5 ) . BAAAJADRBOCDEC O rkney:

H array , M ain land Orkney

11 1 .00 3 /8 829 0 .7 6 3 /8 618 0 .8 6 3 /8 69 1 .00 3 /8 88 1 .00 3 /8 81 1 .00 - /8 012 1 .00 3 /8 046 1 .00 3 /8 66 1 .00 3 /8 83 0 .5 3 /8 811 0 .91 9 /8 428 0 .9 6 9 /8 519 0 .9 5 9 /8 62 1 .00 4 /8 63 1 .00 3 /8 0I 1 .00 3 /8 8

4 1.00 4 /8 63 1 .00 9 /8 73 1.00 9 /8 7I I 1 .00 3 /8 45 1.00 9 /8 711 0 .9 2 3 /84

4 1.00 9 /8 71 1 .00 9 /87

7 0 .1 8 3 /8 63 0 .14 3 /863 0 .5 0 3 /8 81 0 .0 9 9 /841 0 .04 9 /851 0 .0 5 9 /8 6

1 0 .0 8 3 /84

3 0 .05 3 /8 6

3 0 .30 3 /8 8

7 0 .70 3 /88

Page 296: (Hus domesticus. Rut t y ) - UCL Discovery

(6 ) . BAAAJAAXBOCBBBN. I re la n d ,B e l f a s tII

I s le o f Man, L ingagne(7 ) . BAAAJAAXBOCBFB

N .I re la n d , B e lfa s t N. I r e la n d , Moneymore

(8 ) . BAAAMAAXB/GBFBS . I r e la n d , Galway

(9 ) . AAAALADAAWAFAA F i r t h o f F o r th :

In c h k e ith I s le o f May

(1 0 ). AAAALAAAAAXABA D u m frie s :

Gatehouse o f F le e t ,(1 1 ). AAAAKKDAAAAHBA M id la n d s :

B u r to n -o n - tre n tII

(1 2 ). AAAAKKDAAAAAAA M id la n d s :

Bur t o n - o n - t r en t D erbysh i re

(1 3 ). AAAAKKDWAAZHCA M id i and:

B u r to n -o n - tre n t(1 4 ). AAAAKKDVAASJAAA

B irm ingham , Mosley(1 5 ). AAAAKKDVAAZAAA

B irm ingham , Mosley(1 6 ), AAAALJAAAAAAAA C e n tra l London:

K ings Cross London Zoo

South London:Fulham

S u rre y :N u t f ie ld

(1 7 ). AAALLJAAAAZAAA S u rre y :

N u t f ie ld South London:

Wimbledonk e n t:

East G rin s te a d ( IB ) . AAALLJAUAAZAAA S u rre y ;

West Humble Ham pshire:

W incheste r(1 9 ). AAALLJAUA3SGDA K en t:

East G rin s te a d ,

3 1 .00 9 /8 73 0 .4 3 8 /8 81 1 .00 10/87

4 0 .57 8 /8 81 1.00 9 /87

1 1.00 10/87

1 1.00 - /8 012 1.00 - /8 0

1 1.00 9 /88

7 0 .7 8 9 /878 0 .72 6 /88

2 0 .22 9 /873 1.00 7 /87

3 0 .2 8 6 /88

2 0 .25 6 /87

6 0 .75 6 /87

1 1.00 4 /873 1.00 9 /88

3 1.00 4 /87

5 0 .55 6 /88

5 0 .45 6 /88

1 1.00 7 /87

5 0 .33 6 /87

1 1.00 6 /88

3 1.00 7 /88

8 0 .53 6 /87

Page 297: (Hus domesticus. Rut t y ) - UCL Discovery

(2 0 ). AAALLJATAS)SGD A K en t:

East G rin s te a d(2 1 ). AAAALKAAAAZAAA P em brokesh ire :

SkokholmSom erset:

Taunton, Park fa rmII

(2 2 ). AAAALKASAAAEAD Som erset:

Taunton, 111 m in s te r(2 3 ). AAAALKAAAX ZEAD S om erset:

Taunton, Chedsoy

2 0 .1 3 6 /87

35 1.00 9 /86

9 1.00 4/8127 1 .00 4 /86

3 1 .00 - /B 2

2 1 .00 4/81

T o ta l 430

Page 298: (Hus domesticus. Rut t y ) - UCL Discovery

IABLE_4_;_2i Summary ta b le o-f -frequenc ies o-f th e 23 mtDNA comp o s it e genotypes

o~f Mus domesticus from 54 m ajor sam pling lo c a l i t i e s in B r i t a in , produced

b ^_ 1 4 _ r§ s tr ic tiD n _ e n d D n u c le a s e s JL

The number o-f in d iv id u a ls per mtDNA C lone ty p e i s g iv e n , a ls o th e number o-f

m ice per sam pling l o c a l i t y i s in d ic a te d .

Values in b ra c k e ts in d ic a te s fre q u e n cy v a lu e s fo r genotypes observed o n ly

once in a sample.

l .The com posite genotype and c lo n e number a re as g ive n in T ab le 4 .1 .

2 The observed nuc leon d iv e r s i t y (Nei & T a jim a , 1981; h ) . V a lues c lo s e to

ze ro in d ic a te no mtDNA com pos ite d iv e r s i t y , whereas v a lu e s near to one

i l l u s t r a t e h ig h d iv e r s i t y .

An a s te r is k (* ) i l l u s t r a t e s samples poo led from s e v e ra l c o l le c t in g s i t e s

w ith in th e same is la n d o r area f o r a l l sample ye a rs .

P o p u la tio n a b b re v ia t io n s (For s p e c i f ic t ra p l o c a l i t y d e t a i ls see Table 2 .2 ,

c h p a te r 2) a re as fo l lo w s : West, W estray; P .W est, Papa W estray; Fara ,

Faray; S tro n , S tro n sa y ; Sand, Sanday; H a rr, H a rray ; Yap, Yaphur; JOG, John

0 ? G roa ts ; Thur, Thurso; Gree, G reen land; K e is , K e iss ; B arn , B arnac lavan ;

A rch, A rch iem ore; In c h , In c h k ie th J IOM, I s le o f May; Gate, Gatehouse o f

F le e t ; B e lf , B e l fa s t ; Mon, Moneymore; G a l, Galway; L in g , L ingagne ; BOT,

B urton -on -T re n t ; Derb, D e rb y s h ire ; B irm , B irm ingham ; L .Z , London Zoo; F u l,

Fulham; Wimb, Wimbledon; EG, East G rin s te a d ; N ut, N u t f ie ld ; W.H, West

Humble; Wine, W inch e s te r; SK, Skokholm; and Taun, Taunton.

271

Page 299: (Hus domesticus. Rut t y ) - UCL Discovery

272

Page 300: (Hus domesticus. Rut t y ) - UCL Discovery

IABLE_4i 3|__ P h ^ lo g e n e t ic a i l^ _ in fo r m a t iv e _ re 5 tr ic t iD n _ 5 ite 5 <_ i.n _ th B _ B rit i5 h

house mouse, u s in a 14 r e s t r i c t io n endonucleases.

R e s t r ic t io n s i t e c h a ra c te rs a re d es ig n a te d as p re s e n t (1) o r absen t (0) -for

each enzyme -for each o-f th e 23 mtDNA com pos ite c lo n e s .

% See Tab le 4 .1 -for mtDNA c lo n e ty p e s and p o p u la tio n a b b re v ia t io n s .

The r e s t r i c t io n enzymes from 1-14 in c lu s iv e , are as g ive n in T ab le 4 .1 .

- in d ic a te s la c k o f p h y lo g e n e t ic a l ly in fo rm a t iv e s i t e s f o r th a t p a r t ic u la r

enzyme.

273

Page 301: (Hus domesticus. Rut t y ) - UCL Discovery

■S'■mi■ i*SrlCG|

Iail-Cl•4-l|I■Si

Ul{

i• i■MlU|—•IM -I1? ini uii mi<ui ini M mi

i ati an ~ i >i ui

• r t l 3 1 •M l C lmi oi£1 T3I U C loi an

H - l I C l C l

- ~ l 01 I - i >4 -M l

H u!tnI uiu' -mi % ini uji ana,i ei£i v i§1-1 % aiH cc l •«h |cuj g

“ ! ai!I Ull

K“mzU i00_ l>1 c l

K>

UItn< rui

3ZaQ

Zo

<1 u(J►H CC

tnu icc

roCN

*

o o o o o G O O O o O o o o o o o o O o o v-i v-iv i v i -—I v i v i v i v i 4H v i ^ i v i v i ^1 v i v-i v-i o o

V-4 v* * i v i •H V-1 v i v i v i v i v i v i v i v i v i v i v i o Ov i 1i ^ i v i v i v l v l Vi v i v i v i v i v i v i v i v i v i v-i v i o oo iH v l H O o O o o o o O o o o o o o o o o oo o o o v i ^ i v i v i ^ i v i v i ^ i ^ i i l v i •H v i

o o o o o o o o v i o o 4 4 44 v i ^ i ^ i v i v i v i v i v i v i v iv i v i v i v i i v i v i v i o v i v i o o o © © © © © o © © ©o C o o o o o o v i o o v i v i v i v i —4 v i v i v i v i V 4-4

v i v i v i v i v i v i v i o v i v i o o o © o o © o © © © ©o o o O o o o © v i o o v i v i v i v i i v i v i •Hv i v i v iv-i v i v i v i v i v i v i v i o v i v i o o o o o o © © © © © ©o o O o o o o o o o o o o © © © © © v i o © ©v-i v i v i v i v i ^ i v i v i v i v i v i v i v i ^ i v i v i i v i © © v i 4-4 v io o o o o o o O O o o o o © © © o © 4—t v i o © ©v i v-i v i v i v i v i v i v i v i v i v i v i v i v i ^ i v i v i v i © © 4-4 v i v iv-i v i v i v i v i i v i v i o v i v i o v i © o © © © © © © © ©o o o o O o o O v i o o v i o ^ i v i v i 44 v i v i v i v iv i i i v i v i v i V o o v i v i v i v i ^ i v i v i v i v i v i 4*4 v i v i v i v iv-1 v i v i v i v i v i v i v i O v i v i o o © © © o o © © © © ©o o o v i v i o o o o o o o © © © © © © © © © © ©v-i v i v i o o v i v i i v i v i v i v i v i v i v i v i v i ^ i *4 i v i v i v io O o v i v i o o o o o o o o o © o © © © © O © ©o o o o o o o o v i o o o v i v i v i v i ^ i v i 44 v i v i v i v iiH v i v i •H v i v i v i v i o ^ i v i v i o © © o © o o O © o Ov i v i v i v i v i v i v i v i o v i v i v i o © © o © © © © © © ©o v i o O o o o o o o o o © © ,o o o o © © o ©

© o © © © © © o © © © © © o © © © © v i v i © © ©v i 44 v i v i v i v i v i v i © © © © © © © o © © © O © © ©v i 44 v i v i v i v i ^ i v i © © © © © © © © © © © © © © ©O © © © © © © © v i v i v i v i v i ^ i v i v i i v i ^ i v i v i v i 4-4v i © v i v i ^ i ^ i v i v i v i v i © v i © v i v i ^ i v i v i i v i v i ^ i 44v i © v i ^ i v i v i v i v i v i v i © v i © v i v i i v i v i v i v i v i v i 4-4o © © O © © © © © © © © © © © o © © © © O v i 4—4v i 44 ^ i v i v i v i v i v i v i v i v i ^ i i v i ■1 v i v i i v i ^ i v i © ©© © © © © o © © v i v i v i v i i v i i v i v i v i v i v i v i © ©

CN v i ^ i v i v i v i v i v i v i © o © © © © o o © © © © © © ©© © O © © © © © v i v i v i v i v i ^ i ^ i v i v i v i v i ^ i v i 4-4

© © © © © o © © v i © v i v i v i v i v i i v i i v i ^ i v i v i 4-4© © o © © © © © ^ i © v i ^ i v i v i i v i v i v i v i i i v i 44

v i v i v i v i v i v i v i v i v i ^ i v i v i v i o © © v i © © © © o v i ©v i v i v i v i v i v i ^ i v i ^ i v i v i v i v i v i v i v i v i v i v i © o v i v i 44

© © © o © o o © o © o o o © © © © O v i v i o © ©© © o o © © o © v i v i v i v i ^ i v i v i v i v i v i v i v i v i 4—4

O © o o © © © o © v i v i v i v i v i v i v i v i v i v i v i v i ^ i v i 4—4v i v i v i v i v i v i v i v i v i © © © o © © © o O o © © © o ©

O ' © © o © © © o © v i v i v i v i v i v i v i v i v i v i v i v i v i ^ i 44

v i v i v i v i v i v i v i v i v i v i v i ^ i v i © © v i v i v i o © v i v i 4—4v i v i v i v i v i v i v i v i v i v i v i v i ^ i o © v i ^ i v i v i v i v i v i 4-4v i v i v i O © v i v i v i v i v i v i v i v i v i v i v i v i v i v i v i v i v i 44© © © © © © o © v i v i v i ^ i v i i v i v i ^1 v i v i O ^1 v i 4-4v i v i ^ i v i v i v i v i v i © o © © © © © o © © O © © o ©© © © © © © O © v i v i i v i v i ^ i v i v i v i i v i v i v i ^ i 4-4

CD v i v i v i v i v i v i v i v i © © © © © © O © O © © © © © ©

N © © o © © v i v i v i © v i © © © © © v i ^ i v i - v i v i i 44

v i v i v i v i i v i v i v i 4-4 v i v i v i v i v i v i o o o © O v i v i 4-4-0 © © © o © v i v i v i v i v i © o ©

v i v i v i v i ^ i ^ i v i v i ^ i © o © © © © © O O © O © © ©UI v i v i v i v i v i v i v i ^ i © v i © © © © © v i v i v i ^ i v i 44

V © o o © © © o o v i © © © © © © o - ^ i v i - o o ©

i i i ii i i i

i i i ii i i i

i i i i i i i i i i i ii i i i i i i i i i i i

•i OI UI a<*■1 £1 Cl Ui M LU <E CD CJ < r m CQ CJ 1C CG CJ

1 1 > _1 h~ <r CO <X CD <x u CD H— ►— CC V- CC CC _1 X X CD u O 3 3Ull ait 1— CL <r 1C CO in CC CC Ui Ui UI > < r □ Lll a t—< 1-4 Z3 H H 0 0 <X <X-11 Ull 1 x u CC Ui Ui <£ <L CC c r CC <x CD CD a CD CD CO Ll 3 3 Ui Ui CO I— I—CGI 01 I— <x a o 3 3 X X 1—1 44 1-4 X m ■ • ■ « ■ « ■ ■ ■ a • ■ •<XI 01 I CO _1 • > ■ • . ■ ■ © vi CN K> in O r>. CO O' © 4-4 CN K»M I I i CN K* « r in CO Ch 4-4 ^i vi 4-4 4-4 vi 44 4-4 ^1 CN CN CN CN

274

Page 302: (Hus domesticus. Rut t y ) - UCL Discovery

I0 ik E _ 4 i 4 i_ M a tr ix_ g f_ 5 e g u e n ce _ d i yergence_esti(nat.B5_between_rntDNA_cgfnBD5itB

£ l9 D ?5 _ 9 f_ ? !li^ i§ [}_ tl9 y§ § _n ]i£ §_ b §§ e d_ u go n _ re5 tric tiD n_ 5 i tes_genera tBd_by_ thB

i4 _ re s tr ic tig n _ e n z y m e s _ U 5 e d i

The mtDNA com posite numbers a re as l i s t e d in ta b le 4 .1 .

a ) . The f r a c t io n o f shared s i t e s (S -va lu e s ) over a l l d ig e s ts per c lo n e

ty p e .

b ) . The sequence d ive rg e n ce (d a ) e s tim a te d a cco rd in g to Nei It L i (1979)

u s in g e q u a tio n 16. A l l e s tim a te s d esc rib e d were c a lc u la te d from fragm ent

d ig e s t io n p a t te rn s genera ted each by 4 - , 5 - , and 6 - base-sequence

re c o g n it io n s i t e endonucleases s e p a ra te ly and then combined by w e ig h tin g

a c c o rd in g to th e t o t a l number o f base p a ir s re co gn ise d by each type o f

r e s t r i c t io n enzyme.

275

Page 303: (Hus domesticus. Rut t y ) - UCL Discovery

n

O oo ooo oo ooooooooooooe io o

",

lililiiiiiliiiiiiilfiio o o o o o o o o o o o o o o o o o o o o o

IlllllllllIIlllIIIIIIo o e d d d o o d o e o o e d o e o e o o

si i i i i i i t i i i i i i i i i i i id d d d d d d d d o d o o o d o o o o o

o- IIIIIIII1IIIII1II11o o o o oc id oo oo ooo oo oo o

miiilililllliiillild o o o d o d o d o o o o o o o o o

r*llfllllllllllllllo d o o d d d d e d d d d e e o o

R s a f i R M = s = s a s 3 s g ,

o o o o o o o o o o o o o o o o .

*■>iiiiiiiiiliiiii ^o o o o o o o o o o o o o o o

iiiiiiiiiiiiiio o o o o o o o o o o o o o

n iiilliiliiiiio o o « o o o o d o o o o!

}

<v liliiliiiliioo oo oo o o o o o o

;

j- iiiiillilii

o o o o oo ooo oo

:;

;

UJ

Z

O 2,I

ilfiiiillle o e o oo ooe o

S-V

ALU

ES u

< ► zQl -z

llllllllld d dd dd do o

IIIIIIIIoooo oo oo

lllllllo o o o o o O

. . . iiiiii© o o o o ©

r>llljl 0 0 0 — 0

»

? 5 i l

o o o o

ri

m z,

S r io o o

rj

si©©

s « -

i f -

O

E u

ss

ss

LU

on

ss

m m

tz

111l i i l i l i

CO SSSSSSSSSZSS:

Page 304: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 4.5s P h y looe n e t ic a l 1 v in fo rm a t iv e r e s t r i c t i o n s i te s o f European and

Br i t i s h house mouse mtDNA us in g 11 re s t r i c t i on en d o n uc le ases.

C lone numbers in b ra c k e ts a lo n g s id e c lo n e s 1 - 1 4 Sc 2 3 - 2 7 r e fe r to th e

B r i t i s h house mouse c lo n a l ty p e s 1 - 2 3 a lre a d y c h a ra c te r is e d u s in g fo u rte e n

r e s t r i c t io n endonucleases l i s t e d in Tab les 4 . 2 Sc 4 . 3 .

C lones numbers 15-22 and 2 8 - 45 a re as documented by F e r r is and c o lle a g u e s

(1983);, and p o p u la t io n lo c a l i t i e s a re d e s c r ib e d w i th in .

1 in d ic a te s th e presence and 0 in d c ia te s th e absence o f a r e s t r i c t io n s i t e .

The e leven r e s t r i c t io n endonucleases from l e f t to r ig h t (1 -11 ) ares Hind

I I I , Xba I , H inc I I , Acc I , Ava I I , FnuD I I , Hpa I I , Hae I I I , Taq I , Mbo I

and H in f I , r e s p e c t iv e ly .

277

Page 305: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 4 .Ss P h y lo o e n e t ic a l1v in fo rm a tiv e r e s t r i c t i o n s i t e s o f European House mouse. mtDNA u s in g 11 r e s t r i c t io n endonucleases.

PHYLOGENETICALLY INFORMATIVE SITESMT-TYPE N °/SAMPLE RESTRICTION ENDONUCLEASELOCATION 2 3 4 5 6 7 8 9 10 11

l.HAY (V) - 1 000 10111 101 0 01001101 01 01100101001111 100111111112.B0TA ('n a. ix)i - 1 000 00111 001 0 01001101 01 01100101001111 100111111113.B0TC c s ) - 1 000 00111 001 0 01001101 01 01100101001111 100101111114.BIRA - 1 000 00111 001 0 01001000 01 01100101001111 100101111115.BIRB ( . ^ - 1 ooo 00111 001 0 01001000 01 01100101001111 100101111116. GATE (to) - 1 000 10111 101 1 01001101 01 01100101001111 100111001107.FUL ( i t ) - 1 000 10111 100 1 01001101 01 01100101001111 10011111111B.KIHB ll7 ) - 1 100 10111 100 1 01001101 01 01100101001111 100101111119.KINC ti%) - 1 100 10111 100 1 01001100 01 01100101001111 1001011111110.EGB (,<0 - 0 100 10111 100 1 01001100 01 01100101011111 1000011111111.ESC (a c ) - 0 100 10111 100 1 01000100 01 01100101011111 1000011111112.SK0K (a-0 - 0 000 10111 001 1 01101101 01 01100101001111 1001011111113.TAUB c » ) - 0 000 10111 001 1 01001101 01 01100101001111 1001111111114.TAUC u s j - 0 000 10111 001 1 01001101 01 01100101001110 1001011111115.AKR - 0 000 10011 101 1 01001101 01 01100101001111 1001111111116.SL - 0 000 10011 101 1 01001101 01 01100101001111 1001111111117.BUE - 0 000 10011 101 1 01001101 01 01100101001111 100111111111B.NMR - 0 001 10011 101 1 01001101 01 01100101001111 1001111111119.PAC - 0 000 10011 101 1 01001101 01 01100101001111 1001101111120.SANP - 0 000 10011 101 1 01001101 01 01100101001111 1001101111121.MARY - 0 000 10011 101 1 01001101 00 OllOOiOlOOilll 1001111111122.NAPA 0 - 0 000 10011 101 1 01001101 00 10000101001111 1001110011123.0RK 0 - 1 000 11111 101 0 10010101 00 10000101001111 1001110011124.IREB - 1 000 11111 101 0 10010101 00 10000101000111 1001110011125.HARA - 1 000 11111 101 0 10010101 00 10000101001111 1001110011126.1REA eg) 0 - 1 000 11111 101 0 10010101 00 10000101001111 1001110011127.NESC (? ) 0 - 1 000 11111 101 0 10010101 00 10000101001111 1001110011126.ZADA 0 - 0 000 10011 101 1 01001101 00 10000101001111 1001110011129.ERF 0 0 000 10011 101 1 01001101 10 01100101001110 1001110011130.15 0 - 0 O il 10011 101 1 01101101 10 01111001101111 1101110011131.NY0N 0 - 0 000 10011 101 1 01001101 10 01111001101111 1111110011032.NZB 0 - 0 000 10011 111 1 01001101 10 01110011001111 1000000011133.PETA 0 - 0 000 10011 111 1 01001101 10 01110011001111 1011110011134.INDI 0 - 0 000 10011 111 1 01001101 10 01110011001111 1011110011135.FAIY 0 - 0 000 10011 101 1 01001101 10 01110011001111 1001110010136.GIZA 0 - 0 000 10011 101 1 01001101 10 01100001001111 1001110011137. SF 0 - 1 000 10011 101 1 01001111 00 01000001001001 1001110000138.CAMSK 0 - 1 000 10011 101 1 01001111 00 01000001001001 1001110000139.PERU 0 - 1 010 10001 101 1 01001111 00 01100101001101 1001110011140.JERU 0 - 1 001 10011 101 1 01001111 00 01100100001101 0001110001141.AZR 0 - 1 001 10000 101 1 01001111 00 01100100001101 0001110001142.ITAL 0 - 1 001 10000 101 1 01001111 00 01100100001101 0001010000143.HETK 0 - 1 001 10011 101 0 01001101 00 01100101000101 1001110011144.NIL 0 - 1 000 10011 101 1 01001101 00 01100001001101 1011110010145.P0SC 0 - 1 000 10011 101 1 01001101 10 01100001101111 10011100111

278

Page 306: (Hus domesticus. Rut t y ) - UCL Discovery

IABLE_4i 6 £ _ P h y lo g e n e t ic a I l^ _ in fg rm a t i v e _ r e s t r ic t io n _ 5 i>tB 5 _ fg r<i_w orld -w idB

§ § Q } B l i s _ D f _ t h e _ h g u 5 B _ j n g y 5 B _ y 5 i n g _ t w g _ r B 5 t r i c t i g Q _ e n d g n u c l B a s B 5 A _ M b g _ I_ a n d

H iD f - I i

An a s te rs ik and b ra ckB ts in d ic a te s mtDNA com posites w ith id e n t ic a l

p h y lo g e n e t ic a l ly in fo rm a t iv e r e s t r i c t i o n s i t e s once th e un ique s i t e s

(au tapom orph ic ) have been removed, th u s o n ly counted as one OTU fo r th e

p h y lo g e n e tic a n a lyse s . The presence and absence (1 o r 0) D f r e s t r i c t io n

s i t e s a re in d ic a te d fo r bo th Mbo I and H in f I enzymes.

Page 307: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 4.6 : Phvloqenetical 1v in fo rm a tive r e s t r i c t io n s ite s from world-w ide samples of the House mouse using two r e s t r ic t io n endonuc leases. Mbo I and Hin-f

PHYLDGENETICALLY INFORMATIVE SITES

MT SAMPLE RESTRICTION ENDONUCLEASECLONE LOCATION MBO I (10) HINF I (11)

AA USA/INBRED/ENGLAND 01100101001111 10001111101110FM ISCAM/J, ISRAEL 01111001101111 11001110001110CH PETALUMA, USA/EGYPT 01110011001111 10101110001110AB SAN PABLO, USA 01100101001111 10001101101110BA MARYLAND, USA 01100101001111 10001111101110RC PERU/USA 01100101001101 10001110001110GJ JERUSALEM, ISRAEL 01100100001101 00001110000110CD FAIYUM, EGYPT 01110011001111 10001110001010DE GIZA, EGYPT 01100001001111 10011110001110EF ERFOUD, EGYPT 01100101001110 10001110001110HK METKOVIC, YUGOSLAVIA 01100101000101 10001110001110FI NYON, SWITZERLAND 01111001101111 11101110001100YV MILAN, ITALY 01100001001101 10101110001010VR POSCHIAVO, SWITZ 01100001101111 10001110001110OC SCOTL AND/NORWAY/ YUGO 10000101001111 10001110001110OU WESTRAY, ORKNEY 10000101001111 10001110001111/G GALWAY, S.IRELAND 10000101000111 10001110011110WA ISLE OF MAY, SCOTLAND 01100101001111 10001111101110AX GATEHOUSE, SCOTLAND 01100101001111 10001110001100

■ AZ fQ LONDON/SURREY/KENT 01100101001111 100010111011103S EAST GRINSTEAD, ENG. 01100101011111 10000011101110XY TAUNTON, ENGLAND 01100101001110 10001011101110JN INBRED/USA 01000001001001 10001110000010AO HADERSLEV, DENMARK 01100101001111 11001011101110SZ CALIFORNIA, USA 01100111001111 10001011101110AY YELL, SHETLAND 01100101001111 10001101101100ZC OLLABERRY, SHETLAND 01100101001111 10001110001110VQ FAIYUM, EGYPT 01100001101111 11001110001110CC GIZA, EGYPT 01110011001111 10001110001110CE GIZA, EGYPT 01110011001111 10011110001110TW FAIYUM, EGYPT 01100001101111 10001110011110IL* SWITZERLAND/ITALY/ 01100100001101 00001010000010KLIP .

LUBECK, GERMANY 01100100001101 00001010000010

Page 308: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4 .1 : L o c a tio n o-f sample s i te s in Orkney and th e n e ig h b o u rin g

m ain land c o u n t ie s o-f C a ithness and S u th e r la n d .

The shaded squares d e p ic t the sample s i t e s . The s i t e s on Orkney a re as

■ fo llow s: 1 - Noup, N o rth W estrayj 2 - Hammar, Mid W estray j 3 - Guoy, Mid

W estray j 4 - N o rth G rin a b y , South W estray j 5 - S k e lw ic k , South W estray j 6 -

Faray (-for - fu r th e r t ra p d e t ia ls see F ig . 4 .2 ) ; 7 - Ruah, N orth Edayj 8 -

N ew b igg in , South Edayj 9 - Newark, Snandayj 10 - H o lla n d , S tro n s a y j 11 -

H a rra y , M a in land Orkney? 12 - Yaphur, M a in land Orkney? 13 - H o lla n d , Papa

W estray.

281

Page 309: (Hus domesticus. Rut t y ) - UCL Discovery

te

2u i

< ? >

282

Page 310: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4 .2 i D is t r ib u t io n o-f t ra p s i t e s -for th e is la n d census on F a ray ,

Orkney A rc h ip e la g o .

The - f ig u re i l l u s t r a t e s th e a pp rox im a te lo c a l i t i e s o-f 157 t r a p s a t 14 s i t e s

(d e p ic te d by th e shaded s q u a re s ), o f between 5 -15 t ra p s pe r s i t e ( in d ic a te d

in b ra c k e ts ) around F a ray .

A l l m ice sampled from Faray from 1984, 1985 and 1986 showed mtDNA c lo n e 1

(see Tab le 4 .1 f o r d e t a i l s ) , w ith th e e x c e p tio n o f th re e in d iv id u a ls , one

from each o f th e sample yea rs (1 9 8 4 -6 ), which showed mtDNA c lo n e 2

( i l l u s t r a t e d by th e shaded c i r c le s ; th e sex and year o f c a p tu re a re a ls o

in d ic a te d ) , lo c a te d to th e s o u th -w e s t o f th e is la n d .

Page 311: (Hus domesticus. Rut t y ) - UCL Discovery

Nor m AonatOS«r Paoa w astia* O

WmSK10km

giisaywoosayw vr«

[*1

? r W " Z _n ji jsa r Scotland

C a»tnn«n i

I < • '• *'1*

n^jlVall

-

i f * - -o » > !

m ~ ~ - • _ . - ,

t e - ' ^ t/ :.*C«s*

| £ - .. „j ’lYy* "--K ■ -•w ‘< 1

/ 7 ^ / f - • . —^DOGGE R BOAT-

f e r ~ s « m ^iM t& -

•/•'* (10) v- _ _ ___^ P burial'- (5) ~ " I.J-J^VGROUNO H1HILL - Z %>r Li?cSSn6ADS,0 \ ’N

E ' A R A Y -I Os)

p ^ lN O Y WALLS

s' ^---HOLLAND

m-tilisssMis) ness^

■ Trap sice

( ) N ° o f traps/site

^ L o c a t io n of m tD N A cloneS; SEX: YEAR

Page 312: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4.3? Di s t r ib u t i o n o-f t ra p s i t e s f o r an is la n d census, on Skokholm ,

Dfi_tb§_E§0brp)<e5hiri_cga5ti_i_n_autumQ_ J.986

The app rox im a te lo c a t io n o-f 100 t ra p s in g roups o-f f i v e , a t tw e n ty

lo c a t io n s , p laced a l l ove r th e is la n d (d e p ic te d by th e shaded squa res , 1 -

20).

285

Page 313: (Hus domesticus. Rut t y ) - UCL Discovery
Page 314: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4.4? P h y lo g e n e tic ne tw orks -for r e s t r i c t io n morphs o-f each o-f th e 14

r e s t r i c t io n endonucleases employed.

C a p ita l l e t t e r s d e p ic t th e r e s t r i c t i o n morphs g iv e in ta b le 4 .1 . The a rrow s

in d ic a te th e d ir e c t io n o-f th e r e s t r i c t io n s i t e changes and no t n e c e s s a r i ly

th e d ir e c t io n o f e v o lu t io n . S o lid l in e s c ro s s in g th e b ranches o-f th e

ne tw ork in d ic a te th e number o-f r e s t r i c t i o n s i t e changes o c c u r r in g a long th e

p a th .

287

Page 315: (Hus domesticus. Rut t y ) - UCL Discovery

XBA_I|_HINC_II H IN D _ III ACC I

MONPORPHIC

AVA I I FNUD I I HPA_II

A

JAQ_I hae_iii RSA_I

MBO I _HINF_I ALU I

Page 316: (Hus domesticus. Rut t y ) - UCL Discovery

EI£yRE_4i 5 i_ G e D g ra e h ic _ d i5 tr ib u tiD n _ D £ _ m tD N A _ re 5 tr ic tiD n _ m g re h 5 _ in _ B rit i.s h

tfu s domesticus popu la t io n s , fo r each o-f th e 12 v a r ia b le r e s t r i c t io n

iQ d Q Q yc lease^em p lgyed i

P o s s ib le d iv is io n s between th e n o r th e rn and so u th e rn ty p e s as in d ic a te d by

th e s in g le enzyme pars im ony n e tw o rks , g ive n in f ig u r e 4 .4 , a re d e p ic te d by

th e dashed l in e s .

Page 317: (Hus domesticus. Rut t y ) - UCL Discovery

290

Page 318: (Hus domesticus. Rut t y ) - UCL Discovery

U D ( J < X N ^ O

<CQUQu_ LUIJT

291

Page 319: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4.6s G eograph ica l d is t r ib u t io n o-f th e 23 mtDNA com posit e genoty p e s

observed aroono B r i t i s h house mouse p o p u la t io n s .

Pye c h a r ts d e p ic t th e -frequenc ies o-f each o-f th e 23 mtDNA c lo n e s

(c h a ra c te r is e d in ta b le 4 .1 ) a t each m ajor sample l o c a l i t y (-freq u en c ie s

g ive n in ta b le 4 .2 ) . Shaded and unshaded c i r c le s in d ic a te th e N.W. and S.E.

ty p e s as d e r iv e d -from th e p h y lo g e n e tic n e tw o rks .

The s iz e o-f th e pye c h a r ts a re p ro p o r t io n a l t o th e sample s iz e per

Page 320: (Hus domesticus. Rut t y ) - UCL Discovery

Sample size; O 1

O 2-30 4 - 1 0

O "mtDNA Cl**

'NW

O se

293

Page 321: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4.7s Adams consensus t r e e -fo r a l l t r e e s o-f equal le n g th -for B r i t i s h

house mouse popu la t io ns , u s in g presence-absence d a ta genera ted -from 14

E § § tr ic tig n _ § o d g n u c l.e a sa e 5 i;L

A ). The c lo n e number (g iv e n in Tab le 4 .1 ) and th e sample lo c a le Df th e mice

a re g ive n a t th e t i p o-f each b ranch . The netw ork was ro o te d a t th e m id p o in t

o-f th e most d iv e rg e n t p o p u la t io n s . The r e la t io n s h ip s w ith in th e t r e e were

d e r iv e d from 140 v a r ia b le r e s t r i c t io n s i t e s , among th e 23 Hus dowesticus

mtDNA com pos ite geno types ; o-f which 62 s i t e s were p h y lo g e n e t ic a l ly

in - fo rm a tiv e . The most p a rs im o n iou s t r e e shown re q u ire d a t o t a l o-f 81 p o in t

m u ta tio n s a t th e 140 v a r ia b le s i t e s . The number o-f p o in t m u ta tio n s in fe r r e d

to have o ccu rre d a long each lin e a g e i s in d ic a te d . Two m ajor branches were

obv iou s (d e p ic te d by th e square and t r ia n g le sym b o ls ), re p re s e n t in g th e

N.W. and S .E. ty p e s as d e p ic te d g e o g ra p h ic a lly in th e in s e t (B ).

294

Page 322: (Hus domesticus. Rut t y ) - UCL Discovery

2 ia to 01 CD<0 CJ 2 0 0 CO O 03 03-P UH >, CP >, >i >, 03 O (0<0 01 fO <D 10 5P C P C P <13P -*C P JC H H HO P ILJ P <I) W (0S O XO B J h O

> 1 a i O O U-l oCO S I

0) 4JP t/3 <13 Cn CJ -P toPC (0 OH 03 -p CQ 03 CJ

H* O* 0 * 0

^■x

X X X * X

X X X X X X

o * o * oo*

^XX rJ *

O * f'***X *X X *X X X X X X X X X X X X

o *

XX X

X X X X X X X X X X X X X X

rJ *

o * —

X X X X X X X X X

en*X X X X X X X X X X X X X X X X X X - X

>1 co o 4JN 1 cT3 C <1303 o pJC 4J Ehu P3 c*. CQ oc 1o \ c-p >i oc -Q4J Po p C pCO <13<13 3EhA i Q

5&P 03

w t XX X *X XX X •KX XX X *X * *X X ■KX X *X X ■KX X *fc* X ■K* ■tc ** X *-K X *) * X *X X *X X *X ■tc *■tc *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *

o XX **X •KX * X *

- CM

<D

GO

= * 03 * C-J*

x x x x x x x x x X X X X X X X X X X X X X —CD

X X X X X X X X X X X X X X X X X X X X X X X X X X X X 00

□ 9 < §

295

Ave

rag

e

Num

ber

of

Su

bs

titu

tio

ns

pe

r li

ne

ag

e

Page 323: (Hus domesticus. Rut t y ) - UCL Discovery

EIiyRI_£i5i_PbiO99C5Q}_d§!liYed_frgm_an_!JPGMA_cl,u5ter_ana],^5i5_of_.23_mtDN0

c lo n e s in th e B r i t i s h house mouse (tfu s donesticus) * based on 14

r est r i c t i o n endonucleases.

N u c le o tid e sequence d ive rg e n ce s were c a lc u la te d a c c o rd in g to Nei i< L i

(1979 ). Numbers r e fe r t o th e mtDNA c lo n e s c h a ra c te r is e d in T ab le 4.1 and

sample l o c a l i t y i s in d ic a te d a t th e end o f each l in e a g e . The square and

t r ia n g le sym bols d e p ic t th e two m a jo r g e n e tic assem blages a lre a d y e v id e n t

from th e c la d is t i c a n a lyse s (F ig 4 .7A Sc B ).

296

Page 324: (Hus domesticus. Rut t y ) - UCL Discovery

^^W estray/Eday j ^ / F a r a v ^ p W e s tra y

© H a r r a y , Mainland

© OrkneyHarray, Mainland Orkney

^^Orknev/Caithness Sutherland

^ p B e lfa s t , N. Ire la n d / I s l e of Man

— ^ ^ B e lf ast/Moneymore, N .Ire la n d

^ ^ G a l way, S. Ire la n d

i t

S ,Gatehouse of f le e t , a_f r ies

Burton-on Trent

fl%East G rinstead,Kent

MfcEast G rinstead,Kent

^fr»B urton-on-trent

© I s l e of May,F ir th of Forth

Fulham, London/ N u t f i t ld , Surrey

r ©.W imbledon, London/L 3 L s t G r -n s te a d / N u t f »t - i d

^P.W inchester, Hamphire

Birmingham

O .Birmingham

© ta e rb y / Burton-oncTrent

Skokholm Is la n d / __unton, Somerset ^^Taunton, I l lm in is te r

{yU]

Taunton, Chedzoy0.0

Page 325: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 4 .9 : Adams consensus t r e e f o r a l l t r e e o-f equal le n a th . based upon

£ l§ § va g § jn a B 5 _ £ rg m _ n _ re 5 tr ic tiD n _ e n d D n u c Ie a 5 B S _ £ rD m _ B ritish x _Eurgeean_aod

New_Wgr l_d_ ft us douesticus popu la t io n s .

The t re e was c o n s tru c te d u s in g pars im ony a n a ly s is o-f th e 97 v a r ia b le

r e s t r i c t i o n s i t e s , re co g n ise d by th e 11 r e s t r i c t io n endonucleases ( l i s t e d

in Tab le 4 .5 ) , o f w hich 49 s i t e s were p h y lo g e n e t ic a l ly in fo r m a t iv e . A t o t a l

o f B5 p o in t m u ta tio n s were re q u ire d to d e r iv e the se mtDNAs fro m a common

a n c e s tra l mtDNA. The c lo n e numbers a re as reco rded in T ab le 4 .5 . The t r e e

can be d iv id e d a r b i t r a r i l y in t o fo u r main branches as in d ic a te d by th e

roman num erals ( I - I V ) .

The S t r i c t consensus t r e e was e s s e n t ia l ly th e same as th e Adams t r e e

i l l u s t r a t e d , excep t th a t c lo n e s 36, 45 & 29, from G iza , E gyp t, P osch iavo ,

S w itz e r la n d , and E rfo u d , M orocco, re s p e c t iv e ly (each d e p ic te d by a rrow s)

were found to c lu s te r to g e th e r in a se p a ra te lin e a g e (V) tha n as shown.

298

Page 326: (Hus domesticus. Rut t y ) - UCL Discovery

* 0

3***

* * * * * ** * * * * * * * * * * * * *

■t 1i ******^*********************************** ♦ 0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* 0t 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * 4 ot lk**fc-S**f M********** ********** ******* U* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* 0 1 * « ; * * * * * * * * * * * * * * * * * * * * * *

*««««** g* * 2 * * * * * * * * * * * * * * * * * * ** ******* g* * 1 * * * * * * * * * * * * ** ******* Q

0 .y * 2 ******** * * * * * * * * * * * * * g* * ******* ** * * * *

* * * * * * ********t 1

5 3******************************** , 0* i ************************** * * * * * * g

* 2 * * * * * * * * * * * * * * * * * * * * * * * * * * o

* i ************** * * * * * * o

* 3 * * * * * * ** * * * * * * ]

* * * * * * *1

1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * i

* * * * * * * * * * * * * * * * * * * * * * * * *

III

* * * * * * ** 0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *3

3 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * 2 * *******************************3

* * * * * * * * * * * * * * * * * * * * * * * * *0

** * * * * * ** * * * * * * * ** * “j * * 1 * * * * * * * * * * * * * * * * * * ** ******* **-»*«** Q

3* * * * *

IV

3* * > * *

II

* ******************** * 1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0 * t t t W t * *

** 0**t************************* *************** * 1****-************************* *************

Q4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * o* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* 2* ************************************** t 1

2 * * 3 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * 2 * * * * * * * o

* * * * * * * * ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 2

* * * * * * * * * * * * * * * * * * * * * * * * * *****

* 1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**« 2* * - t * t * * x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0************************************************

0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0* * - f « r * x * * * * * * * * * t * * * * * * * * * * * * * * * * * * * * * * * * * * * 0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

8 * 0************************************************

* 0* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* 1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

e AKR/FuRdA - L a o o r a t o r y s t r a i n N M R I /N a v y

© - L a b o r a t o r y s t r a i n S L /N iA

- L a b o r a t o r y s t r a i n (T?') PAC/Cv

- L a b o r a t o r y s t r a i n San P a b l o . C a l i f o r n i a -U.S.A

( l 7 ) Buel 1 t o n , C a l i f o r n i a

I s l e o f May

B u r t o n —o n - T r e n t

B u r t o n - o n - T r e n t

B irm in g h am

Bi rm i ngham

G a te h o u s e o f F l e e tF u l h a m / C e n t r a l L o n d o n /N u t f i e l d W i m b l e d o n / N u t f i e l d E a s t G r i n s t e a d - B r i t a i n

W i n c h e s t e r / W e s t Humble

( 1 0 ) E a s t G r i n s t e a d

( 1 1 ) E a s t G r i n s t e a d

© S k o k h o lm / T a u n to n

(13^ T a u n t o n . C hed zo y

(l4*^ T a u n t o n , I l l m i n i s t e r

M a r y la n d - U . S . AIS / C a m / J - I s r a e l - L a b o r a t o r y s t r a i n Nyon-Switzerland NZB- L a b o r a t o r y s t r a i n

P e t a l u m a , C a l i f o r n i a - U . S . A Z*J I n d i a n a

- U . S . A F a iy u m - E g y p t

^36) G i z a

© - E g y p t P o s c h i avo - S w i t z e r l a n d

^37) S F /C a m /J s—>. - L a b o r a t o r y s t r a i n(3 8 ) S K /C a m /J E i

- L a b o r a t o r y s r a i n(3 9 ) P e ru

( 4 0 ) J e r u s a le m - I s r a e l

A z ro u -M o r o c c o

( 4 2 ) C i t t a d u c a l e - I t a l y

( 4 3 ) M e t k o v i c - Y u g o s l a v i a

(4 4 ) M i l a n - I t a l y

( 2 9 ) E r f o u d

© -M o r o c c oN ap a , G r i n d a , C a l i f o r n i

( 2 8 ) Z a d a r - Y u g o s l a v i a

O r k n e y , S u t h e r l a n d , C a i t h n e s s , - B r i t a i n W e s t r a y , E d a y , F a r a y O rk n e yH a r r a y , M a in l a n d O r k n e y , - B r i t a i n N. I r e l a n d I s l e o f Man G a lw a y ,

0

A v e r a g e Number o f S u b s t i t u t i o n s p e r l i n e a g e

Page 327: (Hus domesticus. Rut t y ) - UCL Discovery

FIGyRE_4agi G eog raph ica l d is t r ib u t io n o f B r i t i s h . European , and New Wor ld

Mus domesticus mtDNA com posite c lo n e s gene ra ted -from 11 r e s t r i c t io n

§Qdonucleases.

Numbers in c i r c le s d e p ic t th e c lo n e ty p e s l i s t e d in ta b le 4 .5 , and

p o r tra y e d in - f ig u re 4 .8 . The roman num era ls i l l u s t r a t e th e -four m ajor

b ranches o f th e most p a rs im on ious t r e e g ive n in F ig u re 4 .9 .

300

Page 328: (Hus domesticus. Rut t y ) - UCL Discovery

‘L a b o ra to ry a t r a ln r

INLAND

BRITAIN /

SWIT2

•s YUODSLAVI

ITALY

:HOATCCO

Page 329: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE^^J. l.j__Par sim ony_netw gr k§_ in t e r connec t ing_the_cgm gos^te_m tDNA

9 iD 2 ty B i i_ 2 f_ 5 “ £J3f21J, icu s_ u s tn g ._ a ),_ l_ 4 b )_ _ n _ re s tr i.c t^o n jandonuc^eases^

A) S lashes a c ro ss b ranches o f th e netw ork in d ic a te s th e number o f

r e s t r i c t i o n s i t e changes a long a p a th ; a l l v a r ia b le s i t e s were used,

in c lu d in g au tapom orph ies . Numbers ( 1 - 8 Sc 1 0 ) in d ic a te th e mtDNA c lo n e s ,

d e r iv e d u s in g 14 r e s t r i c t io n enzymes ( th e r e s t r i c t io n morphs o-f each

re p re s e n te d by uppercase le t t e r s ) , found l i s t e d in T ab le 4 . 1 . P o p u la tio n

a b b re v ia t io n s a re as fo l lo w s : W - W estray; E - Edayj F - F a ra y ; P - Papa

W estray ; S - Sanday; S t - S tron sa y j M - M a in land O rkney, Yaphur; H -

H a rra y , M a in land O rkney; C - a l l s i t e lo c a t io n s in C a ith n e s s ; Su - a l l s i t e

lo c a t io n s in S u th e r la n d ; K - K e iss , C a ith n e s s ; NI - N o rth e rn I r e la n d ,

B e l fa s t and Moneymore; SI - Southern I r e la n d , Galway; IM - I s le o f Man; G -

Gatehouse o f F le e t , D um fries . C lones 1 - 8 Sc 1 0 re p re s e n t th e N.W. ty p e

observed in B r i t a in .

B) The most p a rs im o n io u s t re e (F ig u re 4 . 9 ) r e la t in g mtDNA c lo n e s from

B r i t i s h , European and New World Hus domesticus, showed th a t two

p o p u la t io n s from Y u g o s la v ia and C a l i f o r n ia c lu s te r w ith th e n o r th -w e s te rn

Type in B r i t a in , based on 11 r e s t r i c t io n endonucleases ( l i s t e d in Tab le

4 . 6 ) . These two p o p u la t io n s may re p re s e n t p o s s ib le a n c e s tra l p o p u la t io n s o f

th e N.W. ty p e in B r i t a in . The f ig u r e i l l u s t r a t e s th e pars im ony ne tw o rks

in te rc o n n e c t in g these c lo n e s . Clone numbers 6 & 2 2 - 2 8 (c o n s is te n t w ith

c lo n e numbers l i s t e d in Table 4 . 6 , and shown in f ig u r e s 4 . 9 and 4 . 1 0 ) ,

re p re s e n t p o p u la t io n s from : Gatehouse o f F le e t , D u m frie s ; O rin d a Sc Napa,

C a l i f o r n ia , U .S .A ; N o rth e rn and M ain land Orkney Is le s , C a ith n e ss and

S u th e r la n d ; N o rth e rn I re la n d , in c lu d in g B e l fa s t , Moneymore and th e I s le o f

Man; H a rra y , M a in land Orkney; Galway, S outhern I re la n d ; mid W estray,

O rkney; and Zadar, Y u g o s la v ia , r e s p e c t iv e ly . S lahes a c ro ss th e branches

302

Page 330: (Hus domesticus. Rut t y ) - UCL Discovery

3iQ(NI)BAAA A<

Q(ni imBAAAJA

© M * OtWEFFBAAAJADXBOUDGC ------- BAAAJAI

>O (wefBAAAJAI

O (soXBOCBFB .#\\\-------- BAAAMAAXB/GBFB

) ©(G^AXBOCBBB MHWWWWW** AAAALAAAAAXABA

SStMCSu) OHH))XBOCBBB —■!%*»% > BAAAJADRBOCBEC

^ © H ) ' r #IXBOCCGC BAAAJADRBOCDEC

-^J ©SOUTHERN IRELAND ©GATE BAAAMAAXB/G AAAALAl

©NORTHERN IRELAND ©ORIN BAAAJAAXBOC ----------------BAAAAAP

©COMMON ORKNEY/ CAITHNESS BAAAJADXBOC -------------------1-------

©WESTRAYBAAAJADXBOLT

HOUSE OF FLEET AAAX

s

CALIFORNIA ©ZADAR YUGOSLAVIA kABOC ---------\------ BAGAAAAABOC

©HARRAY MAINLAND ORKNEY . BAAAJADRBOC.

303

Page 331: (Hus domesticus. Rut t y ) - UCL Discovery

re p re s e n t a l l r e s t r i c t io n s i t e changes ( in c lu d in g apom orphies) o c c u r r in g

a long each p a th , us ing th e se t o-f 11 enzymes. The uppercase r e s t r i c t i o n

morph p a t te rn s u n d e r lin e d i l l u s t r a t e m a jo r d i-f-fe rences between th e c lo n a l

ty p e s .

304

Page 332: (Hus domesticus. Rut t y ) - UCL Discovery

FIGyRE_4i 1 2 i_ S tr ic t_ c g n 5 e n s u s _ tre e _ fg r_ a il_ _ tre e s _ o f_ e g u a l_ l.e n g th _ frg m

w o rld -w id e c o l le c t io n s o-f Hus domesticus u s in g two r e s t r i c t i o n enzymes,

ybo_ I_and_H in f_X i_

The le t t e r s a t each lin e a g e r e fe r to th e Mbo I and H in t I p a t te rn s ,

re s p e c t iv e ly , o f th e mtDNA com posite geno types . The c o l le c t io n s i t e and

c o u n try o f o r ig in o f th e m ice a re a ls o g iv e n . The number o f base

s u b s t i tu t io n s in fe r r e d to have o ccu rre d a long each lin e a g e is shown. The

roman num erals id e n t i f y th e a r b i t r a r y d iv is io n s o f th e t r e e in to fo u r m ajor

b ranches, c o n s is te n t w ith th e m ajor branches shown in f ig u r e 4 .8 . The t r e e

was d e r iv e d from 28 p h y lo g e n t ic a l1y in fo rm a t iv e s i t e s , however 45 p o in t

m u ta tio n s were in fe r r e d .

Page 333: (Hus domesticus. Rut t y ) - UCL Discovery

306

Ave

raq

e Nu

mbc

?r

o-f

Sii

hs

ti

tiit

i nn

«;

nor

1 i r

tpa

nn

Page 334: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE_4i 1.3 |__GeograBhi.cal._di5 tri_butiDn_of_mtDNA_cDmBg5 it .e 5 _J_2_l.etter_cgde)_

f^°!!j_wgrj.d-widg c o lle c tio n s of H u s d o m e s t i c u s , using the r e s t r ic t io n

enzymes_Mbg_I_and_Hin£_IJL

The le t t e r s a t each lo c a l i t y re -fe r to th e Mbo I and Hin-f I d ig e s t io n

m orphs, r e s p e c t iv e ly .

307

Page 335: (Hus domesticus. Rut t y ) - UCL Discovery

SWEDEN

mm

NORWAY

LAND

BRITAIN

GERMANY

FRANCE

SWITZ

YUGOSLAVIA

ITALY

m m m m

ISRAEL

308

Page 336: (Hus domesticus. Rut t y ) - UCL Discovery

FIG

UR

E

1+ iif

- M

ap

of

Bri

tain

sh

owin

g th

e ex

tent

of

th

e ice

d

uri

ng

m

axim

um

glac

iati

on

(lef

t)

and

duri

ng

the

late

last

G

laci

al

(rig

ht)

. O

bliq

uely

ha

tche

d ar

eas

repr

esen

t ic

e-fr

ee

land

. I'r

ont

Cam

pb

ell,

1977

309

Page 337: (Hus domesticus. Rut t y ) - UCL Discovery

EIGURE_4i 1.5j_ A _ m a g _ shg w in g _ th e _d is trib u tign _ g f_ m itg chg n d ria l_ D N A _cg m g g s i.te

gengt^ge5_frgm _am gQg_al_0rkneYi_and_Ni E_Scgtl. and_and_b_)__Ir§Iand_and_the

I§ le_ g f_ M a n A_ in _ th e _ N -W _ g e n e tic_ a sse m y .a g e _ in _ B ri.ta in i

The numbers r e fe r to th e com posite mtDNA geno types u s in g 14 r e s t r i c t io n

endonucleases d e s c r ib e d in ta b le 4 .1 . P o s s ib le c o lo n is a t io n e ven ts ( la rg e

unshaded a rrow s) and p o s s ib le p a t te rn s o f c o lo n is a t io n , as suggested by th e

mtDNA r e s t r i c t io n fragm en t p a t te rn s , a re in d ic a te d . P o s it io n s o f a rrow s a re

in d ic a t iv e o-f t e n ta t iv e su g g e s tio n s o-f th e d i r e c t io n s o f c o lo n is a t io n and

are n o t meant to in d ic a te th e exac t o r ig in o f each a n c e s tra l p o p u la t io n ,

r e s p e c t iv e ly .

310

Page 338: (Hus domesticus. Rut t y ) - UCL Discovery

,0An*3Hins

311

CA

ITH

NES

S

Page 339: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

CHAPTER FIVE? I n t r a - s p e c i f ic Y chromosome DNA v a r ia t io n i n th e B r i t i s h

Hoyii_!D9y§ § _ !/fu s domesticus R u tty )

5i lI_ IN IR 0D L)C II0N

S tu d ie s o-f a llo zym e and k a ry o ty p ic v a r ia t io n in th e house mouse (Jftis

domesticus R u tty ) have c o n tr ib u te d to th e know ledge o-f t h i s s p e c ie s ’

p o p u la t io n g e n e tic s and e v o lu t io n a ry h is t o r y (S e la n d e r, 1970; Bonhomme et

a l . , 1984; B r i t to n -D a v id ia n e t a i- , 1980; Bonhomme 1986; N ava jas Y N avarro

and B r it to n -D a v id ia n , 1989; B r it to n -D a v id ia n e t a i . , 1989), However,

because autosom al genes in h e r i te d -from b o th p a re n ts , se g reg a te and

recom bine d u r in g sexua l re p ro d u c t io n , t h i s may obscu re th e a lre a d y complex

p a tte rn s o-f v a r ia t io n which r e f le c t th e h is t o r ic a l in te r p la y between such

fo rc e s as s e le c t io n , gene f lo w , g e n e tic d r i f t and m u ta tio n .

M ito c h o n d r ia l DNA (mtDNA), by v i r t u e o f i t s m a te rn a l, non -reco m b in in g mode

o f in h e r i ta n c e , ra p id r a te o f e v o lu t io n and h ig h in t r a - s p e c i f i c sequence

h e te ro g e n e ity , has become e s p e c ia lly u s e fu l in s tu d ie s o f p o p u la t io n

s t r u c tu r e among c o n s p e c if ic s , and fo r e lu c id a t in g p a t te rn s o f c o lo n iz a t io n

and gene f lo w ( fo r re v ie w s see - W ilson et a i~ , 1985; A v is e , 1986; A v ise et

a l . , 1987a; A v is e , 1989). S im i la r ly , th e mammalian Y chromosome e x is ts in a

s ta te o f p e rp e tu a l monosomy, and p a r t o f i t , th e non-hom ologous re g io n ( th e

re g io n c o n ta in in g th e s e x -d e te rm in in g genes ITdyli f o r re v ie w s on sex

d e te rm in a tio n see E ic h e r & Washburn, 1986; M ac la ren , 1988) i s t ra n s m it te d

as a s in g le h a p lo id e n t i t y v ia th e m ale. Thus n e u tra l m u ta tio n s a r is in g in

t h i s chromosomal re g io n shou ld be t ra n s m it te d from th e fa th e r t o a l l male

progeny and a re u n l ik e ly to e xp e rie n ce any a p p re c ia b le re c o m b in a tio n .

312

Page 340: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

Hence, th e non-hom ologous re g io n o-f th e mammalian Y chromosome re p re s e n ts a

p o te n t ia l p a te rn a l ana logue o f th e m ito c h o n d rio n .

Sxr (sex re ve rse d m u ta tio n ) s t r a in s o f m ice possess an X chromosome

c o n ta in in g a Y t r a n s lo c a t io n , such th a t XXsxr in d iv id u a ls a re

g e n o ty p ic a l ly fem a le b u t p h e n o ty p ic a lly m ale, th u s p e r m it t in g th e sex

d e te rm in in g gene(s) t o be mapped to a sm a ll re g io n o f th e Y chromosome

(S ingh & Jones, 1982; E ic h e r St Washburn, 1986). Indeed , th e sxr segment

has been shown to c o n ta in th e te s t is - d e te r m in in g gene (s) ( t d y ) , th e m a le -

s p e c i f ic a n tig e n H-Y (Hya) and th e banded k r a i t m inor s a t e l l i t e (Bkw)

r e la te d sequences (Simpson e t a l . , 1984; R oberts e t a l . , 1988; B ishop e t

a i . , 1988; M claren e t a l . , 1988). A un ique sequence Y-chromosome d e r iv e d

p robe s p e c i f ic f o r th e sex re ve rse d (sxr) re g io n o f th e mouse Y -

chromosome, pYCR8/B (pYB) was is o la te d by B ishop and c o lle a g u e s (1987 ).

Hence, sequences d e te c te d by th e Y -s p e c i f ic p robe pY8, a re th o u g h t to be

s t r i c t l y p a te r n a l ly in h e r i te d ; th e re fo re , p h y lo g e n ie s d e r iv e d from Y

chromosome fragm en t d a ta shou ld re p re s e n t e s tim a te s o f p a t r ia r c h a l

r e la t io n s h ip s .

S eve ra l Y-chromosomal r e p e t i t i v e sequences have been is o la te d from th e

genus Hus (E ic h e r e t a i« , 1983, 1989; N a lla s e th e t a i . , 1983; Lamar &

P alm er, 19B4; B ishop e t a i . , 1985; N a lla s e th & Dewey, 1986; N is h io k a &

Lamothe, 1986, 1 9 8 7 a ,b ). Some o f the se sequences have been used to

d is c r im in a te between in b re d s t r a in s (B ishop e t a i . , 1985; Lamar & Palm er,

1984; N is h io k a , 1987; N is h io k a & Lamothe, 1986) and w i ld p o p u la t io n s

(V a n le rb e rg he e t a i . , 1986; Tucker e t a i . , 1988) o f th e two European sp e c ie s

313

Page 341: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

o-f ft. domesticus and tt. muscuius, and between o th e r M us s p e c ie s in A s ia

(N is h io k a & Lamothe, 1987b). P h y lo g e n e tic r e la t io n s h ip s among Hus sp e c ie s

have a ls o been examined u s ing th e se sequences (N is h io k a & Lamothe, 1986,

1987b; N is h io k a , 1988, 1989; P la t t Sc Dewey, 1987, 1989; B ou rso t e t al. ,

19B9). A d d i t io n a l ly , numerous human Y - s p e c i f ic DNA p robes have been

is o la te d (B ishop e t a i* , 1983; B ishop e t a i* , 1984; W olfe e t a i * , 1984, 1985;

L u c o tte Sc Ngo, 1985; E r ic k s o n , 1987; Sm ith e t a i* , 1987). I n t r a s p e c i f ic

human Y DNA polym orph ism s tu d ie s (Ngo e t a i* , 1986a; Hazout Sc L u c o tte ,

1987? G uerin e t a i* , 1988a; G uerin e t a i* , 1988b; L u c o tte e t a i* , 1989), p lu s

in t e r s p e c i f ic com parisons between man and p rim a te s (Ngo e t a i * , 1986b;

Abbas e t a i* , 1988) a re underway, in an a tte m p t to e s ta b lis h e v o lu t io n a ry

r e la t io n s h ip s .

E v idence from s e v e ra l autosom al g e n e tic m arkers (D a v is , 1983; Nash e t a i* ,

1983) and mtDNA (see ch a p te r 4) suggest th e re may be two ra c e s o f th e house

mouse in th e B r i t i s h I s le s , a "N o r th -w e s te rn " and a "S o u th -e a s te rn " fo rm ,

bo th o f which may o r ig in a te from s e p a ra te , a c c id e n ta l human in t r o d u c t io n s

(B e rry , 1966; Y alden, 1982). RFLPs o f th e mouse Y chromosome a re

p o t e n t ia l l y as v a lu a b le f o r d e te c t in g m a le -m ed ia ted gene f lo w between

p o p u la t io n s as RFLPs o f mtDNA a re in d e te c t in g fem ale com ponents. F u r th e r ,

g e n e tic d is ta n c e s may be more a c c u ra te ly de te rm ined in te rm s o f t h e i r

s p e c i f ic Y h a p lo ty p e s , making them more u s e fu l than autosom al o r X - lin k e d

m arke rs , com plem enting e s tim a te s d e r iv e d from mtDNA a n a lyse s (Casanova et

al* , 1985).

314

Page 342: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

P o p u la tio n s t r u c tu r e (p a t te rn s o f gene f lo w , deme s iz e s and m ating system s)

p la y s an im p o rta n t r o le in th e m ic ro e v o lu t io n o f a sp e c ie s (W rig h t, 1932,

1941, 1978), D if fe re n c e s in male and fem a le p o p u la t io n s t r u c tu r e may be

e lu c id a te d by com parisons o f mtDNA and Y chromosomal DNA v a r ia t io n , and

perhaps h ig h l ig h t u n d e r ly in g d if fe re n c e s in b e h a v io u r between th e sexes;

f o r in s ta n c e , s e x -b ia s e d d is p e rs io n and p o lyg yn y (Lansman e t a l . , 1981;

M o r itz e t a l . , 1987? P o u lto n , 1987; H a rr is o n , 1989). T h is s tu d y g iv e s a

p re l im in a ry account o f an RFLP su rve y o f Y chromosome DNA in t r a s p e c i f ic

v a r ia t io n in th e B r i t i s h house mouse, u s in g th e Y - s p e c i f ic p robe pY8.

5 i2 i_ M a te ri§ I§ _ a n d _ M e th o d s .

1i_ C o l1e c t io n s .

N in e ty - th re e house m ice (ffu s domesticus) were handcaught o r l iv e - t r a p p e d

from 29 lo c a l i t i e s th ro u g h o u t B r i t a in , ra n g in g from as f a r n o r th as th e

N o rth e rn Orkney I s le s t o th e so u th e rn c o u n t ie s o f Somerset and Ham pshire.

The sample s iz e s and c o l le c t io n s i t e s a re l i s t e d in T ab le 5 .1 . A l l an im a ls

were k i l l e d by c e r v ic a l d is lo c a t io n and s to re d a t -20°C u n t i l re q u ire d .

5i 2i 2 i_D escr ig t ig n _ g f_ th e _ Y -s p e c i. f i.c_BrgbeA_BYCR8/B

The un ique sequence Y chromosome d e r iv e d p ro be , pYCR8/B (p Y 8 ), s p e c i f ic f o r

th e sxr re g io n , th e re g io n which c o n ta in s th e genes c o n t r o l l in g p r im a ry

sex d e te rm in a t io n (B ishop et a l 1987; R o b e rts et a l . , 1988), i s a 2kb Eco

RI fragm en t is o la te d fro m a Y-chromosome e n r ic h e d l i b r a r y (Baron et a l . ,

1986). P rob ing Eco R l-d ig e s te d DNA w ith pY8, a llo w s d e te c t io n o f th e 2kb

cogna te sequence, to g e th e r w ith two homologous bands o f 2 .6 and 2 .8 kb, a l l

o f w hich map to th e sxr re g io n (B ishop et a l . , 1988; R obe rts et a l . , 1988;

see P la te l a . - Eco RI d ig e s ts ) . A d d i t io n a l ly , m o le cu la r a n a lyse s u s in g t h i s

sxr re g io n s p e c i f ic p robe (pY8) (R o b e rts et a l . , 1988; B ishop et al. ,

315

Page 343: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

1988) to g e th e r w ith DNA f in g e r p r in t in g (M c la ren et al., 1988), have

dem onstra ted th a t th e genes c o n t r o l l in g th e p r im a ry sex d e te rm in a t io n and

e x p re s s io n o f th e m a le -s p e c if ic a n tig e n H-Y (tdy and tfya, r e s p e c t iv e ly )

a re lo c a te d on th e m inu te s h o r t arm o f th e mouse Y chromosome (F ig . 5 .1 b ) .

These genes were p re v io u s ly mapped to th e p ro x im a l p a r t o f th e lon g arm

(E ic h e r & Washburn, 1986 - see F ig .5 . la ) . S ubsequen tly a new model f o r th e

o r ig in o f th e sex re ve rse d (sxr) m u ta tio n was proposed (R o b e rts et al. ,

1988; B ishop et ai., 1988; M claren et ai., 1988) as o u t l in e d in f ig u r e 5 .1 .

Hence, probe pY8 can be regarded as a male s p e c i f ic ana logue o f th e

m ito c h o n d rio n .

5JL2i 3^_Labor a to ry_ P rg ce d u re s i

H igh m o le c u la r w e ig h t DNA was is o la te d fro m t a i l s k in s o f s in g le male m ice

by s ta n d a rd p ro ce d u re s , and d ig e s te d w ith e ig h t r e s t r i c t i o n endonucleases:

Bgl I I , Eco R I, Sst I , Rsa I , Taq I , Hae I I I , H in f I and Mbo I . The DNA

fra g m e n ts were se pa ra ted on 0.8% agarose g e ls , t r a n s fe r r e d to membrane

f i l t e r s (Gene Screen p lu s -Dupont NEN Research p ro d u c ts ) and a llo w e d to

a i r - d r y a t room te m p e ra tu re . The f i l t e r s were p re h y b r id iz e d in 507.

form am ide, 17. SDS (Sodium dodecyl s u lp h a te ) , 1M NaCl, and 107. d e x tra n

s u lp h a te a t 42°C, the n h y b r id iz e d in th e same s o lu t io n w ith th e a d d it io n o f

32P la b e l le d Y - s p e c i f ic probe pYB by random p r im in g (F e in b e rg Sc V o g e ls te in ,

1983). The b lo ts were washed tw ic e in 2 x SSC (1 x SSC = 0 . 15M NaCl/0.015M

sodium c i t r a t e ) a t room tem pe ra tu re f o r 5 m in u tes each w ith co n s ta n t

a g i ta t io n , 2 -3 t im e s in 2 x SSC, 17. SDS a t 65°C f o r 30 m in u te s , and

f i n a l l y , once in 0 .1 x SSC, a t room te m p e ra tu re and the n exposed to XAR-5

f i lm (Kodak) w ith an in te n s i f y in g screen f o r 2 -3 days a t -70°C . F ig u re 5 .2

summarises th e m a jo r s te p s in th e Y-chromosome DNA m e th o d o lo g ie s .

iii

316

Page 344: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

5i 2i 4 i_ D a ta _ A n a l^ s is :

The Y chromosome DNA fragm en t p a t te rn s on g e ls c o n s t i tu te d th e raw d a ta .

A l l d is t in c t i v e Y-chromosome r e s t r i c t io n fragm en t p a t te rn s produced by a

g iv e n r e s t r i c t io n endonuclease were ass igned an uppercase l e t t e r code.

E very sample was th u s a s s ig n a b le to a com pos ite Y -geno type o f e ig h t

le t t e r s . A l l samples w hich showed th e same co m pos ite geno type can be

re ga rded as b e lo n g in g to th e Dne Y-chromosomal p a t r i l i n e a l c lo n e .

The t o t a l p ro p o r t io n o f shared fra gm en ts between in d iv id u a ls (F -v a lu e ) was

c a lc u la te d and co n ve rte d to e s tim a te s o f n u c le o t id e sequence d ive rg e n ce (d )

a c c o rd in g to U p h o lt (1977) and Nei & L i (1979) ( f o r th e l a t t e r c a lc u la t io n s

see Appendix 2 f o r d e t a i l s ) . R e s u lts f o r endonucleases re c o g n iz in g 4 and 6

base s i t e s were c a lc u la te d s e p a ra te ly and th e f i n a l d was w e igh ted

a c c o rd in g to r e la t i v e numbers o f c leavage s i t e s produced by th e two s e ts o f

enzymes. Phenograms were c o n s tru c te d from m a tr ic e s o f d v a lu e s by th e

unw eighted p a irg ro u p method w ith a r ith m e t ic averages (UPGMAs Sneath &

S o k a l, 1973).

A da ta m a tr ix encod ing p resence-absence s ta tu s o f each r e s t r i c t io n fragm ent

in each Y-chromosome genotype was a ls o used f o r an u n d ire c te d parsim ony

a n a ly s is u s in g th e PAUP programme (S w o ffo rd , 1985). In th e PAUP a n a ly s is ,

th e s h o r te s t p o s s ib le t r e e was found u s in g th e b ranch and bound o p t io n .

When two o r more t re e s o f equal le n g th were fou n d , a consensus t re e

r e f le c t in g th e in fo rm a t io n shared by a l l t r e e s was c o n s tru c te d u s in g bo th

Adams (Adams, 1972) and s t r i c t (R o h lf , 1982) consensus methods in th e PAUP

package. Networks were ro o te d a t th e m id p o in t o f th e p a th co n n e c tin g th e

317

Page 345: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

tw o most d iv e rg e n t ta x a .

5 i3 l_ R e s u lts

5i 3i li_ Y _ c h ro m g s o m e _ D N A _ re s tr ic t ig n _ fra g m e n t_ y a r ia tig n i

E ig h t r e s t r i c t io n endonucleases c o l le c t i v e l y accounted f o r 23 d i f f e r e n t Y

chromosome DNA d ig e s t io n p r o f i le s in th e B r i t i s h house m ice ( / fu s

domesticus) surveyed from 28 sam p ling l o c a l i t i e s , which a re shown

d ia g r a m a t ic a l ly in F ig u re 5 .3 . A t o t a l o f between 50-57 fra g m e n ts were

sco red per in d iv id u a l . T ab le 5 .2 l i s t s a l l th e s iz e s o f fra g m e n ts ( in base

p a ir s ) produced by th e e ig h t r e s t r i c t i o n enzymes th a t c h a ra c te r iz e each

r e s t r i c t i o n morph. Four enzymes, S s t I , Eco R I, Bgl I , and Rsa I re v e a le d

no v a r ia t io n in a l l sam ples exam ined. R e p re s e n ta tiv e a u to ra d io g ra p h s

i l l u s t r a t i n g th e monomorphic r e s t r i c t i o n p a t te rn s f o r two o f th e se enzymes,

Eco RI and Rsa I , a re shown in P la te s 5 .1a and 5 .2 b , r e s p e c t iv e ly . The

re m a in in g fo u r enzymes, Hae I I I , H in f I , Tag I and Mbo I p roved in fo rm a t iv e

and exam ples o f th e p o lym o rp h ic r e s t r i c t i o n p r o f i le s a re g iv e n in P la te

5 .1b ( la n e s 1 -6 , Hae I I I d ig e s ts ) , P la te 5 .2 a ( la n e s 1 -6 , Taq I d ig e s ts ) ,

and P la te 5 .3 ( la n e s 1 -21 , Mbo I d ig e s ts ) r e s p e c t iv e ly .

G eographic d is t r ib u t io n s o f v a r ia b le geno types, re v e a le d by each o f the se

fo u r r e s t r i c t io n endonucleases, a re i l l u s t r a t e d in F ig u re 5 .4 . For

exam ple, Taq I p a t te rn "B " (n=44) was common to O rkney, C a ith n e s s and

S u th e rla n d (encom passing 13 sam p ling l o c a l i t i e s ) ; p a t te rn "C" was found

o n ly in I re la n d and th e I s le o f Man (n=4; 2 sample s i t e s ) . W h ils t Taq I

p a t te rn "A" was observed in 43 in d iv id u a ls from th e r e s t o f th e 12 B r i t i s h

m a in land sam p ling l o c a l i t i e s . R e s t r ic t io n enzyme Hae I I I produced f i v e

h a p lo ty p e s (p a tte rn s A -E ), p a t te rn "B " was found p re d o m in a n tly in th e

318

Page 346: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

N o rth e rn and W estern c o l le c t in g s i t e s , e .g . O rkney, C a ith n e s s , S u th e r la n d ,

I r e la n d and th e I s le o-f Man <n=47; 16 sa m p lin g l o c a l i t i e s ) . P a tte rn s A, C

S< E were d is t r ib u t e d in th e S outhern B r i t i s h m a in land l o c a l i t i e s (n=43; 12

s i t e s ) . D is t r ib u t io n o f Hin-f I (p a t te rn s A-F) and Mbo I (p a t te rn s B -F;

p a t te rn A was n o t observed in any w ild mouse, b u t was common in th e

la b o ra to ry s t r a in s , eg. C 5 7 b l/6 ) geno types con-firm ed th e g e n e tic

d i- f - fe r e n t ia t io n o f sam ples in to "n o r th -w e s te rn " and "s o u th -e a s te rn " g roups .

However, th e p redom inan t "N .W ." H in f I d ig e s t io n p a t te rn B e x te n ds f u r t h e r

sou thw a rds , as f a r as th e M id lands (B irm ingham ), than was d e te c te d by any

o th e r v a r ia n t r e s t r i c t i o n endonuclease em ployed.

The r e s t r i c t i o n p a t te rn s were com p iled in t o an e ig h t l e t t e r code, a

co m pos ite Y geno type (Y c lo n e ) , f o r each in d iv id u a l . Twelve d is t in c t Y

c lo n e s (T a b le 5 .1 ) were id e n t i f ie d among th e 93 Hus domesticus

in d iv id u a ls , based on th e fragm ent d i f fe r e n c e s between them. F ig u re 5 .6b

( in s e t ) i l l u s t r a t e s th e a pp rox im a te g e o g ra p h ic d is t r ib u t io n o f th e

com pos ite geno types in B r i t a in . O nly one com pos ite Y c lo n a l genotype per

sample l o c a l i t y was obse rved , th u s no w ith in p o p u la t io n Y DNA v a r ia t io n was

d e te c te d a t any s i t e among B r i t i s h house m ice (h e te ro g e n e ity , h = 0 .0 0 ; Nei

& T a jim a , 1981 ), as shown in f ig u r e s 5 .9 a & b.

5i.3i 2 i_ P h y Ig g e n e tic _ A n a ly s e s i

P r io r to a p h y lo g e n e t ic a n a ly s is in v o lv in g a l l th e house mouse p o p u la t io n s

screened from B r i t a in , 3 fra gm en ts w h ich were au topom orph ic (u n iqu e to a

l o c a l i t y ) were e xc lu d e d , a ls o 46 fra g m e n ts w hich were monomorphic (appear

in a l l p o p u la t io n s ) were removed. F o llo w in g th e rem oval o f th e se

p h y lo g e n e t ic a l ly u n in fo rm a t iv e fra g m e n ts , 20 o f th e o r ig in a l 69 fra gm en ts

319

Page 347: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

were used in th e c la d is t i c a n a ly s is . These -fragm ents were coded as p re s e n t

o r absent (1 o r 0) and tre a te d as unordered c h a ra c te rs f o r use in PAUP to

g e n e ra te Wagner n e tw o rks . T ab le 5 .4 shows th e p h y lo g e n e t ic a l ly in fo r m a t iv e

s i t e s f o r each r e s t r i c t i o n enzyme, f o r each Y -co m p os ite geno type . The

e x h a u s tiv e sea rch o p t io n (ALLTREES) in PAUP was n o t used, as th e re were

g re a te r than n in e p o p u la t io n s o r ’ OTU’ s ’ (o p e ra t io n a l taxonom ic u n i ts ) to

be e v a lu a te d . However, an a l t e r n a t iv e to t h i s e x h a u s tiv e o p t io n i s th e

branch and bound o p t io n (BANDBJ Hendy & Penny, 1982). T h is o p t io n shou ld

p ro v id e th e " b e s t " and s h o r te s t t r e e compared w ith any o th e r approach f o r

a p p ro x im a te ly a dozen ta x a . As th e re were 12 com pos ite Y ty p e s , t h i s

proved th e b e s t m ethod, as i t g ua ran tees th e f in d in g o f th e most

p a rs im o n io u s t r e e s . The tre e s were ro o te d a t th e m id p o in t between th e most

d iv e rg e n t ta x a .

Three t re e s o f equa l le n g th (25 s te p s ) and c o n s is te n c y (0 .760 ) were found

(F ig u re 5 .5 ) . F ig u re 5 .6A shows th e s t r i c t consensus t r e e r e f le c t in g th e

in fo rm a tio n in th e th re e t re e s o f equal le n g th . The Adams consensus t r e e

was id e n t ic a l t o th e s t r i c t consensus t r e e . The same o v e r a l l to p o lo g y was

o b ta in e d fo r a l l th re e t r e e s , and any d if fe re n c e s between them changed o n ly

th e m inor to p o lo g ie s w ith in th e upper m a jo r c lu s te r o f th e Wagner n e tw o rk .

A l l t re e s were c h a ra c te r iz e d by a gap which s e p a ra te s th e p o p u la tio n s in t o

two m ajor g e n e t ic assem blages (d e p ic te d by th e shaded square and t r ia n g le

sym bols in F ig u re 5 .6 A ). One u n a n t ic ip a te d r e s u l t o f t h i s a n a ly s is was th a t

Y c lo n e number 7 (M id la n d s - B irm ingham ) c lu s te r s in th e n o r th e rn b ranch ,

whereas Y c lo n e No. 6 (B u r to n -o n -T re n t, Derby sam ples) f a l l s in w ith th e

so u th e rn b ranch .

320

Page 348: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

The p h y lo g e n e tic ne tw o rks were c o n s tru c te d s o le ly -from in fo rm a t io n w ith in

each co m pos ite Y c lo n e w ith o u t p r io r re fe re n c e to th e c o l le c t in g s i t e s .

However, th e n e tw o rks can be superim posed over th e g e o g ra p h ic sam p ling

l o c a l i t i e s as shown in F ig u re 5 .6B ( in s e t ) . The f i r s t assem blage c o n s is ts

o f c lo n e s 1 ,2 ,4 ,5 and 7 w hich appear to be c o n fin e d to th e O rkneys,

C a ith n e s s , S u th e r la n d , I r e la n d , I s le o f Man and one M id la n d l o c a l i t y

(B irm ingham ; c lo n e 7 ) ; t h i s re p re s e n ts th e "N o r th -w e s te rn " fo rm (N.W .) The

most common c lo n e , 1, i s d is t r ib u te d th ro u g h o u t th e N o rth e rn Orkney Is le s ,

M a in land O rkney, and th e co as t o f C a ith n e s s /S u th e r la n d (n=34; 8 sam p ling

l o c a l i t i e s ) . The second assem blage, r e fe r re d to as th e " s o u th -e a s te rn "

(S .E .) fo rm , c o n s is ts o f Y c lo n e s 3, 6, and 8 -1 2 , in c lu d in g sam ples from as

f a r n o r th as th e F i r t h o f F o r th , to th e so u th e rn m a in land l o c a l i t i e s o f

P em brokesh ire , Som erset, S u rre y , K en t, Ham pshire and th e M id la n d s . However,

d e s p ite th e tw o m a jo r lin e a g e s encompassing ' n o r th -w e s te rn ’ and 's o u th ­

e a s te rn ' o r ie n ta t io n s (F ig . 5 .6B - th e heavy l in e s e n c ir c le s th e tw o m ajor Y

c la d e s as p re v io u s ly d is c u s s e d ) , th e re was v e ry l i t t l e g e o g ra p h ic

s t r u c tu r in g w ith in each c la d e (F ig . 5.6B - th e f a i n t c i r c u la r l in e s

i l l u s t r a t e th e a pp ro x im a te geo g ra ph ic a rea in w hich th e a p p ro p r ia te Y c lo n e

was fo u n d ) .

The number o f shared fra g m e n ts (F) among in d iv id u a ls (T a b le 5 .3 ; above th e

d ia g o n a l) , f o r a l l e ig h t r e s t r i c t io n endonucleases em ployed, was used to

e s tim a te Y chromosome DNA sequence d iv e rg e n ce ( t f ) , u s in g b o th Nei & L i

(1979) and U p h o lt 's (1977) fo rm u la e . The mean p e rc e n t sequence d iv e rg e n ce

(%<#), e s tim a te d u s in g Nei & L i ' s e q u a tio n s between geno types (T a b le 5 .3 ;

below th e d ia g o n a l) was 0.8027., va lu e s ra n g in g from 0 .0 9 3 to 1.514% (F

321

Page 349: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

v a lu e s = 0 .9 8 8 to 0 .8 3 6 ) . U p h o lt (1977) e s t im a tio n s y ie ld v i r t u a l l y

id e n t ic a l v a lu e s o f sequence d iv e rg e n c e , how ever, th e s e were c o n s is te n t ly

s l i g h t l y u n d e r-e s tim a te d , and t h i s e f f e c t was enhanced th e g re a te r th e

d iv e rg e n c e , as shown in Table 5 .3 ( in b ra c k e ts , below th e d ia g o n a l) . The

m a tr ix o f p e rc e n t sequence d ive rg e n c e s (V.d) , c a lc u la te d u s in g Nei & L i ’ s

app roach , were used to c o n s tru c t a UPGMA phenogram by c lu s te r a n a ly s is . The

phenogram (F ig u re 5 .7 ) y ie ld e d a to p o lo g y v e ry s im i la r to th a t in fe r r e d

fro m th e c la d is t i c a n a ly s is (Wagner ne tw o rk based on th e p resence -absence

fra g m e n t d a ta , see F ig s 5 .5 and 5 .6 ) . The two m ajor g e n e tic c lu s te r s were

d is t in g u is h e d by a p p ro x im a te ly 1.27. sequence d iv e rg e n c e (ra n g in g from 0.097.

[T a u n to n , c lo n e 12 ve rse s Skokholm , c lo n e 113 to 1.51% [S u th e r la n d , c lo n e

2 ve rs e s London, c lo n e 8 3 ). W ith in th e "N .W .” c lu s te r , th e mean V.d was

0.578%, ra n g in g from 0.0997. (c lo n e 5 [N . I r e la n d ! v e rs e s c lo n e 1 [O rk n e y !)

to 1.147. (c lo n e 2 [S u th e r la n d ! ve rse s c lo n e 4 [ S . I r e la n d ! ) ; whereas w ith in

th e "S .E ." assem blage, th e mean was m a rg in a l ly low e r a t 0.468%, ra n g in g

fro m 0 .094 (c lo n e s 11 [S kokho lm ! vs . 12 T a u n to n !; 11 [S kokho lm ! vs 9

[S u r r e y ! ; 9 [S u rre y ! vs 8 [L o n d o n !) to 1.04% (c lo n e 7 [B irm in g ha m ! ve rse s

c lo n e 8 [L o n d o n !; c lo n e 7 [B irm in g ha m ! vs 11 [S k o k h o lm !). However, th e

B irm ingham lin e a g e (c lo n e 7 ) , p re v io u s ly c lu s te r in g w ith in th e ’ N .W .’

c la d e , now f a l l s w ith in th e ’ S .E . ’ ty p e s w ith th e c lu s te r in g te c h n iq u e .

Y e t, t h i s a n a ly s is in d ic a te s th a t th e B irm ingham c lo n e i s th e most

d iv e rg e n t ta x o n , seen as an o u t ly e r in th e ’ S .E . ’ b ra nch . The consensus

t r e e (F ig . 5 .6 ) shows th e c lo n e s 1, 4 & 5 (fro m O rkney, N . I re la n d and S.

I r e la n d , r e s p e c t iv e ly ) fo rm an u n re s o lv e d t r ic h o to m y , q u i te d i s t i n c t from

th e S u th e rla n d lin e a g e (c lo n e 2 ) . The p h e n e tic approach d is t in q is h e s w ith in

t h i s n o r th e rn group, th e p o p u la t io n fro m S. I re la n d i s th e s i s t e r g roup to

322

Page 350: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

th o s e fro m N. I re la n d and Orkney, w ith th a t -from S u th e rla n d th e most

d is t a n t .

5i 4 i_ D is c u 5 s ig n i

T h is a n a ly s is o-f B r i t i s h house mouse Y chromosome DNA RFLP’ s u s in g e ig h t

r e s t r i c t i o n enzymes re v e a le d th re e m a jo r c la s s e s o-f r e s u l t s . F i r s t l y , on a

m ic ro g e o g ra p h ic s c a le , th e re was c le a r e v id e n ce -for th e d i- f - fe re n t ia t io n o f

B r i t i s h house mouse p o p u la t io n s in t o two m a jo r c lu s te r s , how ever, th e re was

v e ry l i t t l e concordance between Y DNA sequence d iv e rg e n c e and g e o g ra p h ic

lo c a t io n w ith in each g e n e tic assem blage in th e B r i t i s h I s le s . S econd ly ,

between p o p u la t io n d ive rg e n ce s a re r e l a t i v e l y h ig h , s u g g e s tin g th a t Y

sequences a re e v o lv in g v e ry r a p id ly . T h ir d ly , on a more lo c a l s c a le , no

w ith in p o p u la t io n Y chromosome DNA v a r ia t io n was fou n d .

5i 4i ii_ X n tra -s p e c i_ fic _ p h y lg g e g g ra B h ic _ _ c g n s i_ d e ra tig n s :

The e x te n t o f accum ula ted mouse Y chromosomal r e p e t i t i v e sequences has been

shown to g e n e ra lly c o r r e la te w ith th e known p h y lo g e n e t ic r e la t io n s h ip s

among Mus s p e c ie s (N is h io k a & Lam othe, 1986, 1987a; Tucker e t al,, 1987,

1989). S im i la r ly , p o p u la t io n s tu d ie s in d ic a te th a t th e d is t r ib u t io n o f

human Y - lin k e d RFLP’ s may va ry among e th n ic g roups (Casanova e t al,, 1985;

Ngo e t al,, 1986a; L u c o tte e t al,, 1989). However, s e v e ra l a u th o rs have

expressed concern when in t e r p r e t in g p h y lo g e n e t ic re la te d n e s s from some

in s ta b le Y chromosomal r e p e t i t i v e sequences (N is h io k a , 1988; P la t t & Dewey,

1987, 1989). Y chromosomal r e p e t i t i v e sequences a re th o u g h t to e v o lv e v e ry

r a p id ly , and s u s p e c t ib i1i t y to m u ta t io n a l changes i s no t u n ifo rm ly

d is t r ib u te d among th e Y chromosomal r e p e t i t i v e e le m en ts ; th u s th e a pp a re n t

degree o f re la te d n e s s depends a g re a t dea l on w hich probe and p a r t i c u la r l y

323

Page 351: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

on w hich r e s t r i c t i o n endonuclease was used. Data fro m t h i s s tu d y i l l u s t r a t e

t h a t th e un ique sequence Y -s p e c i f ic DNA p robe used does n o t s u f f e r -from

th e s e l im i t a t io n s and appears to be use-fu l as a m o le c u la r m arker to

e s tim a te in t r a s p e c i f i c p h y lo g e n e tic d is ta n c e s in B r i t i s h p o p u la t io n s o f

ttus dowesticus. I f th e sequences d e te c te d by th e p robe pYB a re , indeed ,

s t r i c t l y Y - s p e c i f ic , th e n the se sequences w i l l be p a te r n a l ly in h e r i te d ,

th u s each group d e te c te d w i l l re p re s e n t a Y DNA c lo n e in w h ich th e

s e g re g a tio n and re c o m b in a tio n in h e ra n t in sexua l re p ro d u c t io n w i l l n o t

c o m p lic a te Y DNA p h y lo g e n e t ic r e c o n s t ru c t io n s . The absence o f re c o m b in a tio n

was dem onstra ted by th e la c k o f homologous DNA -fragm ents in th e fem ale

genome, th u s pYB p robe was assumed to d e te c t s t r i c t l y Y - s p e c i f ic sequences.

Hence, in d iv id u a ls b e lo n g in g to each Y c lo n e must have e vo lve d from a

common male p a re n t a t some tim e in th e p a s t , and i f th e s e c lo n e s a re

in te rc o n n e c te d in t o a ne tw o rk th e y sh ou ld re p re s e n t a p a t r ia r c h a l

p hy logeny .

U sing e ig h t r e s t r i c t i o n endonucleases, 12 Y DNA co m p os ite geno types were

re v e a le d among 93 house mice c o l le c te d th ro u g h o u t B r i t a in . A pars im ony

a n a ly s is (PAUP) c lu s te r e d these Y genotypes in t o tw o d i s t i n c t e v o lu t io n a ry

assem blages on an in t r a s p e c i f ic tre e ? the se re p re s e n te d n o r th -w e s te rn and

s o u th -e a s te rn ra ce s r e s p e c t iv e ly . The a p p a ra n t s i m i l a r i t i e s o f Y genotypes

w ith in each m a jo r ra c e was r e f le c te d in th e number o f shared h y b r id is a t io n

bands, when s in g le d ig e s ts , u s in g s e v e ra l r e s t r i c t i o n endonuc leases, o f

genomic DNA from each p o p u la t io n , were probed w ith th e Y - s p e c i f ic p robe ,

pY8. The Y chromosome a n a lyse s a re c o n s is te n t w ith o th e r autosom al m arkers

(B ro o ke r, 1982; D a v is , 1983; Nash et al.f 1983), mtDNA d a ta (see ch a p te r

324

Page 352: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

4 ) , and a n th ro p o lo g ic a l ev idence (B anbury, 1975), in show ing t h i s g e n e tic

d is c o n t in u i t y (o r g e n e tic "b re a k " ) . These d a ta p ro v id e a d d it io n a l su p p o rt

•for th e s ig n if ic a n c e o f h is t o r ic a l zoogeography, in shap ing th e

in t r a s p e c i f ic g e n e tic a r c h i te c tu r e o f B r i t i s h house mouse p o p u la t io n s

(Saunders et a l 1986; A v ise et al•, 1987a; A v is e , 1989). P o p u la tio n s

se pa ra ted f o r a c o n s id e ra b le t im e e i t h e r by p h y s ic a l b a r r ie r s to movement

Dr th o se th a t have d i f f e r e n t e v o lu t io n a ry p a th s y e t w h ich converge on th e

same landmass by in t r o d u c to r y o r c o lo n is a t io n e v e n ts , sh ou ld be expected to

accum ula te d if fe re n c e s , in a co nco rd a n t fa s h io n in o th e r g e n e tic m arkers.

The d ive rge n ce between th e N-W and S-E Y genotypes may r e f l e c t v a r ia t io n

p r e - e x is t in g in th e c o lo n is in g p o p u la t io n s , a l t e r n a t iv e ly , th e se

d if fe re n c e s may have a r is e n by a ccu m u la tio n o f s u b s t i t u t io n s in situ. There

i s s u b s ta n t ia l ev idence th a t a t th e la s t g la c ia l maximum B r i t a in and much

o f N o rth e rn Europe was c l im a t ic a l l y in h o s p ita b le f o r th e house mouse, t h i s

d a te s th e e a r l ie s t p o s s ib le c o lo n is a t io n o f th e se a reas to about 10,000

y e a rs ago (West, 1968; K e rr , 1983; Y a lden , 1982). T r a d i t io n a l ly , house mice

a re b e lie v e d to have f i r s t invaded Europe le s s than 8 ,000 ye a rs ago as

commensals o f N e o l i th ic fa rm e rs (B ro th w e ll , 19B1), indeed much i s known

about th e spread o f e a r ly fa rm in g p ra c t ic e s due to e x te n s iv e a rc h a e o lo g ic a l

and g e n e tic po lym orph ism da ta on human p o p u la t io n s (Ammerman & C a v a l l i -

S fo rz a , 1985; S o k a l, 1988). However, much o f Europe was n o t c o lo n is e d u n t i l

th e Bronze Age, a p p ro x im a te ly 3 ,000 ye a rs ago, when ftus dowesticus was

found p re d o m in a n tly in th e w este rn M e d ite rran e an b a s in (A u ff r a y et al.f in

p re s s ) . N o rth -w e s te rn Europe was f i r s t c o lo n is e d a p p ro x im a te ly around th e

Iro n Age (France - De R ougin , in p re s s ) , in d ee d , s u b fo s i ls , found in

England, have been da ted to th e pre-Roman Iro n Age (C o rb e t, 1974; Yalden,

325

Page 353: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

1982). Thus, i t i s u n l ik e ly th a t e v o lu t io n in situ can accoun t -for th e

la rg e number d if fe re n c e s observed between th e Y ty p e s in such a r e la t i v e l y

s h o r t t im e span, u n le ss an e x tre m e ly ra p id r a te o f e v o lu t io n -for th e Y

sequence i s invoked (see s e c tio n 5 .4 .2 ) . MtDNA a n a lyse s (c h a p te r 4) has

i l l u s t r a t e d th a t in s u f f ic e n t t im e has e lasped -for th e observed mtDNA

d iv e rg e n c e s to have evo lved in situ, ta k in g in t o c o n s id e ra t io n th a t mtDNA

i s th o u g h t to e vo lve 5 -10 tim e s more r a p id ly than n u c le a r DNA (Brown et

a l - , 1979, 19B2! Vawter & Brown, 1986). Thus, the se d i-f-fe re nce s must have

accum ula ted e lsew here b e fo re th e p o p u la t io n s c o lo n is e d B r i t a in , c o n s is te n t

w ith th e two ra ce s o r ig in a t in g -from s e p a ra te in t r o d u c t io n e v e n ts . T h is

c o n c lu s io n i s based upon th e assum ption th a t th e base s u b s t i t u t io n r a te o-f

ro d e n t mtDNA does no t d i-f-fe r s u b s ta n t ia l ly -from th a t o-f o th e r mammalian

mtDNA (2-47. base sequence d ive rg e n ce per m i l l io n y e a rs ! W ilson et al-,

1985).

The geo g ra ph ic d is t r ib u t io n o-f th e Y RFLP’ s s u p p o rts a c lo s e g e n e tic

s im i la r i t y between Orkney and I r i s h sam ples, in concordance w ith th a t -found

in th e mtDNA da ta (see c h a p te r 4 ) , s tre n g th e n in g th e s u g g e s tio n o-f a common

o r ig in . House mouse samples from Europe and w o rld -w id e l o c a l i t i e s a re

re q u ire d to t e s t w hether th e o r ig in s o f th e Y c lo n e s in th e tw o c lu s te r s in

B r i t a in a re conco rdan t w ith tho se t e n t a t i v e ly suggested from mtDNA d a ta .

Such samples may p ro v id e ev idence w ith which to e lu c id a te th e s e p a ra te

o r ig in s o f th e two ’ fo rm s ', and may c l a r i f y th e ch ro n o lo g y o f t h e i r

c o lo n is a t io n e ve n ts ! indeed i t would be in te r e s t in g to see i f bo th th e Y

and mtDNA p h y lo g e n ie s suggest th e same geog raph ic o r ig in f o r th e se two sex

l in k e d m arke rs. I f th e y do then i t i s l i k e l y to be th e area th a t was

326

Page 354: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

o ccup ied by a p o p u la tio n a n c e s tra l to th e B r i t i s h House Mouse. A l t e r n a te ly ,

i f th e p h y lo g e n e t ic s tu d ie s in d ic a te a d i f f e r e n t o r ig in f o r th e Y and

m ito c h o n d r ia then th a t would suggest an in t r o g r e s s io n even t o f a s p e c i f ic Y

o r m ito c h o n d r ia l c lo n e in to th e p u ta t iv e a n c e s tra l p o p u la t io n ; a s i t u a t io n

ana lagous to th a t which has occu rred in th e I s le o f May in t r o d u c t io n

e xpe rim en t (see ch a p te r 6 ) . However, because th e Y i s more s u s c e p t ib le to

s to c h a s t ic l in e a g e e x t in c t io n s i t s c lo n e s a re more homogeneously

d is t r ib u t e d , hence as a phy log e og ra p h ic to o l i t la c k s th e r e s o lu t io n o f th e

mtDNA. T h is may make i t more d i f f i c u l t to p in p o in t th e o r ig in o f th e

a n c e s tra l Y.

F ig u re 5 .8 i l l u s t r a t e s th e m ic ro -g e o g ra p h ic d is t r ib u t io n o f com pos ite mtDNA

and Y c lo n a l typ e s (mtDNA/ Y) across B r i t a in , d e p ic t in g th e SE and NW ra ce s

o f each, r e s p e c t iv e ly . One s u rp is in g r e s u l t was th e o b s e rv a tio n o f some

in t r o g r e s s io n us in g th e c la d is t ic approach, as m ice from Birm ingham

(M id lan d s ) appear to have mixed a n c e s try on th e b a s is o f mtDNA and Y

chromosome m arke rs ; these in d iv id u a ls have mtDNA w hich c lu s te r s in th e S-E

g e n e tic assemblage and Y DNA from th e N-W ra c e . However, u s in g th e p h e n e tic

c lu s te r in g approach, th e l a t t e r Y c lo n e was found to lo o s e ly c lu s te r w ith

th e S-E ra ce in s te a d , y e t t h i s was th e most d iv e rg e n t ta x o n , n o ta b ly an

o u t l i e r to th e main group . Any in t ro g r e s s io n p ro b a b ly r e f le c t s th e

h is t o r ic a l in te rc o n n e c t io n s o f t h i s re g io n th rou g h th e t ra n s p o r t o f g ra in

to th e b re w e r ie s , p o s s ib ly from th e west co a s t (L iv e rp o o l d o c k s ). There a re

no o bv iou s zoogeograph ic b a r r ie r s to gene f lo w in B r i t a in , however th e

m ajor d iv id in g l in e o f S-E and N-W ty p e s from bo th Y and mtDNA ev idence

maps to th e G reat G len. T h is area c h a ra c te r is e s open m oorland h a b i ta t ,

327

Page 355: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

g e n e ra lly in h a b ite d by Apodemus s p p ., and i t i s p o s s ib le th a t t h i s sp e c ie s

may hamper th e spread o f house m ice, as in t e r s p e c i f i c c o m p e tit io n i s known

to d e te r them v e ry e a s i ly (Dueser & P o t te r , 1986). The o b s e rv a tio n o f an

in t r o g r e s s io n e ven t t o th e sou th west o f th e main d iv id in g l in e , suggests

th a t a f i r m b a r r ie r t o movement does e x is t in S c o tla n d , w hich does n o t

appear to be v e ry e f f e c t iv e f u r th e r s o u th . Too few sam ples were taken from

S co tla n d and s p e c i f i c a l l y , none from around th e G rea t G len a re a , to be

c o n f id e n t th a t th e re was no h y b r id is a t io n o f th e tw o fo rm s th e re as w e l l .

G eographic p a t te rn in g o f appa ren t b ranches in mtDNA p h y lo g e n ie s i s w e ll

documented (see c h a p te r 4 ; A v is e , 1986; A v is e et al., 1987a; A v is e , 1989),

fu r th e rm o re , in c re a s e s in n u c le o t id e d iv e rg e n c e have been shown to

g e n e ra lly c o r r e la te w ith in c re a s e s in g eo g ra ph ic d is ta n c e between

p o p u la t io n s (A v ise et al., 1979; Lansman e t a i., 1983), c o n s is te n t w ith

is o la t io n by d is ta n c e models o f e v o lu t io n (W rig h t, 1946). However, a lth o u g h

b o th mtDNA d a ta (c h a p te r 4) and Y chromosome DNA c lo n a l geno types re v e a l

th a t B r i t i s h house m ice a re c lu s te re d in t o two w e ll se pa ra ted N-W and S-E

ra c e s , th e re appears to be no g e o g ra p h ic a l o rd e r in g w ith in each group u s in g

Y geno types, wheras a sm a ll degree o f s t r u c tu r in g was a ppa ren t u s in g mtDNA

a n a lyse s . For exam ple, Y n u c le o t id e d iv e rg e n c e s from Taunton, sou thw est

E ng land, a re more s im i la r to th o se from th e I s le o f May, F i r t h o f F o r th ,

S c o tla n d , some 400 m ile s away, than to t h e i r g e o g ra p h ic a lly c lo s e r

n e ig h b o u rs . T h is la c k o f concordance between in t r a s p e c i f ic phy logeny and

geography, u s in g mtDNA a n a lyse s , has been r a r e ly documented in ro d e n ts

(e x c e p tio n s in c lu d e : Thomas & Beckenbach, 1986; P la n te et al., 1989a), bu t

appears to be a common f in d in g in m arine v e r te b ra te s (A v ise et al., 1986;

328

Page 356: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

A v is e e t al., 1987b), b ir d s (B a ll e t al., 1988; T e g e ls tro m , 1987b), humans

(Brown, 1980; Cann e t al., 1984, 1987) and has been p re v io u s ly no ted in th e

house mouse ( F e r r is e t al., 1983; G y lle n s te n 8c W ilso n , 1987). Indeed , on a

m acrogeograph ic s c a le absence o-f g eog raph ic s t r u c tu r in g may be due to

r e la t i v e l y re c e n t and e x te n s iv e h is t o r ic a l in te r c o n n e c t io n s th ro u g h gene

■flow (A v ise e t a i - , 1987a). T h is would re q u ir e th e absence o-f f i r m ,

lo n g s ta n d in g zoogeograph ic b a r r ie r s t o movement, to g e th e r w ith l i f e

h is t o r ie s conduc ive to d is p e rs a l. H is t o r ic a l , a rc h a e o lo g ic a l and e c o lo g ic a l

know ledge o f th e house mouse s u p p o rts the se c o n c lu s io n s (W est, 1977; C la rk ,

1975; B ro th w e ll, 1981; B e rry 8c Jakobson, 1974; Sage, 1981).

5JL4i 2£_Y_chrgm gsgm e_eyglutign£

T h is p re l im in a ry s tu d y s u p p o rts o b s e rv a tio n s by B ishop 8c c o lle a g u e s (1987 ),

th a t th e sxr re g io n d e te c te d by th e Y - s p e c i f ic p robe appears t o be v e ry

p o lym o rp h ic and th u s must be e v o lv in g a t an e x tre m e ly ra p id r a te . These

r e s u l t s a re s u rp r is in g as DNA th a t encodes th e sex d e te rm in in g genes a re

th o u g h t to be h ig h ly conserved in s e x u a lly d im o rp h ic v e r te b ra te s . T h is i s

c e r t a in ly th e case f o r th e DNA s a t e l l i t e sequence, Bkm (Jones 8c S ingh ,

1981), as a Bkm sequence p robe , is o la te d from a fem a le banded K r a i t ,

h y b r id is e s to sex sequences o f snakes, b ir d s , m ice and humans a l ik e ; Bkm

sequences a re th o u g h t t o be s itu a te d a d ja c e n t to th e s e x -d e te rm in in g genes,

on th e s h o r t arm o f th e Y chromosome. However, i t has been p o s tu la te d th a t

n e u tra l m u ta tio n s w i l l be expected to accum ula te v e ry r a p id ly on th e Y

chromosome, as i t appears to be th e le a s t conserved mammalian chromosome

(L u c c h e s i, 1978). M iya ta et al., (1987) compared s i l e n t s u b s t i t u t io n ra te s

o f a u to so m e -lin ke d genes w ith th o se o f X- and Y - l in k e d genes and found th a t

X - lin k e d genes were more s t ro n g ly conserved than a u to s o m e -lin k e d genes,

329

Page 357: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

w h i ls t , th e Y - lin k e d genes e vo lved much more r a p id ly than th e l a t t e r ; th e y

suggested th a t males se rve as m u ta tio n g e n e ra to rs in mammalian e v o lu t io n .

In th e v a r ia b le Y r e s t r i c t io n morphs d e te c te d by a p a r t i c u la r enzyme, th e

appearance o-f one fragm en t d id n o t appear to be c o r re la te d w ith th e absence

o f a n o th e r, v is a v e rs a , t h i s would be c o n s is te n t w ith in s e r t io n - d e le t io n

m u ta t io n a l p rocesses o r sm a ll re a rra n g e m e n ts . I f th e se a re th e mechanisms

o f th e e v o lu t io n o f th e sxr re g io n , then s im i la r v a r ia t io n s in

h y b r id is a t io n p a tte rn s shou ld have been d e te c te d w ith th e o th e r r e s t r i c t io n

endonucleases employed. Thus, i t was assumed, f o r s im p l i c i t y , th a t th e

appearance and d isappearance o f h y b r id is a t io n fra gm en ts in each r e s t r i c t i o n

morph, w ith a p a r t ic u la r enzyme, re s u lte d fro m p o in t m u ta tio n s w ith in th e

r e s t r i c t i o n re c o g n it io n s i t e s . Thus r e s u l t in g fra gm en ts may e i t h e r c o -

mi g ra te w ith monomorphic bands o r be to o sm a ll t o be observed as sm a ll

fra g m e n ts t r a n s fe r v e ry p o o r ly in th e S ou thern b lo t t in g te c h n iq u e , and

hence rem ain unde tec ted (Ngo e t a l 1 9 8 6 a , 1989).

F u ll u n d e rs ta n d in g and e v a lu a t io n o f th e ty p e s and ra te s o f m u ta tio n a l

changes in v o lv e d w ith in th e sxr re g io n a re re q u ire d b e fo re any c o n fid e n c e

can be p laced on in fe re n c e s co n ce rn in g p o p u la t io n s t r u c tu r e , and on th e

e v o lu t io n a ry r e la t io n s h ip s de te rm ined u s in g th e Y - s p e c i f ic p robe . T h is was

beyond th e scope o f t h i s s tu d y , th e main aim o f w hich was to su rve y th e

e x te n t and d is t r ib u t io n o f Y chomosome v a r ia t io n in th e B r i t i s h house

mouse, and assess th e va lu e o f t h i s p robe as a p h y lo g e n e tic t o o l .

330

Page 358: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

5 i^ ili_Y _C hrgm g5om e_D N A _ya ri§b il i t y i

I t may be p e r t in e n t a t t h i s p o in t to compare mtDNA d iv e r s i t ie s w ith Y DNA

d iv e r s i t i e s , w i t h in and between p o p u la t io n s , as bo th have a u n ip a re n ta l

mode o-f in h e r i ta n c e , e x is t in a h a p lio d -form, and appear to have ra p id

r a te s o-f base sequence e v o lu t io n . Thus any d i-f-fe rences between them sh ou ld

in d ic a te sex s p e c i f ic d if fe re n c e s in e co lo g y and b e h a v io u r (M o r itz et a l

1987; H a rr is o n , 1989).

Lack o f w i th in p o p u la t io n in t r a - s p e c i f ic Y chromosome DNA v a r ia t io n was

q u i te s t r i k i n g . T h is la c k o f v a r i a b i l i t y was much le s s extrem e fo r mtDNA

d iv e r s i t ie s ( c a lc u la te d u s ing th e same s e t o f r e s t r i c t i o n enzymes and th e

same male sa m p le s ), w ith a mean in t r a - p o p u la t io n d iv e r s i t y (h) o f 0 .2 3 .

F ig u re 5 .9 a i l l u s t r a t e s th e d is t r ib u t io n o f nuc leon d iv e r s i t y (h) among th e

29 p o p u la t io n s f o r mtDNA and Y chromosome DNA m arke rs , a d d i t io n a l ly c lo n e s

b e lo n g in g t o BE and NW g e n e tic assem blages a re a ls o d e p ic te d . A t o t a l o f

tw e lv e Y c lo n a l geno types were d e te c te d u s in g th e f i v e te t r a n u c le o t id e

r e s t r i c t io n enzymes, among the 93 B r i t i s h m ice sampled from 29 l o c a l i t i e s ,

compared to n in e te e n mtDNA c lo n es u s in g th e same in d iv d u a ls and se t o f

enzymes. A ls o , th e number o f c lo n es per m a jo r re g io n in B r i t a in appear to

be s ig n i f i c a n t l y reduced fo r Y chromosome m arkers compared to mtDNA

a n a lyse s (X2 td f= 1 3 = 4 .8 , p < 0 .0 5 ) (F ig u re 5 .9 b ) .

The sm a ll number o f Y c lo n e s and la c k o f w i th in p o p u la t io n Y DNA d iv e r s i t y

can be e x p la in e d by a t le a s t fo u r mechanisms, none o f which a re m u tu a lly

e x c lu s iv e . F i r s t l y , sm a ll sample s iz e s may have l im i te d th e

p o s s ib i l i t y o f d is c o v e r in g new Y chromosomal geno types . Among th e 29 sample

l o c a l i t i e s o n ly 93 male mice were exam ined, a t te n o f the se l o c a l i t i e s o n ly

331

Page 359: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

one mouse was sampled and a t a - fu r th e r 7 s i t e s o n ly two in d iv d u a ls were

used. However, u s in g th e s e same in d iv id u a ls , s ig n i - f ic a n t ly more mtDNA

c lo n a l genotypes were o bse rved , d e s p ite th e low sample s iz e s . S econd ly , th e

number and co m b in a tio n o-f typ e s o-f r e s t r i c t io n endonucleases employed may

a-f-fect th e id e n t i f i c a t io n o-f d i f f e r e n t c lo n e s . By in c re a s in g th e number and

u t i l i s i n g f r e q u e n t ly - c u t t in g te t r a n u c le o t id e r e s t r i c t i o n endonucleases, th e

number o f id e n t i f i a b le com pos ite c lo n e s can be in c re a s e d (T e g e ls tro m ,

1987a, 1987b; P la n te e t a l - , 1989a). For exam ple, u s in g o n ly H in f I and Mbo

I enzymes, bo th Y and mtDNA ana lyses d e te c te d te n c lo n a l ty p e s . Using 14

r e s t r i c t io n endonucleases th e e x te n s iv e geo g ra ph ic su rve y o f mtDNA

v a r ia t io n in th e B r i t i s h house mouse (c h a p te r 4) d e te c te d 23 c lo n a l ty p e s .

I f th e same number and co m b in a tio n o f enzymes were used to screen Y DNA,

more than 12 c lo n a l ty p e s would p ro b a b ly have been a p p a re n t. P la n te and

c o lle a g u e s (1989a) have suggested th a t th e te rm "c lo n e " ( th e y were

r e fe r r in g to mtDNA) sh o u ld o n ly be used in cases where no f u r t h e r

in fo rm a tio n i s ga ined abou t a p a r t ic u la r com pos ite geno type by in c re a s in g

th e number o f r e s t r i c t i o n enzymes employed.

A d d i t io n a l ly , a m a jo r drawback to u s in g Y - s p e c i f ic p robes i s th a t o n ly a

sm a ll p a r t (afew k ilo b a s e s ) o f th e Y chromosome can be ana lysed a t any

p a r t ic u la r re g io n , th u s th e se probes would o n ly be expec ted to d e te c t a

l im ite d number o f v a r ia n ts . In com parison , th e whole mtDNA genome (16 Kb)

can be examined u s in g h ig h re s o lu t io n sequence com parison r e s t r i c t i o n

mapping te c h n iq u e s . A lth o u g h , bo th th e sample s iz e and ty p e s , and numbers

o f r e s t r i c t io n enzymes a p p lie d to th e a n a ly s is may be im p o r ta n t fo r

in c re a s in g th e r e s o lu t io n o f th e s tu d y , th e y do n o t e x p la in th e m aintenance

332

Page 360: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

o-f low numbers o-f Y c lo n e s nor th e la c k o-f Y chromosome DNA d iv e r s i t y .

T h is m igh t be e x p la in e d by d i-f-fe rences in th e 1 i - fe - h is to r y o-f male and

■female house m ice. S eve ra l in t e r r e la t e d -fa c to rs may c o n t r ib u te to th e

observed d i-f-fe rences in d iv e r s i t y o-f mtDNA and Y c lo n e s , t h e i r e f f e c t s a re

d iscu ssed more f u l l y in ch a p te r 7 b u t in c lu d e :

a) D is a s s o r ta t iv e m ating in a non-monogamous system - In th e house mouse,

th e male occup ie s a home-range o r t e r r i t o r y th a t o v e r la p s th a t o f s e v e ra l

fe m a le s , t h i s s o c ia l system can e i t h e r be c la s s i f ie d p rom iscuous o r

s im u lta n e o u s ly po lgynous (B arash, 1982). As a consequence o f non-random

m ating in th e house mouse, i t i s p o s s ib le th a t p a te rn a l lin e a g e s may go

e x t in c t a t a c o m p le te ly d i f f e r e n t r a te from m a te rna l l in e a g e s . For exam ple,

in th e case o f p o lgyg n y , some m ales have more than one m ate, r e s u l t in g in a

h ig h e r p ro p o r t io n o f m ales than fem a les n o t re p ro d u c in g , r e s u l t in g in a

g re a te r v a r ia n c e in re p ro d u c t iv e success in males tha n in fe m a le s , as a

consequence Y lin e a g e s would d isa p p e a r more r a p id ly tha n mt lin e a g e s

(P o u lto n , 1987). b) Male b iased gene f lo w - G re a te r homeranges, and by

in fe re n c e g re a te r d is p e rs a l, o f males means th a t Y c lo n e s may spread more

r a p id ly than mtDNA, p ro d u c in g more homogeneous p o p u la t io n s , c) Dominance

h ie ra rc h y o f males - S e x u a lly dom inant males s ir e s th e most young (D e fr ie s

St M cClearn, 1972) and fem a les a c t iv e ly s o l i c i t c o p u la t io n s w ith th e

dom inant m ales, aga in c o n t r ib u t in g to v a r ia n c e in male re p ro d u c t iv e success

and so to lo s s o r success o f s p e c i f ic Y c lo n e s , and th u s re d u c in g

d iv e r s i t y , d) S to c h a s tic l in e a g e e x t in c t io n and fou n de r e f f e c t s - V a ria nce

o f male re p ro d u c t iv e success , due to p o in ts a) and c) above, means th a t Y

lin e a g e s a re more s e n s i t iv e to fo u n d e r e f f e c t s and t h i s , to g e th e r w ith

333

Page 361: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R F I V E

s to c h a s t ic lin e a g e e x t in c t io n , and th e consequent re d u c t io n in e f f e c t iv e

p o p u la t io n s iz e , co u ld account f o r th e low d iv e r s i t y o f Y c lo n e s .

Thus fo u n d e r e f f e c t s , m a le -b iased gene f lo w , reduced e f f e c t iv e p o p u la t io n

s iz e s , s to c h a s t ic l in e a g e e x t in c t io n s , s o c ia l o rg a n is a t io n , and th u s

d i f f e r e n t i a l male re p ro d u c t iv e success , c o u ld a l l be fo rc e s e ro d in g Y

chromosomal DNA h e te ro g e n e ity among p o p u la t io n s o f th e B r i t i s h house mouse.

F u tu re s tu d ie s in v o lv in g com parisons o f i n t r a - s p e c i f i c d is ta n c e s based on

Y-DNA, mtDNA and from c la s s ic a l g e n e tic a n a lyse s (isozym e , k a ry o ty p ic and

m orphom etric e s tim a te s ) shou ld p ro v id e an o p p o r tu n ity f o r a ssess ing th e

r e la t i v e v a lu e o f th e se v a r io u s ty p e s o f d a ta f o r th e s tu d y o f e v o lu t io n .

Indeed , as d i f f e r e n t g e n e tic m arkers have d i f f e r e n t fu n c t io n s , modes o f

t ra n s m is s io n and mechanisms o f m o le c u la r e v o lu t io n , th e y may be a f fe c te d

q u i te d i f f e r e n t l y by th e a c t io n s o f d r i f t , s e le c t io n and m ig ra t io n d u r in g

th e e v o lu t io n o f th e p o p u la t io n (B o u rso t et al., 1989), hence t h e i r da ta

need to be in te r p r e te d a c c o rd in g ly .

334

Page 362: (Hus domesticus. Rut t y ) - UCL Discovery

T ab le 5. l : The Y-chromosome DNA com pos ite Genotypes observed among th e samples

o-f ft us dowesticus -from B r i t a in .

* Number in b ra c k e ts a f t e r lo c a t io n deno tes th e number o f in d iv id u a ls a t

each c o l le c t in g s i t e w ith th e same genotype .

b L e t te r s d e s c r ib in g th e Y DNA com posite gen o typ e s , from l e f t to r i g h t ,

r e fe r to th e r e s t r ic t io n - f r a g m e n t p a t te rn s f o r th e r e s t r i c t i o n endonucleases

Bgl I , Eco R I, Sst I , Rsa I , Hae I I I , H in f I , Mbo I , and Taq I , r e s p e c t iv e ly .

c The c a p i ta l le t t e r s in b ra c k e ts a f t e r th e Y genotype number a re l o c a l i t y

a b b re v ia t io n s .

335

Page 363: (Hus domesticus. Rut t y ) - UCL Discovery

T a b le 5. Is The Y-chromosome DNA co m p os ite gen o typ es observed among th e sam pleso f_ / fu s j ] ^ j 'S t ic i^ _ i r g fn _ B r i_ ta i . n ;_

Com posite Y geno type number c

T o ta lsample

s iz e

Y-chromosome DNA Com posite gen o typ e b

C o lle c t io n s i t e * ;

1 (ORK) 3 6 AAAABBBB Orkney Is le s : W estray (9) , Eday (9 ) , Sanday (1 ) , Faray (1 0 ) , S tro n sa y (1 ) .M a in la nd : H a rray (3 ) , Yaphur (1 ) . C a ith n e s s : John 'O ' G roa ts (2 ) .

2 (SUTH) 10 AAAABBCB C a ith n e ss : Thurso (G reenland -farm- 2 ) , Thurso ( O l r ig j 2 ) , K e iss (2 ) , B arnac lavan (2 ) .S u th e r la n d : Achiem ore (2 ) .

3 (MAY) 4 AAAAABFA F i r t h o-f F o r th : I s le o-f May (4 ) .

4 (SIRE) 1 AAAABCBC S outhern I r e la n d : Galway (1 ) .

5 (NIRE) 3 AAAABBBC N o rth e rn I r e la n d : B e l-fa s t (2 ) . I s le o-f Man: L ingague (1 ) .

6 (BOT) 6 AAAACBDA M id la n d s : B u r to n -o n -T re n t (5 ) , Derby (1 ) .

7 (BIRM) 3 AAAADBDA M id la n d s : B irm ingham (3 ) .

8 (LOND) 4 AAAAAAEA London: Fulham (2) , K ings c ro s s (1 ) , Wimbledon (1 ) .

9 (SURR) 8 AAAAAAFA S u rre y : N u t- f ie ld (3 ) , West Humble (1 ) , East G rin s te a d (L in g - f ie ld ; 4 ) .

10 (WINC) 1 AAAAEEFA Ham pshire: W inches te r (1 ) .

11 (SKQK) 9 AAAAADFA South Wales: I s le o-f Skokholm (9 ) .

12 (TAUN) 8 AAAAAFFA Som erset: Taur .ion (8 ) .

TOTAL 93

336

Page 364: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .2 t Fragment s iz e s ( in b a s e -p a irs ) c h a r a c te r is in g th e r e s t r i c t io n d ig e s t io n p ro - f i le s o-f th e Y chromosome DNA gen o typ e s , in th e B r i t i s h house mouse (Hus domestic us), u s in g e ig h t r e s t r i c t i o n e n d o n u c le a s e s .1

1 R e s t r ic t io n morphs g iv e n in c a p i ta l l e t t e r s as in ta b le 5 .1 .

% T o ta l number o-f -fragm ents in each morph p r o f i l e f o r e ve ry enzyme.

3 Sum o f th e fra gm en t le n g th s in each morph p r o f i l e f o r e ve ry enzyme.

337

Page 365: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .2 : FRAGMENT SIZES (IN BASE-PAIRS) CHARACTERISING THE RESTRICTION PROFILES OF~Y-CHROMOSOME DNA GENOTYPES IN THE BRITISH HOUSE MOUSE USING EIGHT RESTRICTION ENDONUCLEASES.1

BGL I ECOR I SST I RSA I TAQ IA 1 A A A A B C

9798 2800 4111 1920 9200 9200 92008636 2600 4020 1914 9000 4400 45007791 2000 3967 1472 4400 3400 4400

551 14501446710637

34502B00

2800 34002800

* 3 3 4 7 5 4 5* 26225 7400 12649 9557 28800 19800 24300

HAE I I IA B C D E2450 2450 2450 2450 24501710 1690 1710 1690 17101560 1560 1560 1560 15601400 1400 1400 1480 14801390 1390 1390 1400 14001320 1320 1140 1140 13901140 1140 930 930 1140780 930 780 760 780760 780 760 620 760620 760 620 595 620595 620 595 550 595550 595 550 530 550530 550 530 390 530390 530

390390 390

* 14 15 14 13 143 15235 16085 14805 14095 15355

HINF IA B C D E F3670 3670 3670 3670 3670 36702850 2850 2850 2850 2850 28502400 1990 2400 2400 2200 24001990 1690 I860 2200 1990 22001B60 1590 1690 1990 1690 19901690 1555 1590 1860 1590 16901590 1450 1555 1690 1555 15901555 1350 1450 1590 1450 15551450 1300 1350 1555 1350 14501350 1080 1300 1450 1300 13501300 795 1080 1350 1080 13001080 795 1300 795 1080795 1080

795795

*13 11 12 14 12 13323580 19320 21590 25780 21520 23920 338

Page 366: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .2 : CONTINUED.

X A2070 20701850 18501800 18001520 15201090 1090

830 520520 330330 265265

MBO IB C1950 18501850 18001800 10901750 8201450 3301040 265520330265

D E2040 18501850 18001800 15201520 10901090 520

520 330330 265265

*9 8 9 6 8 7310275 9445 10955 6155 9415 6285

1 R e s t r ic t io n morphs g iv e n in c a p i ta l le t t e r s as in ta b le 5 .1 .

* T o ta l number o f fra g m e n ts in each morph p r o f i l e f o r e ve ry enzyme.

3 Sum o f th e fragm en t le n g th s in each morph p r o f i l e f o r e ve ry enzyme.

Page 367: (Hus domesticus. Rut t y ) - UCL Discovery

Jab 1 e_5 .3 : M a t r i x _ o f _ger c en t _n uc le g t id e _d i v e r gen c e_es t i mat es_and_gr ggor t i_gn

Qf _§ha r ed_ Y -ch rgm gsgm e_D N A _re5 tric tign_ f ragmen t§_j_Nei_8<_Li j__J[979)__fgr_t he

B r i t i s h house mouse (Mus dowesticus)

The Y- genotype numbers and lo c a l i t y a b b re v ia t io n s r e fe r to th e Y-

chromosome DNA com posite genotypes as d e s c r ib e d in ta b le 5 .1 . The f ig u r e s

above th e d ia g o n a l re p re s e n t th e f r a c t io n o f shared fra g m e n ts (F) ove r a l l

d ig e s ts . The pe rcen tages o f sequence d iv e rg e n c e (7.d) e s tim a te d a c c o rd in g

to Nei ?< L i (1979) i s i l l u s t r a t e d be low th e d ia g o n a l. The numbers in th e

b ra c k e ts below th e d ia g o n a l re p re s e n t th e p e rcen tag e sequence d iv e rg e n ce

(’Ad) e s tim a te d a cco rd in g tD U p h o lt (1 9 77 ). A l l e s tim a te s d e s c r ib e d were

c a lc u la te d from fragm ent p a t te rn s gen e ra te d by th e e ig h t r e s t r i c t io n

endonucleases o n ly (S st I , Rsa I , Bgl I , Eco R I, Hae I I I , H in f I , Mbo I and

Taq I ) .

340

Page 368: (Hus domesticus. Rut t y ) - UCL Discovery

z pH VO X VOD CO CO VO CO< CO Ph Ph VOEh CO co O ' X

X o o o orH

« X vO in O 'o CO CO in vO« Ph vO vO pHC/3 CO CO O ' 00

rH d d d drH

u x pH in CMz CO CO CO PHM CO CO in CO3 CO CO O ' CO

o o o o oH

VO vO ch O 'OS CO CO V0 vOOS C" pH C" CO3 CO CO ov COCO « • • #

• o o o oO '

VO o in O 'Q co VO in vOz rH CO vO PHo CO CO O ' x

t • » »• o o o o

CO

0Z

0)P* CO VO Ph vOS Z HJI o in O+> os o pH rH in0 M O ' CO O ' xc CQ • • • •0) • o o o o

o pH

0)g C*H o O ' in0 Eh in rH CM oU O H 00 in VO2 m CTV CO O ' COB0 vO o o O ou

43U

N w CN o rH inos CO P*H O ' inH CO o O ' VOz O ' O ' GO O '

in o o o d

u in VO inos CO CO oM in Ph vO iCO O ' 00 00

O ' o o o

vo inCO r * P» O '

>H O ' CO VO voo CO i CM CM

2 O ' CO • •• • • rH rH

CO o o

00 GO (OX Ph O CO CO vOEh pH O ' CO CO COD rH o o rH rHCO O ' 1 • •

• • rH rH rH rHx o

rH CTV HU" CO CM rHrH O ' O O ' CO CO

X CM rH O ' CO CTV O 'OS Ph Ch CO 00 CO COo 1 • • • • • •

• o o o o o orH w '—

0z

<Urt.s X u■p EH >H X

1 0 2 3 H* C o C/3 03

0 • • •o rH CM CO O '

fI

i

VO X rH X X X XCO rH O' X pH X XpH O' O' X PH X XCO O' X O' O' O' O' 1

o o o o o o d

VO X X X X X X O'CO o X pH X O' O' XVO X X pH X X CTV CTV ICO O' X O' O' O' i O O

o o o o o o o o

in o* X X X X X O' Xo X X rH X O' O' X XPh X rH X O' X X O' O'X O' CTV O' O' i X X CM CM

o o o o o o o o o

_vO X rH X X X X O' O CHCO rH O' X X X O' X X rHch O' O' X O' O' O' O' O' O'X O' X O' i O' O' o o rH rH

o o o o o o d o o ow '—

_X X [H. X O' X X O O' X XCO o X O' X X rH Ph CH X XX X X O' O' O' O' X X X XX O' X i o o X X rH rH X X

d o o o d o o o d o d

rH X X X O' X X X X X O' XO' rH X X rH CTv X X o X rH CTvO' X O' X O' X X X O' X O' XX O' i o o O' O' pH pH o o O' O'

o o rH rH o o o d rH rH o o"" h"

o — O -H x *-* o r-» X "HpH x o; PH CJ X H X X pH O' P h rHX rH 00 O JQ PH £ O £p o B oXX

i «5?o O o o d o

° s° d ° So

*—* .— < -—V rH ^ ^X X O' X X O' PH X X O' CD OV PH XO X rH CTV X X X pH X X VO CO X XM X O' X X X X X X X CO CO X X

1 o o O' CTV CM CM rH rH rH rH CM CM rH rH

rH rH O O rH rH rH rH rH rH rH rH rH rH

. _

O' X X X O O' X rH X o X rH UO rH X O'X X pH O* X CM rH O' X X X X rH OV X XO' O' vO X X X rH O rH rH O O' rH O X XX X X X X X rH rH o o X O' rH rH X X

o o rH rH rH rH rH rH rH rH rH rH rH rH rH rH

- _ ___

O' X X X X X O' X rH X X rH O' X rH XrH O' X pH X X X X PH X X X X X rn VOO' X o o X X O' O' O' O' O' O' O' O' O' O'O' O' O* O' pH pH CM X H rH X X CM CM rH H

d o o o o o o o o o o o o o d dw' '—’

_ _ _

O X X X PH O' O’ X Ch X CD CO X O' PH XO X X O' PH X O* X X X O X X X X XX rH X X X X rH X X X O' X X X X XX X o o rH rH X O' rH rH o o CM CM rH rH

d o rH rH rH rH rH rH rH rH rH rH rH rH rH rHw 'w' v"' H"

_ -

X o X X O' X PH X X X X X CH X X XO' O' X X X O' X X X X o x X X O XO' O' X X O' X X X X X O' X X X O' XO O X pH X X rH rH rH rH o o rH rH o o

o d d o o o rH rH rH rH rH rH rH rH rH rH

o z zu s P OS z o 3X Eh s z H X <H o w o 5 3 C/3 Ehz CQ CQ J C/3• • • • • o rH X

X X pH X O' rH rH rH

Page 369: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .4 : P h y lo q e n e t ic a l ly in fo rm a t iv e r e s t r i c t i o n -fragm ents o f th e B r i t i s h

house mouse_ (Mus dowesticus) Y-chromosome DNA u s in g 8_ _ JIB s t_r_i_c_t_i_on

iD QDycieaseSi

1 The r e s t r i c t i o n endonuc leases -From 1 to 8 in c lu s iv e , fro m l e f t to r ig h t

a re : Bgl I , Eco R I, S s t I , Rsa I , Hae I I I , H in f I , Mbo I , and Taq I .

in d ic a te s no p h y lo g e n e t ic a l ly in fo rm a t iv e fra g m e n ts were o b ta in e d w ith

th a t p a r t i c u la r r e s t r i c t i o n endonuclease.

1 in d ic a te s th e p resence o f th e fragm en t and 0 in d ic a te s i t s absence.

2 See ta b le 5 .1 f o r l o c a l i t y a b b re v ia t io n s and p o p u la t io n c o m p o s it io n s .

3 1 Z

Page 370: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 5 .4 : P h y lo q e n e tic a l 1 y in fo r m a t iv e r e s t r i c t io n -fragm ents o-f th e B r i t i s hhouse mpuse_ (Hus douesticus) Y-chromosome DNA u s in g 8 r e s t r i c t i o niQdonucieaseSj.

PHYLOGENETICALLY INFORMATIVE Y -ty p e BITESnum ber/sample R e s t r ic t io n e ndonuc lease1lo c a t io n 2 1 2 3 4 5 6 7

1. ORK - - - - 010110 0010 10001010 002.SUTH - - - - 010110 0010 00110101 003. MAY - - - - 100101 0010 00000110 104 .SIRE - - - - 010110 1001 10001010 015.NIRE - - - - 010110 0010 10001010 016.B0T - - - - 100011 0010 00000010 107.BIRM - - - - 011010 0010 00000010 108.L0ND - - - - 100101 1011 01000110 109.SURR - - - - 100101 1011 00000110 101 0 .WINC - - - - 101001 0110 00000110 101 1 .SKOK - - - - 100101 1110 00000110 1012.TAUN - - - - 100101 1110 00000110 10

343

Page 371: (Hus domesticus. Rut t y ) - UCL Discovery

F IG U R E ,^ ! • Ib § _ i° c a liz a t io n _ a n d _ p rg B g s e d _ g r ig in s _ o f_ th e j5 x r_ re g ig n _ o f_ th e

0Quse_Y_chrgmgsgmei _ cg n ta in in g _ th e _ 5 e x -d e te rm in i.n g _ § e n e s

Open box sym bols re p re s e n t the un ique s x r - s p e c i f ic sequence re co g n ize d by

th e probe pY8CR/B (B ishop e t a i . , 19B7). The p o s i t io n s o-f Tdy and Hya a re

a r b i t r a r y , as th e e xa c t mapping d e t a i ls a re as y e t unde te rm ined ,

ft. The t r a d i t i o n a l model o-f a p e r ic e n t r ic lo c a t io n o-f th e s x r re g io n on the

long arm o-f th e Y chromosome.

The Y chromosome was p o s tu la te d to be d iv id e d in to fo u r m a jo r re g io n s (see

A i ) : a) th e cen trom ere b) the te s t is - d e te r m in in g genes ( td y ) , th e H-Y

a n tig e n (hya) and th e Bkm re la te d sequences c) a c e n t ra l a rea c o n ta in in g

re p ea ted v i r a l sequences re la te d to M720 and MURUY, d) a te le m e r ic re g io n

in v o lv e d in homologous p a ir in g and re c o m b in a tio n w ith th e X, p lu s th e

s te r o id s u lp h a ta s e gene ( s t s ) . To e x p la in th e o r ig in o f th e s x r m u ta tio n ,

i t was i n i t i a l l y proposed th a t th e p e r ic e n t r ic sex d e te rm in in g re g io n o f

th e Y tra nsp o sed from th e long arm o f one ch ro m a tid to th e te le m e re o f the

o th e r , d is t a l to th e autosomal re g io n . Thus, a t male m e io s is , i t can be

env isaged th a t th e sx r re g io n w i l l be t r a n s fe r r e d to th e d is t a l re g io n o f

th e p a te rn a l X by re c o m b in a tio n , making i t fu n c t io n as a Y chromosome, th u s

in d u c in g t e s t i s fo rm a tio n , d e s p ite th e fem a le (XX s x r ) k a ry o ty p e (E ic h e r ,

1982; Burgoyne, 1982). However, i t i s now b e lie v e d th a t th e s x r (hence ty a

and Hya) a re lo c a te d on th e s h o r t arm, th u s a s im p le r e x p la n a tio n o f th e

o r ig in o f t h i s m u ta tio n can be invoked as shown in B.

B. S ho rt arm lo c a t io n o f the s x r re g io n and s e x -d e te rm in in g genes (B ishop

e t a l . , 1988; R obe rts e t a i . , 1988; M cla ren e t a i , 1988). The s x r m u ta tio n

i s gene ra ted by th e re lo c a t io n o f t h i s s h o r t arm from one ch ro m a tid ( B i ) to

th e d is t a l p a i r in g re g io n ( B i i ) o f th e s is t e r ch ro m a tid by t r a n s p o s it io n o r

non-hom ologous exchange; hence, o n ly one chromosomal break need to be

p o s tu la te d in t h i s model ( B i i i ) .

344

Page 372: (Hus domesticus. Rut t y ) - UCL Discovery

Q_a O 00

Q _

C JB

bO

a.'O T3 u

a.

a.c/5

00u

00. c > -

a . o

tlx

345

Page 373: (Hus domesticus. Rut t y ) - UCL Discovery

FIGyRE-5^2: S oythe rn_B l o t _Anal_^si s _ o f_Y-ChrgmD5Dme_pNA_RFLPS

a) High m o le c u la r w e ig h t DNA i s is o la te d -from t is s u e sam ples ( l i v e r ,

s p le e n , o r s k in ) b) D ig e s t io n w ith a r e s t r i c t io n endonuclease c le a ve s

genomic DNA a t s p e c i f ic re c o g n it io n s ite s ? " v a r ia n t " r e c o g n it io n s i t e s in

th e area o f DNA w ith homology to th e probe (heavy l in e ) a re i l l u s t r a t e d ,

c) A f te r c u t t in g , th e DNA is e le c tro p h o re s e d on an h o r iz o n ta l agarose g e l,

c re a t in g a "sm ear" o f many thousands o f DNA fra g m e n ts o f v a r io u s le n g th s (*

- r ig h t t r a c k ) . Lambda H ind I I I DNA is g e n e ra lly used as a m o le cu la r

w e ig h t marker ( \ “ l e f t t r a c k ) , d) The DNA is dena tu red in t o s in g le s tra n d s

and t r a n s fe r re d to a n i t r o c e l lu lo s e o r n y lo n membrane by th e "S ou the rn

b lo t t in g " te c h n iq u e assembled as i l l u s t r a t e d (1. a s u p p o rt covered w ith 3mm

Whatman paper a c t in g as w icks d ipped in a t r a y c o n ta in in g th e t r a n s fe r

b u f fe r ; 2. th e agarose g e l; 3. th e membrane; 4. 3mm Whatman b lo t t in g

pape r; 5. paper to w e ls ; 6. 1 kg w e ig h t) . The DNA i s f ix e d pe rm anen tly to

th e membrane by b a k in g , e) The membrane i s "p re h y b r id iz e d " and in cu b a te d

w ith a r a d io a c t iv e ly la b e lle d (by "random p r im in g " - F e in b e rg and

V og e ns te in , 1983) s in g le -s tra n d e d probe which h y b r id iz e s to homologous DNA

fra gm en ts on th e membrane, f ) A f te r washing o f f unbound p robe DNA, the

membrane is p laced a g a in s t a shee t o f X -ra y f i lm to d e te c t r a d io a c t iv i t y ,

g) A f te r developm ent o f th e X -ra y f i lm , a reas o f h y b r id iz a t io n can be seen

as da rk bands (denoted by a, b and c ) .

Page 374: (Hus domesticus. Rut t y ) - UCL Discovery

347

26

Page 375: (Hus domesticus. Rut t y ) - UCL Discovery

E i9yr§_5 i3 l_D iagram m atic_reg resen ta tign_g£_an__Y -_chrgm gsgm e_D N A

C 2 5 £ ric tig n _ £ ra g m e n t_ d ig e s ticn _ g rg £ ile s_ g b 5 e rve d _ in _ th e _ 9 3 _ 5 a m g ie 5 _ g £

S riti5 h _ h g u s e _ m g u 5 e _ c l0 a v e d _ w ith _ e ig h t_ re 5 tr ic t ig n _ e n d g n u c le a 5 § 5 i _ u 5 in g _ th e

Y is g e c if ic _ g rg b e i _gY8

The p o s i t io n s and m o le cu la r w e igh t s iz e s o-f th e lambda H in d l l l -fragm ents

a re in d ic a te d to th e l e f t . The -four r e s t r i c t i o n endonucleases Bgl I , Eco

R1, Rsa I and Sst I re ve a le d no v a r ia t io n in any o-f th e house mice sam pled.

Page 376: (Hus domesticus. Rut t y ) - UCL Discovery

CO

ZX u

CO

<X

S'

i\CL

§

g

O

U

co

<

u

CO

<

<<<

I

I I I

I I I I

I I

III II I I I I I I

1 1

1 1

i m m i

i mu I

i a mu i

i m u 11

i

i

i

m i

i i i

n i

III! I I 11 I I

I I I

II I

zX CO

CM

A A♦ ©06 CD

A ACO O CM CM 8

Page 377: (Hus domesticus. Rut t y ) - UCL Discovery

EISURE_5i 4: G e g g ra g h ic _ d is tr ib u t ig n _ g £ _ y a r ia b le _ .Q a g _ IA_ H a e _ IIIA_Mbg_IA_and

H in t_ I2_Y -ch rg jD gsgm e_geng tyggs_ in_ the_B ritish_hgusg_m guse_ itfys_ tfQ »e s t ic u ^ .

R u tty ).

IA Q JL

a a

o o

HINFIM 8 0 1

too

350

Page 378: (Hus domesticus. Rut t y ) - UCL Discovery

EI?yBi_5i5i_Ihree_egual_lLY_£ar5imoniou5_tree5_il_],u5trati. ng_the_£hy]. ogenet i_c

C§liti9QshiBS_amoog_Y_clone5_frDm_British_hgy5e_mgu5e_2gQul_at.l_Dn5i_u5i_ngtb 9 _ Y z lE § £ if i9 _ B C °b e i _gY8i

The arrows in d ic a t e th e branch nodes in c o n f l i c t between th e th re e wagner

ne tw o rks o f equal le n g th (25 s teps) and c o n s is te n c y (0 .7 6 0 ) , c o n s t ru c te d

from th e p resence-absence da ta m a tr ix D-f the 20 p h y lo g e n e t ic a l l y

in - fo rm a t iv e -fragments. The number o-f p o in t m u ta t io n s i n f e r r e d to have

o ccu r re d a long each l in e a g e i s in d ic a te d . The numbers a t th e t i p s o-f each

l in e a g e d e p ic ts the Y c lo n e numbers as g iven in Table 5 .1 ; l o c a l i t y

a b b re v ia t io n s g iven a re as d esc r ibed in Table 5 .1 .

351

Page 379: (Hus domesticus. Rut t y ) - UCL Discovery

2 j r x x x x x x x x x x x x x x s x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 3

2 X X o x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x 0* * x x x x x x x x x x x x x x x x x x x x x

X X X X X X X X X X X X X 5X x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xX 1x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

ox x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

1 X 1; x x x x x x x x x x x x 1 x x x x x x x x x x x

* * X X X X X X X X X X X 0* X I X X X X X X X X X X X X

2 X x x x x x x x x x x x x ox x x x x x x x x x x X 1 x x x x x x x x x x x* * X X X X X X X X X X X 0* * x x x x x x x x x x x

x x x x x x x x x x xXX 0x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

X X* 2x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

O R K N 1

S I R E 4

N I R E 5

S U T H 2

B I R M 7

M A Y 3

L O N D B

S U R R 9

S K O K 1 1

T A U N 1 2

W IN C 1 0

B O T 6

©0 X X X X X X X X X X X X X X X X X X X X X O R K N 1

2 X X X X X X X X X X X X 0X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X N I R E 5

2 X X 3X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X S I R E 4X X 5

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X S U T H 2X 1X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X B I R M 7

oX X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X M A Y 3

1 X 13 X X X X X X X X X X X X 1 X X X X X X X X X X X L O N D S

X X x x x x x x x x x x x 0X X I X X X X X X X X X X X X S U R R 9

2 X x x x x x x x x x x x x 0X X X X X X X X X X X X 1 X X X X X X X X X X X S K O K 1 1X X x x x x x x x x x x x 0X X X X X X X X X X X X X T A U N 1 2

X X X X X X X X X X X X 2X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X W IN C 1 0X 0X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X B O T 6

© o X X X X X X X X X X X X X X X X X X X X X O R K N 12 X X X X X X X X X X X X 3

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X S I R E 42 X * 0

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X N I R E 5

X X 5X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X S U T H 2

* 1X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X B I R M 70

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X M A Y 3

1 * 13 X X X X X X X X X X X X 1 X X X X X X X X X X X L O N D 8

x X X X X X X X X X X X X 0t X I X X X X X X X X X X X X S U R R 9

2 X x x x x x x x x x x x x ox x x x x x x x x x x x 1 X X X X X X X X X X X S K O K 1 1% x x x x x x x x x x x x 0% % X X X X X X X X X X X T A U N 1 2

X X X X X X X X X X X X 2X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X W IN C 1 0

X 0X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X B O T 6

4 3 2 1

A v e r a g e N u m b e r o f S u b s t i t u t i o n s p e r l i n e a g e

352

Page 380: (Hus domesticus. Rut t y ) - UCL Discovery

E I iy B i_ 5i 6i _ i I _ i t r i c t _ c g n s e n s u 5_ t r e i _ ig r _ t h e _ t h r e e _ t r e e 5_gf_egya l_ l.eng th

d e p ic t in g p h y lo g e n e t ic r e la t io n s h ip s between B r i t i s h Hus domesticus Y-

chrgmgsgme_cl.gnesJL_gb ta ined_w it .h_ the_2rgbe_£Y8i

The numbers a long th e l in e a g e s d e p ic t th e number o f p o in t m u ta t io n s

in f e r r e d t o have o c c u r re d (p o s tu la te d number o f shared m u ta t io n a l s te p s ) .

The shaded a rrow i l l u s t r a t e s the major p o in t o f d isagreem ent between a l l

t h r e e t r e e s (p o r t ra y e d in f i g u r e 5 .5 ) .

b) Two major b ranches o f the Y-chromosome e s t im a te d consensus phy logeny f o r

th e house mouse (Hus domesticus R u t t y ) , superimposed over th e g eo g ra ph ica l

sources o f c o l l e c t i o n s . The shaded square and t r i a n g l e symbols d e p ic t th e

"n o r th -w e s te rn ” and "s o u th -w e s te rn " b ranches, r e s p e c t i v e ly . The numbers in

c i r c l e s r e f e r t o th e d i s t i n c t Y-chromosomal com pos ite genotypes as l i s t e d

i n Table 5 .1 . The s o l i d l i n e s in te r c o n n e c t r e la t e d Y-chromosome com pos ite

genotypes.

Page 381: (Hus domesticus. Rut t y ) - UCL Discovery

m m

i p p M iJM /

.•.••/.• 4 •>.* .* •;• ;• .••'

111 Lit ~r z Q cc V z U*•■•** Ld \A r - ls: > Z lC a G z Hcc ■—t i—i =3 i—i □ <L i—! Gc 03 z in CQ z _J 01 in t - Qj

0 0 © @ @ © @ © Q ( g ) ( D 0ifif if if if if if if if if if if -X r

if if if if if if -*■ if if if if ifif if if if if if if if if if if ifif if if if if if if if if if if ifif if if if if if if if if if if ifif if if if if if rH if O if o if o if if ifif if -X r if if if if if if if if ifif if if if if if if if if if if if* if if if if if if if if if if if if if■*■ if if if if if if if if ifif if if if if if if if if if-X r if if if if if if if if ifif if if if if if if if if ifif if if if if if H if if if if■Xr if if if if if if if if ifif if if if if if if if if ifif if if if if if if if if if if if ifif if if if if if if if ifif if if if if if if if ifit- if if if if if if if if-X r if if if if if if if ifif if if if if if if if if* CO if Oif if if O if ▼H if if ifif if if if if if if if ifif if if if if if if if ifi* if if if if if if if if if if if if if if

■*»- if if if if if if* if if if if if if

if if if if if ifif if if if if if

f'4 if in if if rH if r-j if >fif if if if if ifif if if if if ifif if if if if if if if if if if if if if if if

if if if if-X r if if ifif -X r if ifif if if ifif if if if

(Nif rH if INif o ifif if if ifif if if ifif if if if if if if if if if if if

CM

co

L01ainc0

inAn

cn

>+•oLOJ13e

0!CT05X.OJ><1

if*ififif*ifif if

ifr'l if

®in

3 5 4

Page 382: (Hus domesticus. Rut t y ) - UCL Discovery

E I g y g g . ^ Z i - f t - E h g Q g g C g g - g i - l g . _ y DNft c l o n e s i n B r i t i s h Hus domesticus,

9 iQ i!2 5 t e d _ b Y _ y R G M A _ c l u s t e r _ a n a l y s i 5 _ o f _ n u c l _ e g t i d e _ 5 e g u e n c e _ d i y e r g e n c e _ £ d 2

e s t i m a t e s . .

The Y c lo n es l o c a l i t y a b b r e v ia t io n s and numbers are g iven as in Table 5 .1 .

Page 383: (Hus domesticus. Rut t y ) - UCL Discovery

genotype

& lo

cali

ty

numbers

abbr

evia

tion

s

W UOS OSw M s03 2 o■<» in *H

356

0.8

0.6

0.4

0.2

0.0

sequence

dive

rgen

ce

Page 384: (Hus domesticus. Rut t y ) - UCL Discovery

F ig u re 5 . 8 : G eograph ic d i s t r i b u t i o n of compo s i t e DNA ty p e s (MtDNA/ Y)

across Br i t a i n .

Geographic d i s t r i b u t i o n o-f mtDNA and Y chromosome Composites (mtDNA/Y) in

B r i t i s h house mouse p o p u la t io n s d e p ic te d by th e c i r c l e symbols. Shaded and

unshaded c i r c l e s in d ic a t e both mtDNA and Y chromosome c lo n e s from

p a r t i c u l a r p o p u la t io n s are c l a s s i f i e d as b e lo n g in g t o th e n o r th -w e s te rn

(NW/NW) and s o u th -e a s te rn (SE/SE) assem blages, r e p e c t i v e l y ; h a l f shaded

c i r c l e s show p o p u la t io n s w i th SE ty p e mtDNA bu t NW ty p e Y chromosome DNA

(SE/NW). No in c id e n c e o f SE type Y DNA w i th NW ty p e mtDNA was observed in

any o f the p o p u la t io n s in t h i s s tu d y .

GGF

Composite ClonalType m t/Y D N A !# N W / N W

O S E / SE © S E / N W

GGF - Great Glen Fault Line

357

Page 385: (Hus domesticus. Rut t y ) - UCL Discovery

FIGyRE_5i9_i_CgmBari5gn_Df_mtDNA_and_Y_iineage5_in_Briti5h_hguse_nji.ee

iD £ iyd ing_a i_d iye rs ity_g f_m tD N A _and_Y _D N A _ iineages_es t im a ted_by_nuc legn

diYer5ity_ihi_Nei_8c_Ta_iimai_1981i_bi_number_gf_cigne5_ger_majgr_regigni

A). Using th e same s e t o f 5 r e s t r i c t i o n endonucleases (Rsa I , Hae I I I , H in f

I , Mbo I , and Tag I ) and the same p o p u la t io n samples, th e d i v e r s i t y o f th e

p a te rn a l l in e a g e s were compared w i th th e m aterna l ones. Values o f nuc leon

d i v e r s i t y ( h e te ro g e n e i ty , h) c lo s e t o ze ro in d ic a t e la c k o f mtDNA o r Y DNA

com pos ite genotuype d i v e r s i t y , wheras v a lu e s c lo s e t D 1 i n d ic a t e s h ig h

d i v e r s i t y . In a l l 29 p o p u la t io n s sampled, no in c id e n c e s o f h e te ro g e n e i ty

was observed w i th th e Y chromosome. Unshdaded and shaded b lo c k s d e p ic t

p o p u la t io n s c l a s s i f i e d e i t h e r n o r th -w e s te rn o r s o u th -e a s te rn ra c e s ,

r e s p e c t i v e ly . The a s k e r is k in d ic a te s samples from Birmingham, which a re

d es ig n a te d S-E u s in g mtDNA markers, bu t i n th e N-W race u s in g Y chromosome

DNA d a ta .

B ) . Comparison o f th e number o f c lo n e s observed by mtDNA and Y DNA

a n a ly s is , r e s p e c t i v e ly , among house mouse p o p u la t io n s in th e m ajor re g io n s

o f B r i t a i n . The "S .E " and "N.W” l in e a g e s a re as i l l u s t r a t e d ; th e hatched

area in d ic a t e s th e re g io n o f c o n f l i c t (Birmingham) between th e two

m o le c u la r m arkers.

Page 386: (Hus domesticus. Rut t y ) - UCL Discovery

4 0 4

N ° of populations

8 12 16

C3f N.W assemblagem s.e ■

MTDNA Y CHROMOSOME DNA

NORTHERN ORKNEY ISLES (n*5) iMAINLAND ORKNEY ( " - 2 )

CAITHNESS(n*5)

SUTHERLAND (n = / )

IRELAND (n *3 )

m id l a n d s(n =3)

FIRTH OF FORTH (n * / )

SURREY(n=2)

KENT (n - /)

CENTRAL LONDON(n-3 )

HAMPSHIRE (n « I )

PEMBROKESHIRE(n = / )

SOMERSET(r» * 3 )

m

v V N NW ' assemblage ^ SE

I 0 I 3N° of Composite Clones

n - number of populations sampled per region

Page 387: (Hus domesticus. Rut t y ) - UCL Discovery

PLAIE_5JLi : _Sguthern_b lo t_analys i5_gf_a)_Eco_RJ_b]._bgth_Ha§_m _and_H i_nf_J

d ig e s te d house mouse (Hus donesticus R u t ty ) from v a r io u s B r i t i s h

l 9c a l_ i t . ie 5_ u s in g _ th e _ 5xr_Y3S B e c i f ic _ 2rgbej._gY8

Genomic sou the rn b l o t s o f the house mice DNA from v a r io u s B r i t i s h

l o c a l i t i e s , h y b r id iz e d t o th e Y - s p e c i f i c pY8 probe. Each lane c o n ta in s

a p p ro x im a te ly 10j*g o f DNA. A l l samples were d ig e s te d to c o m p le t io n w ith

th e a p p ro p r ia te r e s t r i c t i o n enzyme a) la n es 1-3! Eco RI b) la n es 1 -6 : Hae

I I I ; lanes 7 -13 : H in f I . E le c t r o p h o r e s is , sou thern b l o t t i n g , h y b r id i z a t io n

and washing c o n d i t io n s are as d esc r ibe d in the m a te r ia ls and methods

s e c t io n . Lambda Hind I I I DNA was used as a m o lecu la r w e igh t m arker, some

s iz e s o f which are in d ic a te d in k i lo b a s e s .

a) Eco RI b lo t s :

la n e 1 - Eday male mouse, Orkney A rc h ip e la g o ; lanes 2 and 3 - I s l e o f May

m ice. F i r t h o f F o r th , N orthEas t S c o t la n d , male and fem ale r e s p e c t i v e ly .

The probe pYB d e te c ts th re e Y - s p e c i f i c bands, th e 2KB cognate sequence,

p lu s two homologous bands o f 2 .6 and 2 .8 kb ( i l l u s t r a t e d by th e s t ip u le d

arrowheads) in male DNA (XY), bu t no t i n fem ale (XX) DNA. T h is banding

p a t t e r n d esc r ibe d as "A ” i s t y p i c a l o f a l l male mice examined from the

B r i t i s h I s le s . The bands in lane 2 appear t o be tw ic e as in te n s e as th a t

d e te c te d in lane 1. Re-exam in ing th e photograph o f the e th id iu m bromide

s ta in e d agarose gel ( taken p r i o r t o th e sou the rn t r a n s f e r ) showed

a p p ro x im a te ly 20^\g DNA in lane 2, n e a r ly tw ic e as much as was u s u a l ly

loaded .

b) Hae I I I ( la n e s 1-6) and H in f I b lo t ( la n e s 7-13) b lo t s :

Male mice (XY): la n es 1 and B p r e - i n t r o d u c t i o n I s l e o f May, F i r t h o f F o r th ;

la n e s 2 and 9 - Eday, Orkney A rc h ip e la g o ; lanes 3 and 10 - Thurso,

C a ith n e ss ; lanes 4 and 11 - p o s t - i n t r o d u c t io n I s le o f May (1985-May - Type-

f o r d e t a i l s , see ) ; la n es 5 and 12 - H a rra y , Main land Orkney; lane 7 -

360

Page 388: (Hus domesticus. Rut t y ) - UCL Discovery

I dN

lH

III 3VH

CD

3

A A

AX

XX

AX

AX

AX •

AX

AX

-<

▼£! CQ

*: cq

2 CQ

G) CD

00 CQ

CQ

<D i

LO CQ

^ <w ■ w- m wA A A A A Q A a A A

..

i # ^ qq

m cni cq♦ > jfr . ir

coo

C \ iC \ j

ICDLOo

<

XX

AX

AX

00 o

c\j c\i

1 \

9

£ A A00 CD o

r\jc\i c\j

00 I

CNI <

1- <

Page 389: (Hus domesticus. Rut t y ) - UCL Discovery

Westray, Orkney Archipelago.

The arrowheads (shaded - p a t te r n B. For both Hae I I I and H in f I d ig e s t s ;

unshaded p a t te r n A f o r Hae I I I d ig e s ts o n ly ) i n d i c a t e th e p o s i t i o n s o f a l l

bands in th e p r o f i l e , as a few bands were f a i n t , th u s d id n o t pho tog raph

c l e a r l y a t th e t h i s exposure (4 d ays ) . Longer exposure t im e s enhanced a l l

the se f a i n t bands, bu t a ls o s i g n i f i c a n t l y in c re a se d th e background.

The la c k o f one fragm ent (a p p ro x im a te ly 930 bp) d e p ic te d by th e open

c i r c l e s d is t in g u is h e s between Hae I I I p a t t e r n s A ( la n e s 1 and 4) and B

( la n e s 2 ,3 & 5 ) . Only one banding p a t te r n B was observed w i th th e enzyme

H in f I i n t h i s a u to rad iog ram .

362

Page 390: (Hus domesticus. Rut t y ) - UCL Discovery

PLAIE_5i 2: Sou ther n _ b lo t_ a n a ly s is _ o f _ a2 _ Ia g _ I_ and_b2_R sa_ I_ -_ res tr i .c ted

house mouse (Hus domesticus R u t ty ) DNA u s in g Y -spe c i - f ic probe pY8.

Genomic so u th e rn b l o t s o-f DNAs, i s o la t e d from male house m ice, d ig e s te d

w i th a) Taq I ( la n e s 1-6) and b) Rsa I ( la n e s 1-11) and d e te c ted by th e

s in g le - s t r a n d e d 32P la b e l le d Y - s p e c i f i c probe (pY8). Approx im ate s iz e s in

k i lo b a s e s (kb) were o b ta in ed us ing th e m o le c u la r w e igh t marker, lambda Hind

I I I , a re shown a t th e r i g h t of each a u to ra d iog ra m .

The l e f t panel a) i l l u s t r a t e s th e th re e Y -genotype p a t te r n s observed w i th

Taq I r e s t r i c t e d DNAs* lanes 2-5 i l l u s t r a t e p a t te r n A, la n es 1 St 6 showing

p a t te r n s C and B r e s p e c t iv e ly . The la n e d e s ig n a t io n s are as f o l lo w s : lane

I - l in g a g n e , I s l e o f Man (SF); la n e 2 - East G r in s te a d , Kent (EG); lan e

3 - B irm ingham, M id lands (BIRM); lane 4 - Taunton, Somerset (TAUNT); la n e 5

- Skokholm, Pem brokesh ire (SKOK)j and la n e 6 -W es tray , Orkney (WEST). The

shaded c i r c l e s (o) d e p ic t the fragm ent d i f f e r e n c e s between p r o f i l e s .

The r i g h t panel (b) i l l u s t r a t e s th e monomorphic p a t te r n observed in a l l

mice sampled in th e su rvey w ith th e r e s t r i c t i o n enzyme Rsa I ( a l l p a t te r n

A). Lane a b b r e v ia t io n s are as f o l l o w s : Lanes 1 and 2 - Faray and H array ,

Orkney (FARAY and HARR, r e s p e c t i v e ly ) ; la n e 3 - B a rnac lavan , C a ithness

(BAR); lane 4 - Achiemore, S u the r land (ACH); la n e 5 - B e l f a s t , N o rthe rn

I r e la n d (BELF); la n es 6 and 7 - B irmingham and B u r to n -o n - T re n t , M id lands

(BIRM and BOT, r e s p e c t i v e l y ) ; lane 8 - N u t f i e l d , S u rrey (NUT); lane 9 -

W inche s te r , Hampshire (WINCH); la n e 10 - Fulham, London (FUL); and lane

I I - Skokholm, Pembrokeshire (SKOK).

363

Page 391: (Hus domesticus. Rut t y ) - UCL Discovery

TAQ

I RS

A I

' * 1 <~N rsi

/e>/S

z i d j

H D N IM

Z1 (1N

m i g

y v g

I- <Q <

o » <

, 00 < r - <<©<

<

CO <

CM <

- <

Zal L Uh~

t

TNI

(iS3M3>/S

^ iN n v i^ w y i g

OV- rsi

’ im» »>

I x> a i

S O °Q

I T ) <

T f <c

o

zQCUJh ~h -

a .

Page 392: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 5 .3 : H y b r id i z a t io n o-f Mbo I - d ig e s te d house mouse (Hus domesticus

Byti I_DNAs_wi_th_the_Y-SBecif ic_ergbei_2Y8i

Genomic DNA was e x t r a c te d from i n d i v id u a l male mice from v a r io u s B r i t i s h

l o c a l i t i e s , and d ig e s te d w i th Mbo I . The DNA (10 g ) was separa ted on a

0 .8 '/. agarose g e l , s o u th e rn b lo t t e d and h y b r id iz e d w i th th e Y - s p e c i f i c

p robe , pYB. App rox im a te s iz e s in k i lo b a s e s (kb) a re in d ic a te d to the l e f t

and r i g h t o f the a u to ra d io g ra m s . The s ix d i f f e r e n t Y - p r o f i l e s (p a t te rn s A-

F) observed in th e B r i t i s h su rvey us ing Mbo I a re p o r t r a y e d . P a t te rn A was

observed o n ly in th e la b o r a to r y in b re d s t r a i n s (C 57b l/6 ) as shown in lane

8. Lanes 2, 3, 4, 7, 9, 10 and 13 - John ’ CT G ro a ts , C a ith ne ss (JOG);

Sanday, Orkney (SAND); Eday, Orkney (EDAY); B e l f a s t , N o rthe rn I re la n d

(BELF); Yaphur, M a in land Orkney (YAPH); H a rray , M ain land Orkney (HARR);

L ingagne, I s l e o f Man (SF) - r e s p e c t i v e ly , a l l i l l u s t r a t e p a t te r n B.

P a t te rn C i s shown in la n e s 1, 11, and 12 - O l r i g , C a ith ne ss (OLRIG);

B arnac lavan , C a ith ne ss (BARN); and Achiemore, S u th e r la n d (ACH),

r e s p e c t i v e ly . P a t te rn D was o n ly observed in la n e 5 - B u r to n -o n - T re n t ,

M id lands (BOT). P a t te rn E was seen in lanes 6 and 14 - Fulham, London

(FUL); and Wimbledon, S u rre y (WIMB). The l a s t p a t t e r n F was observed in

lanes 15-21 i n c l u s i v e . The la n e d e s ig n a t io n s a re as f o l l o w s : lanes 15 and

16 - Skokholm, Pem brokesh ire (SK); lane 17 - N u t f i e l d , S u rrey (NUT); lane

18 - East G r in s te a d , Kent (EG); lane 19 - W inch e s te r , Hampshire (WINCH);

lane 20 - Taunton, Somerset (TAUNT); and lane 21 - I s l e o f May, F i r t h o f

F o r th , N.E. S co t la n d (MAY).

The shaded c i r c l e s in d ic a t e s m ajor fragm ent d i f f e r e n c e s between p r o f i l e s .

365

Page 393: (Hus domesticus. Rut t y ) - UCL Discovery

MBO

1

SlAVWZlI N f l V l >HDNIM

£

C\J C\J

frSxs p |sm i M

CO u jt I

CO OQ

CNI OQ

tDIVIO

Page 394: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

CHAPTER &TITLE: Differential spread and gene flow of mitochondrial PEA and Y- chromosome PEA In an Island populaton of the House mouse (Hus damestlcus Rutty).

6,1, IITRQDUCTIQI.

Where either physical (extrinsic) or ecological (intrinsic) barriers

limit migration within a species populations are expected to show

genetic differentiation. A recurring debate in evolutionary biology

concerns the relative importance of gene flow as an evolutionary force

in shaping population differentiation. Mammals have the ability to move

and hence disperse; dispersal is a prerequisite for gene flow. Mayr

(1963) considers gene flow as a retarding influence on speciation,

suggesting that this mobility promotes population mixing, and the

disruption of local adaptations, subsequently preventing genetic

divergence. However, due to the complex nature of most mammalian

systems, intrinsic factors involving territory maintanance, specific

mate choice and habitat preferences, often lead to a more directed

dispersal. This would restrict the level of gene flow, promoting

inbreeding and giving rise to genetic differentiation of neighbouring

populations (Wright, 1946). Indeed, Ehrlich & Raven, (1969) suggested

gene flow is of minor evolutionary significance because many organisms

disperse little.

In the light of these differing views, it is necessary to ascertain the

role of gene flow and its effect on natural populations and to

367

Page 395: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

investigate whether intrinsic barriers do indeed limit gene flow between

diverging populations.

Hybrid populations formed when previously separated populations come

into breeding contact can provide valuable information about the nature

and importance of genetic exchanges in evolutionary biology. The

analysis of restriction fragment length polymorphisms <RFLP s) are

excellent molecular tools for detecting such exchanges between groups;

the most frequently used in population studies have hitherto been those

of mitochondrial DMA (mtDIA) which provides a definitive maternal

molecular marker of population structure and patterns of intraspecific

geographic variation (Avise et al., 1987; Avise, 1986, 1989; Wilson et

al., 1985). The sex determining chromosomes of the heterogametic sex

(the Y chromosome in mammals) represents a genomic analogue of the

mitochondrion: it is unisexually inherited and remains haploid in the

genome. Because recombinations involving the non-homolouous region of

the Y chromosome are effectively non-existant genes in this region can

be used as a paternal molecular marker (Bishop et al., 1985).

In April 1982, 77 House mice (Mus domesticus Rutty) from the island of

Eday (Orkney Archipelago) were introduced onto the Isle of May (Figure

6.3) in the Firth of Forth, Scotland (Berry, 1986), where there was

already a flourishing mouse population (Southern, 1938; Triggs, 1977).

Most studies have indicated that mouse populations are socially rigid,

divided into small demes of between four to six adults, with very little

gene flow between them (reviewed by Klein, 1975). Therefore, genetic

drift would be expected to play a major role in population

368

Page 396: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

differentiation in this species (Defries & McClearn, 1972).

Consequently, any immigration into an established population is

expected to be unsuccessful (Reimer & Petras, 1967; Anderson et al.,

1964 ; Lewontin & Dunn, 1960). There is some indication that this

concept is too inflexible, as a small amount of gene flow between

adjacent demes has been documented (Myers, 1974; Baker, 1981; Berry,

1986; Lidicker & Patton, 1987). The introduction of Eday mice onto the

Isle of May was surprisingly successful, supporting the latter view.

Introduced Eday alleles (monitored by six blood allozyme markers and

three Robertsonian translocations; Berry et al., in prep, and Scriven,

in prep, respectively) spread very rapidly through the native May

population, to the extent that eighteen months after the introduction

virtually every mouse on the island carried Eday-originating alleles.

It has been suggested that a comparison of patterns of variation in

autosomal and sex specific markers (such as mtDNA and the Y) will reveal

differences in male and female population structure, and may highlight

sexual differences in behaviour and ecology (Moritz et al., 1987;

Harrison, 1989). Hence, mitochondrial DNA and Y-chromosome analyses have

been used in this study to assess the relative maternal and paternal

contributions in the successful introgression of Eday mice into an

already established island population of wild mice, with the aim of

understanding the extent and role of gene flow in natural populations.

369

Page 397: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

6.1.2. THE ISLE QP MAY STITDY AREA.

The Isle of May is the outermost island in the Firth of Forth,

approximately six miles south of Fifeness, eleven miles east of North

Berwick in the Lothian region and five miles south east of Anstruther.

The May is approximately sixty hectares in extent, one tenth of which is

rocky foreshore; it is about one mile long, and a third of a mile in

breadth at its widest point. It is an exposed part of a single sill of

olivine-dolerite (commomly refered to as greenstone), the long axis of

which runs northwest to southeast (Walker, 1936). Additionally, it is

transversed from east to west by a number of cleft like faults, the

three most prominent of which divide the island into four parts at high

water namely; North Ness, Rona, Main May and Maiden rocks.

The ecology of the island and its mice have been described in detail by

Eggeling, (1960) and Triggs, (1977, 1990). Generally, the Isle of May is

drier than the adjacent mainland, the rainfall averages about 22" per

year, and is evenly distributed across the isle, with neither markedly

wet or dry periods. There is a temperature range from approximately 4 °C

(39 °F) in mid-winter (January) to 13.7 °C (56.7 °F) in midsummer

(July).

The Isle of May is home to only one species of mammal other than the

house mouse (Mus domesticus), the rabbit (Oryctolagus cuniculus). The

common predators of the house mouse are absent from the island; only the

lesser black-backed gulls (Larus fuscus), and perhaps migrating/visiting

short-eared owls (.Asio flammeus) take a negligible number of mice each

year. The soil on the isle is very shallow and is generally of poor

Page 398: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

quality, hence the vegetation consists primarily of grasses (for example

Festuca rubra; Agrostis stolon! fera), sorrel iRumex acetosa) and sea

pink (.Armeria marltima); additionally, there are no trees present on the

island.

It is not known how long house mice have been on the May. The first

record of human occupation was in the twelfth century with the building

of a priory (Stewart, 1868; Muir, 1885; Duncan, 1959), but the first

documented sighting of mice was in the mid nineteenth century, yet, mice

could have been inadvertantly introduced by man at any time.

6.2. MATERIALS AID METHODS.

6.2.1. Collection nf ^umpire;Samples in this study were hand caught mice from corn ricks from five

northern Orkney Islands (except Faray, which were live-trapped in

Longworth traps). A list of locations, sample size and capture dates are

outlined in Table 6.1. Mice from south Eday were caught from the same

location on Eday as the introduced mice, from three sampling years,

1980, 1986, and 1988, respectively. Additionally, mice were caught from

the opposite (northern) end of Eday, 10 kms from the other site, in

1988.

Mice from the Isle of May were live trapped using Longworth traps

involving 185 traps in 37 groups of 5 (Figure 6.1- Trap site locations)

during the autumn for 5 consecutive nights (Triggs, 1977). May animals

(post-introduction) were randomly collected from the island in September

371

Page 399: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

1985 (n=35), September 1986 (n=60) and, September 1987 (n=76). Twelve

mice descended from pre-introductory Isle of May samples were also

studied. The methodology of estimating population sizes on the Isle of

May by capture-mark-release are given by Triggs (in prep) and Berry et

al., (in prep).

2*2»_.IitQchQndrlal DIA -Preparations;Mitochondria of pre-introduction May and Eday mice were prepared from

the liver, heart and kidneys of single mice by the method of Lansman et

al., (1981) and mtDNA was highly purified by cesium chloride

ultracentrifugation according to Brown et al., (1979), and Carr &

Griffith, (1987) [section 2.3.1.3 -chapter 21. The mtDNA was digested

with fourteen type II restriction endonucleases (Hind III, Xba I, Acc I,

Ava II, FnuD II, Hinf I, Taq I, Mbo I, Hae III, Rsa I, Alu I, Dde I, Sau

961, and Hpa II) to screen for variation within and between the two

island populations. The fragments were separated in 5% vertical

polyacrylamide gels, for three hours. The fragments were visualised

using silver staining as described by Tegelstrom (1986) [section

2.3.1.6.1 - chapter 23. Each restriction fragment profile was mapped

using the high resolution sequence comparison technique (Cann et al.,

1982; Cann & Wilson, 1983; for details see chapter 3). Sequence

divergence (Base substitions per nucleotide) were estimated from the

proportion of shared restriction sites using equation (16) of Nei & Li

(1979).

MtDNA from post-introduction mouse samples (Sept* 1985, 1986, and 1987)

were isolated according to a modified version of Powell & Zuniga's

372

Page 400: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SII

(1983) phenol extraction method (Jones et al., 1988- in Appendix 6.1;

full details see section 2.3.1.2 in chapter 2). The mtDMA was digested

with Taq I and Mbo I and the fragments separated and stained as above.

These two restriction endonucleases are cheap, reliable, not prone to

producing partial digestions, and have a high salt tolerance. They

produce diagnostic DMA fragments distinquishing between the two initial

island populations.

6.2.3. I-chro»snae Preparation.High molecular weight DMA was isolated from shin taken from the tail tip

(section 2.2.1.3 - chapter 2) of pre-introduction male mice of both

islands, cleaved with type II restriction endonucleases (Bgl II, Eco RI,

Taq I, Sst I Hinf I, Mbo I Rsa I, and Hae III), and electrophoresed in

0.8% agarose gels in TBE (89mM Tris-HCL, 89mM boric acid, 2mM EDTA, pH

8.0). The DMA fragments were denatured and transferred to membrane

filters (Gene screen plus - Dupont MEM research products) according to

the method of Southern (1975). The blots were prehybridised in 50%

formamide, 1% SDS (Sodium dodecyl sulphate), 1M MaCl, and 10% dextran

sulphate solution at 42°C, and filters were hybridised in the same

solution with the addition of an alpha 32P dCTP (3000 Ci/mmol; Amersham

International) oligolabelled (Feinberg and Vogelstein, 1983, 1984) Y-

specfic sequence probe (for details see chapter 5) pYCR8/B (kindly

provided by C. Bishop, of the Pasteur Institute). The blots were washed

twice in 2 x SSC (1 x SSC = 0.15 M MaCl/ 0.015 M Ma citrate) at room

temperature, 2-3 times in 2 x SSC, 1% SDS at 65°C for 30 minutes each,

and finally, once in 0.1 x SSC at room temperature. Autoradiography was

Page 401: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

performed using Dupont HEN intensifying screens and Kodak.X.AR-5 film

at -70°C.

Only Hae III produced useful, routinely scorable variation. Hence, using

a Y-specifiic probe sequence, high molecular weight DMA from post­

introduction mice (Sept 1985, 1986, and 1987) was screened with Hae III

restriction enzyme, the digestion profiles of which can be used as a

reliable paternal marker for the introduced Eday Y genes. Sequence

divergence (base substitutions per nucleotide) were estimated from the

proportion of shared restriction fragments (F-value) using to equation

(20) of Hei & Li, (1979).

6.3. RESULTS.Estimates of total population sizes are given by Berry et al., (in

prep).

6.3.1. Mitochondrial DMA genetic markers:The fourteen restriction enzymes used to screen for differences between

Eday and May cleaved each rntDNA molecule at approximately 296

restriction sites. This corresponds to over 1271 recognised base pairs;

approximately 7.8% of the mitochondrial genome. Original (pre­

introduction) Eday mice (from the south of the island) and mice from

adjacent Orkney Isles (Westray, Faray, Sanday, Stronsay, and north Eday)

were monomorphic for 11 restriction enzymes (Hind III, Hinc II, Acc I,

Xba I, Hpa II, Ava II Fnud II, Hae III, Taq I, Hinf I, Mbo I), studied.

Three enzymes (Alu I, Rsa I and Sau 96 I) distinquished between the

Northern Orkney islands. Each restriction fragment profile identified,

374

Page 402: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SII

for a given enzyme, was given an arbitruary letter, so that each

mitochondrial genotype could be described by a 14 letter code, the

"composite mt genotype" ("A" being reserved for the pattern appearing in

the mtDBA. of known base sequence CKBS3 - Bibb et al., 1981). Three

composite mt genotypes (clones 1-3) were observed in northern Orkney,

clone 1 being the predominant type observed; the frequencies of mt

clones in each sampling locality is given in Table 6.1. The single

genotype found in (pre-introduction) Isle of Kay mice was very different

(clone 9). There was no within sample variation in either the pre­

introduction May (clone 9) or south Eday populations (clone 1) as shown

in Table 6.1. Figure 6.2 summarises the possible transformations for the

32 restriction site differences (losses or gains, relative to the known

base sequence [KBS]), characterizing both Eday and Kay, for all 14

restriction enzymes used, including the two enzymes (Taq I and Mbo I)

chosen as genetic markers. The percentage sequence divergences ip)

between between the two islands is 0.41% (S = 0.9456).

Five restriction enzymes failed to distinguish between May and Eday (Xba

I, Hinc II, Acc I, Hpa II and Fnu D II), Of the remaining nine enzymes,

which showed differences, the majority produced either small sized

fragments or enzymes sensitive to partial digestion [representative

restriction digestions are given in: Plate 6.1, lanes 1 & 2 - Hinf I

digests; Plate 6.2, lanes 1 & 2 - Alu I digests]. However, the combined

use of each of the single digestions of Taq I and Mbo I, gave

distinctive, unambiguous markers and these were routinely used to

distinguish between May and Eday mtDMA (Plate 6.3). For Taq I, May mice

shows pattern A (as in the KBS- see lane 1, Plate 6.3) as illustrated in

375

Page 403: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

lane 3 of Plate 6.3, whilst Eday has pattern B (lane 2, Plate 6.3),

which differs from the former by a single site loss at position 9577,

resulting in the loss of fragments sized 1907 and 258 bp, replaced by a

larger (easily recognisable) 2167 bp fragment. Similarly, digestion of

May and Eday mtDHA using Mbo I results in patterns V (lane 9, Plate 6.3)

and 0 (lane 10, Plate 6.3) respectively. These patterns differ from each

other by two site losses and two site gains, the most distinctive being

the gain of a site at position 10564, which results in the loss of a

fragment of 1344 bp in the May profile (V pattern) and the gain of two

smaller fragments (the sum of the latter), 1034 bp and 310 bp. For full

details of the fragments characterising these profiles and their

respective restriction site differences consult chapter 3, tables 3.1,

3.2 and 3. 3A-IT.

6.3.2. The Y chromosome genetic markers:Identical, monomorphic digestion profiles for May and Eday Y-chromosome

DMA were obtained using five restriction enzymes namely: Bgl II, Eco RI,

Rsa I, Sst I, and Hinf I (Plate 6.4, lanes 1-4 illustrate the

monomorphic pattern obtained for May and Eday with Rsa I enzyme).

However, three restriction enzymes (Taq I, Mbo I and Hae III) produced

polymorphic digestion patterns, the most distinctive being that from Hae

III, which distinguished between May and Eday by the lack of one

fragment (approx 930 bp) in the May profiles (Plate 6.4, lane 9). Plates

6.5 and 6.6 show representative autoradiograms of Hae Ill-digested DMA

from random post-introduction Isle of May mice from September 1986 and

1987, respectively, with the Y-specific probe. This illustrates the

relative rarity of the MMay-typeM Y-chromosome (Plate 6.5, lane 1; Plate

376

Page 404: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTES SIX

6.6, lane 13) in both these sample years and conversely, the abundance

of "Eday-type" Y chromosome (Plate 6.5, lanes 2-14; Plate 6.6, lanes 1-

13).

May mice differed from Eday mice by 8 fragments out of 58 for the set of

enzymes employed, giving an F-value (number of fragments in common) of

0.9048, and a percent sequence divergence of 0.839% (See chapter 5 for

full details).

As with mtDHA analysis no within sample variation was detected in either

pre-introduction May or Eday populations, using the Y specific probe.

6.3.3. Monitoring of the introduced Eday genes using mtDHA and Ychroaosoae DIA;The progress of introduced Eday mtDHA across the Isle of May (diagnosed

by the restriction patterns of the Taq I and Mbo I marker enzymes; Plate

6.3), was plotted in successive samples from September 1985 to 1987

(Figure 6.3). Inspection of the distribution of genotypes showed a

spread of introduced mtDHA, although, due to the small sample sizes

involved, spatial heterogeneity could not be statistically demonstrated

(G-statistic, r x c; Sokal and Rolf, 1981). The September 1985 sample

(Fig.6.31) showed a spread from the site of introduction (the release

point near the south end of the island) to the mid central area; the

September 1986 mtDHA data (Fig.6.311) illustrates the introduced mtDHA

has progressed a little further northwards , but not as far as the tidal

islet of Rona; by September 1987 (Fig.6.3III) the population appears to

have become totally mixed, the introduced mtDHA being found on all parts

of the island including the tidally separated Rona and Horth Hess.

Temporal spread (from Sept' 1985 to 1987) of introduced mtDHA across the

377

Page 405: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

four designated areas of the island (A-D) from the release site in the

south to the north of the island is illustrated in Figure 6.41,

Eday mtDHA frequency introduced on the island was estimated to be 7%; by

September 1987 it was 27.6% (taken as a percentage of total population

sampled). At the time of the introduction, the papulation size of

endemic Kay mice was estimated to be approximately 1000 lndivduals and

77 Eday mice were introduced. Thus, the Eday mtDHA population increased

by approximately 20% in the time following the introduction. However,

this increase must have occurred soon after the introduction as there is

no significant increase (G h Cdf =2 3 = 0.378, P > 0.5, H.S) in total

frequency of Eday mtDHA from Sept'85-7 (Figure 6.5I-mtDHA>.

Figure 6.411 shows the distribution of the Eday Y-chromosome (as

diagnosed by the restriction enzyme Hae III - Plate 6.5) from September

1985 to September 1987. The Y-chromosome data set was too small for

statistical analysis of spatial heterogeneity (as only males could be

examined). However, the distribution of genotypes indicates that the

introduced Y-chromosome spread much faster than mtDHA. By 1986, the

introduced Y was distributed across the whole island (only one male

individual was taken from the north end of the isle in 1985, thus no

confidence can be placed on this sampling year). Overall frequency of

introduced Y-chromosome (Figure 6.51- Y-chromosome) did not

significantly increase between Sept* 1985 and 1987 ( G h Cdf = 23 = 0.094,

P > 0.9, H.S), when it was found in 87.7% of the male mice.

Page 406: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

The composite genotype of each male mouse (mtDHA / Y-chromosome) from

September 1985 to 1987 (Figure 6.6 I—III), illustrates the micro-

geographic subdivision of the island. In September 1985 (Fig 6.61) the

composite type 'M/E' (ie. animals carrying May mtDBfa and an Eday-derived

Y chromosome) was the most frequent genotype (overall frequency =

0.635), found in two major areas of the isle, South May (ie. near the

release site- area A) and Mid-north (area C, the far centre of the

island). By September 1986, ’M/E* was approximately evenly distributed,

across the island; a similar pattern was observed in September 1987

(Figure 6.7). Genotype 'E/E' was the next most frequently found (mean

overall frequency from Sept* 1985-7 = 0.245), albeit distributed in two

main areas, namely around the original introduction site and in an

isolated pocket towards the north of the island in both the September

1985 and 1986 samples. By September 1987, 'E/E' genotype was distributed

evenly across all parts of the island. Genotype 'E/M' was not found in

September 1985, and only occurred at a low frequency (0.06) in the

southern central area (area B) in September 1986. In September 1987,

'E/M' was found in two major regions, the mid-south (as was observed in

1986), and the far north of the isle (although observed at lower

frequencies in both areas, 0.03). Genotype 'M/M' was comparatively

rare, (only 0.06), confined to the north end of the island

throughout.The observed overall frequencies of each composite genotype

(Figure 6.51I) did not vary significantly with sample year (1985, 1986

and 1987; Gh Cdf = 6] =4.81, P > 0.1, H.S).

379

Page 407: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

6.4; DISCUSSIQI.The success of this introduction compared with earlier attempts

(Anderson et a l 1964; Anderson, 1964) may have been due to the

favourable conditions prevailing at the time of the release.

Specifically, the absence of predators on the Isle of May (Triggs,

1990), the release of a relatively large number of Eday individuals (7%

of the estimated native May population) in spring (the start of the

breeding season) and the clearing of resident mice from the release

point. Hence, every effort was made to afford the Eday mice a successful

introduction. Once established the superior fitness of the Eday stock

rapidly became apparent. This could have been because Eday mice were

better competitors. Interspecific (Berry & Tricker, 1969; Berry et al.,

1982) and intraspecific (Lidicker, 1966; Bronson, 1979) competition

deter the house mouse very easily, such that they normally appear to

avoid competition rather than overcome it (Lidicker and Patton, 1987;

Dueser and Potter, 1986). However, casual observations of both pre­

introduction populations suggest that the more aggressive Eday mice have

slightly larger litters than original May mice (King and Triggs,

unpublished observations), and were more outbred. Endemic May mice were

unusual in being monomorphic for nearly 100 allozyme loci, whereas Eday

mice have considerably more allozymic variation (average heterozygosity

(H) = 7% per locus). According to some authorities this could mean that

they are better able to cope with competition in a biologically complex

environment than their inbred congeners (Van Valen, 1973; Hamilton et

al., 1990).

380

Page 408: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

Mice from all the sample localities in this study belong to the same

species Mus d o m e s t lc u s Rutty, but data from analyses of mtDHA (Ferris e t

a l . , 1983; chapter four), the Y-chromosome (chapter five), morphometries

(Davis, 1983), and from historical evidence, suggest there is a north-

south distinction, indicative of separate origins; Eday and May mice are

respectively of the "northern" and "southern" genotypes. If rates of

mtDHA divergence for rodents are similar to those of primates (2-4% base

substitutions per million years - Brown e t a l . , 1979) the divergence of

May and Eday mice from a common ancestor would have occurred

approximately 160-320,000 years ago. However, northern Europe was

glaciated and uninhabitable to house mice until about 8000 years ago

(Kerr, 1983), suggesting the northern and southern groups originated

from separate introductions, rather than i n s i t u divergence from a common

ancestor, as insufficent time has elapsed to account for the observed

sequence divergence. Yet there is the possibility that rodent mtDHA may

evolve at a faster rate than 2-4% per million years (Vilson, pers comm),

notwithstanding, May and Eday mice are genetically distinct and, as a

consequence of the introduction, two very different genomes were brought

into contact.

Despite this genetic dissimilarity the introductions bred successfully

with the endemic May mice, which were quickly replaced by animals

carrying Eday alleles. As early as six months after the release of the

Eday mice, an estimated 26% of the population carried at least one Eday

originating allele (as monitored by allozymes: Berry et a l . , in prep).

Most "hybrids" were found in the South May area near the release point

(Figure 6.8 III) but a few were found at the north end of the isle; even

Page 409: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

one at North Ness. Eighteen months after the introduction virtually

every mouse on the island was of mixed ancestry (carrying at least one

diagnostic introduced Eday autosomal marker: allozyme variant - Berry et

al., in prep; Robertsonian fusion - Scriven, in prep; or inferred from

nuclear encoded Y-chromosomal DNA -this study). Cancommitant

morphological changes in the population were observed and ascribed to

this hybridisation event (Scriven & Bauchau, in prep). In comparison

with these nuclear markers introgression of introduced mtDNA was much

slower.

The introduced autosomal genes, and the Y chromosomal DNA, could be

regarded as defining a panmictic population by September 1983, at which

time Eday mitochondrial patterns were found exclusively near the

introduction site. A more or less uniform distribution of mtDNA was only

achieved some four years later. By September 1987, frequencies of

introduced Eday allozymes was twice that of the introduced mitochondrial

DNA (approximately 0.3 compared to 0.65), while the introduced Y-

chromosome frequencies were three times higher than the former (0.9). A

similar situation pertains in natural populations of the pocket gopher

(Geomys pinetls') and the deer mouse (Peromyscus maniculatus), where

local populations are substantially more differentiated for

mitochondrial than for autosomal genes (Avise et al., 1979; Lansman et

al., 1983).

There are several hypotheses, none of which is mutually exclusive, which

may account for the relatively slow local spread of introduced mtDNA

382

Page 410: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

markers compared with the those on the Y and the autosomes. These

include:

Firstly, there may have been differential mortality of the introduced

females. Following the release of 77 Eday individuals (35 of which were

female) in April 1982, approximately one quarter (20 mice - 10 males and

10 females) were recaptured only days after the introduction. These mice

were found at a variety of distances and in all directions from the

release point. However, six months later, several original Eday and May

mice were recaptured (identified from ear and toe clipping CTwigg, 1976]

as mice from the April 1982 census). Although equal numbers of male and

female May mice were caught from trap lines across the whole island

there appeared to be an excess of Eday males (restricted to the South

May region) over females (7 males : 0 females). Figure 6.81 and II

(males and females, respectively) illustrates the distribution of

original pre-introduction recaptures by sex from a sample later the same

year (September 1982).

Secondly, if there were a bias towards males in the adult sex ratio,

this would contribute to the slow spread of mtDNA, and the low overall

frequency of introduced Eday mtDNA. Berry (1968) suggests there is no

such bias in house mouse papulations, although there are too few

reliable estimates to be confident. However, Delong (1967) observed that

males predominated in low density groups just prior to population

expansion in a feral population, whereas females appeared to predominate

in high density situations. The deficit of females in this sample could

be due to a sex bias in trapping. It has been suggested this is not

attributable to an innate difference in trap reactions of the sexes,

383

Page 411: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

females being relatively 'trap shy' (Young et al., 1952), but probably

because males generally range further than females (Berry and Jakobson,

1974; Delong, 1967; Rowe et al., 1964), and thus encounter more traps

(Brown, 1953).

Thirdly, selection for advantageous alleles on the Y chromosome, or the

effects of male mediated gene flaw, may have contributed to the rapid

spread of the introduced Y chromosome. Feither hypothesis need be

mutually exclusive. It is highly implausible to invoke the former as the

sole explanation because the selective advantage of the Eday males would

need to be exceedingly high (H. Barton, pers comm). The second

possibility of highly asymmetric dispersal (and gene flow) by the sexes

is more probable. If the introduced Eday males spread immediately

(within six months) over the whole island, reaching a frequency of

approximately 0.1 everywhere, with a high selective advantage (perhaps

attributable to greater reproductive success over May males), an

increase to the present overall frequency of 0.9 can be envisaged.

Similarly, if Eday females were primarily sedentary and remained

predominantly near the release point, filling approximately 10% of the

island, only a small increase in the frequency of Eday mtDHA would be

expected. This scenario is supported by the widespread high frequencies

of Eday Y genes, the local and comparatively slow spread of Eday mtDHA,

and the uniform distribution, at intermediate frequencies, of Eday

autosomal markers (allozymes and Robertsonian fusions).

If transmission genetics alone explain the slow spread of introduced

mtDHA, then a similar pattern should have been apparent for the Y-

384

Page 412: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

chromosome. Uniparental inheritance of both mtDHA (maternal) and Y

chromosome DHA (paternal), assuming an equal sex ratio, effectively

reduces gene flow to about a quarter that of a diploid nuclear genetic

system. Therefore, the frequencies of both Y and mtDHA genotypes should

be more sensitive to stochastic processes, founder events (colonisation

or introductions) and population bottle-necks, than are autosomal genes

(Avise et al., 1984b; Wilson et al., 1985). Yet, Birky et al.,i1983) show

that populations will be effectively subdivided for organelle genes, at

migration rates at which autosomal genes are panmictic. Moreover, this

effect will be greatly accentuated (fourfold) if there is preferential

dispersal by males, in which case a more widespread distribution of Y-

chromosome genes relative to the mtDHA genes might be expected.

The results of this study confirm that mitochondrial DHA markers are

sensitive indicators of female-mediated gene flow revealing larger

interdemic differences than autosomal markers, especially if females are

the sedentary sex ((Birky et al., 1983; Takahata and Palumbi, 1985;

Birley and Croft, 1986; Moritz et al., 1987). Spatial distribution data

from Y-linked genes compared with mtDHA markers should reflect

differences between male and female population structure, providing

information on ecological and behavioural differences between the sexes

(Harrison, 1989), including confirming suspected sex bias in dispersal

(Lansman et al., 1981). The widely documented phenomenon of differential

dispersal of the sexes (Greenwood, 1980) is suggested by the

microgeographic differentiation of the composite (mtDHA/Y) genotypes.

The high percentage frequency of 'M/E' (May mtDHA/ Eday Y) composites

indicates that there may be male biased dispersal and that the Eday

385

Page 413: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

males are Involved in a disproportionately higher number of matings than

May males.

There appears to be at least three types of dispersal in house mice;

"seasonal'* involving both sexes of all ages: "ontogenetic" concerning

juveniles of both sexes, although males tend to predominate; and

"colonisation" dispersal, typically females in reproductive condition

(Berry and Jakobson, 1974, 1975; Lidicker, 1976, 1985; Lidicker and

Patton, 1987). Homeranges (Burt, 1943) of native May mice are between

100-400 metres; which varies according to the natural topography, age,

maturity, and season, regardless of sex (Triggs, 1977). Table 6.2

summaries the documented homerange sizes and dispersal distances in

various habitats and at different population densites. Overall, males

tend to have slightly larger ranges than do females, but the difference

is not significant.

Yet, equal dispersal rates of both sexes, does not necessarily mean that

each sex contributes equally to gene flow. If nearly all the females are

inseminated, female dispersal permits the dispersal of both paternally

and maternally derived genomes, whereas male dispersal results only in

the flow of male-derived genomes. Thus equal dispersal of both sexes

produces a male-biased pattern of gene flow. Desalle et al., (1987)

reported equal rates of dispersal by both sexes of Drosophila

mercatorum, but still observed differeniation with regard to mtDNA

relative to the nuclear markers. Additionally, a male mouse can father

several litters within the time it takes a female to produce a single

litter, consequently this limitation on female reproduction means male-

386

Page 414: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

mediated gene transmission rates can be many times higher than those of

females.

Most matings in the house mouse are achieved only by dominant

individuals of both sexes (Wolff, 1985; Hurst, 1987a). Hence polygyny

results in a higher proportion of non-reproductive males than females,

and consequently higher rates of extinction amongst Y lineages (May?)

compared with mitochondrial lineages (Poulton, 1987). This is suggested

by the relative rarity of individuals with both May-type mtDNA and Y DNA

('M/M'), and those with Eday-type mtDNA and May-type Y DNA CE/M'). The

former were found exclusively in the far north of the island, furthest

from the original release site, while ’E/M' types, absent in 1985, were

predominantly central in location in 1986 and 1987. How might these

observations be explained? By some form of mate choice perhaps?

There is strong evidence that major histocompatibility complexes (MHC)

influence mouse mating preferences, through urinary odours, promoting

disassortative mating (reviewed by Boyse et al., 1987). Disassortative

mating occurs when there is a tendancy to prefer a novel mate to a

familiar one (ie. the rare male effect [ RME]; Partridge, 1988). Male and

female mice of dissimilar H-2 haplotype appear to consort with one

another, using urinary odour, to the relative exclusion of those that

have similar H-2 haplotypes (Yamazaki et al., 1976; Beauchamp et al.,

1985). Similarly, Lennington (1983) showed females used olfaction to

discriminate between males carrying different t-alleles. The incidence

of pre-implantation pregancy blockage (the "Bruce effect" - Bruce, 1959;

Bruce and Parrott, 1960) by a strange male was higher when the new male

387

Page 415: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

differed in MHC genotype from the mate; urinary scent was sufficent to

produce this effect (Yamazaki et al., 1983 1986).

Figueroa et al., (1986) have shown that both endemic May and Faray

(adjacent to Eday in the Orkney archipelago) mice, in spite of their

limited XHC polymorphisms, have quite distinct H-2 haplotypes. Eday and

Faray mice are genetically similar with respect to mtDMA markers,

Robertsonian fusions and allozymes, and it is reasonable to assume they

have similar H-2 haplotypes. Hence, one might postulate that May and

Eday mice are more strongly attracted to each other than to members of

their own population. However, Cox (1984) believed the reproductive

isolation that occurs between house mouse demes can probably be

attributed to female selectivity; he suggests that females avoid the

odours of alien deme males. When a female "chaoses'1 (or merely accepts)

a mate she may be responding to particular inherant qualities of the

male or fortuitous qualities associated with him (eg. the territory;

Wolff, 1985), or a combination. Alternatively male choice may be the

predominant factor. However, in a high density, free-living house mouse

population matings depended on the repeated movement of both male and

female mice to a particular area (Hurst, 1987b). Unconfined females move

to a mating site when ready to mate, in this way females may be able to

choose between several males.

It is possible that May females could have actively preferred Eday

males, whether by attributes such as smell, territory size and quality,

or by negative frequency dependent mating preferences; the rare male

effect (O' Donald, 1977, 1978; Partridge, 1988). Alternatively Eday

388

Page 416: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SIX

males may have been significantly more successful in male-male disputes,

being more aggressive than the endemic May males, as a consquence

obtaining more territories and hence more matings. Which of these

factors were important in the successful introduction remains unknown.

Detailed knowledge of the social, spatial and genetical relationships

within natural feral populations of house mice are often difficult to

obtain due to their secretive, nocturnal activities and high mortality

(Sage, 1981). Hence, to date only tentative descriptions of their

behavioural and ecological population structure have been possible.

However, by fallowing the temporal and spatial spread of both nrtDIA and

Y-chromosome gene frequencies, albeit in a controlled experimental

situation (closed island population, with genetically marked immigrants

and no emigration), I have shown it is possible to investigate novel

perspectives of house mouse dispersal, social structure and

microgeographic population dynamics, hitherto unavailable for study

(Kessler and Avise, 1985; Desalle et al., 1987; Plante et al., 1989U. In

view of this work it seems unlikely that social organisation in the

house mouse is the oft quoted "rigidly structured permanent intrinsic

barrier to gene flow".

389

Page 417: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 6.1: Frequencies of mitochondrial PEA composite genotypes observed among Northern Orkney Isles (including Eday) and pre-introductlon-lsle

of May samples of house mice (mus damestlcus. Rutty).

Letters describing mtDNA's, from left to right, refer to restriction

fragment digestion patterns for the fourteen restriction endonucleases

utilised namely: Hind III, Xba I, Hinc II, Acc I, Ava II, Fnud II,

Hpall, Hae III, Taq I, Mbo I, Hinf I, Alu I, Rsa I and Sau 961,

respectively. The number in brackets refers to the mtDNA composite

genotype (clone). The number of mice sampled per locality is indicated,

simailarly, the total number of mice sampled that show a particular

mtDNA clone is illustrated. - not observed.

* Mice caught by hand when corn ricks are dismantled for threshing (from

a single locality unless specified below).

+ Mice caught by live-trapping with baited "Longworth" traps.

1 Mice (caught in 1986), from two central Vestray sampling localities,

were pooled; 2 samples from single sites in north Eday (1988), Stronsay

(1986) and Sanday (1980); 3 mice pooled from the south Eday locality

from three sampling years, 1980 (n=12), 1986 (n=46), and 1988 (n=6),

respectively; A mice collected from across the whole area of the islands

in both pre-introduction Isle of May (1980) and Faray (1986) samples

respectively.

390

Page 418: (Hus domesticus. Rut t y ) - UCL Discovery

o >•,ti. id

o <H □xip 0) l-l H 0)Cl,

T *(U>Picuto

,oo

W)<i>do

r—4o

HidT“lP . to

T * <uc i p (0□ -r-4

x l to 0)u p :a P!

p O p .t H •H O0 P

o dp <1) uo rH aj

H x lV) a -pCU o (-••H Ou i2!p ia>3a "<uP.

u .

■i

<dt jd«dw*f*X<dmdaP.pw4 -4<dP*<d

<dtJw

uw

\QJO•H <ue d

o0 H1=3 o

0)CL,

Pa ,—s

pi A

a) dfaO

<y«sj dS25 □QP o«

oo• CM1 1 1 r- i H

oo,—t 1 1 1 CO

ooT—t 1 1 1 CM

in inO) o. . Oo o 1 1 CM

oo. 00rH 1 1 1 in

o oin ino o 1 1 <o

o c>- CMCO H O. - <y>o O o 1 in

CM oco OJ <£)rH rH CM r-t t—l

pq o O < \pq o O < <uPQ o « U-> aO o O •a} ■HO o o > 0pq pq pq -alX X X -al Pa cq <=* cq O II■<! ■< <•—y -j n<*1 -al ■«*! -«s P«*1 <1 <*1 <*3 tH<j3 «*5 <d < rH p*Hpq cq pq -d (d <d

p oT—( OJ CO ■d- o QV rH

391

Page 419: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 6.2; Homerange and dispersal estimates in house mouse populations.

Homeranges are generally smaller for commensal populations as compared

with feral ones. Hearly all homerange estimates show that males have

slightly larger ranges than females.

[Table modified from Sage, (1981) plus Lidicker and Patton, (1987)3

A question mark by the sex indicates that the data was not segregated

into sexes, thus it is assumed the estimates applies equally to both.

392

Page 420: (Hus domesticus. Rut t y ) - UCL Discovery

TABLE 6.2: Homerange and dispersal estimates In house mouse populations.

Habitat sex Homerange

area length

(ha) SmL

max. distance

. (ml

reference

Indoor M

estimates F

M

F

Chicken coop ?

Fields M

F

Island M

(Vinter) F

(Summer) M

F

Island ?

Island ?

0. 19

0.14

3.9

3.3

13.4

14. 0

13.4

9.8

100-400

6 . 1

3.8

27

Young et al., 1950

Brown, 1953

Baker, 1981

Caldwell, 1964

Lidicker, 1966

500-1500 Berry, 1968

Triggs, (1990)

393

Page 421: (Hus domesticus. Rut t y ) - UCL Discovery

FIGUKB 6.1 : Distribution of Traps during a island census on the Isle of

Hay.

The figure illustrates the locations of 185 traps, placed in 37 groups

of 5 traps around the Isle of May.

Page 422: (Hus domesticus. Rut t y ) - UCL Discovery

Horse Hoi*

W*«t Cliff* ffottom

Quarry

Dnimcarrgh

Wn * C liff* Top

Bishop

P*r*grin*

’ ’ S*mm 3-T*rn

jr ; ; ^

-3, ■ <

Tower Back

Tower Front

Haven Road Graveyard

Holyman’a Road

Lookout

island Rocka

Abova Kettle

Kettle

Ballock

Chair

Chapel

Pilgrim** Bay

Tennia Court

Aidcarron

Q INTRODUCTION SITESouth'Horn

SouthNess

1-*5 TRAP SITES

Lady’s Bed

Cross Park

395

Page 423: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.2; Single restriction enzyme parsimony networks characterising

pre-Introduction Eday and Isle of May mice.

Possible transformations for restriction patterns of house mouse mtDHA

from the Isle of May (Firth of Forth, Scotland) and Eday (Orkney)

digested with each of 14 restriction endonucleases. The restriction

restriction fragment digestion genotypes are indictated by capital

letters as in Table 6.1. The solid lines crossing the branches indicate

the number of restriction site differences (either losses or gains)

occurring between the two types.

396

Page 424: (Hus domesticus. Rut t y ) - UCL Discovery

Five re s t r ic t io n endonucleases revealed no v a r ia t io n ;

Acc I ; Hinc I I ; Xba I ; FnuD I I ; Eday and May p a tte rn A (monomorphic)

Hoa I IEday and May p a tte rn D (monomorphic)

Nine r e s t r ic t io n endonucleases revealed polymorphisms;One five -base cu tte r?

Ava I I

J Eday (N)

1 loss

May (S)

One s ix base c u t te r ;

Hind I I I

B Eday (N)

1 gain

▼A May (S)

Seven fo u r base c u tte rs ;

Hae_in Hin f I A lu_I Rsa I

X Eday (N) C Eday (N) B Eday (N) B Eday (N)

7 2 gains 7: 2 ga ins 4 losses 4 losses; 7 gainst

A May (S)

1 loss

A May (S) A May (S) F May (S)

Sau 96 I Mbo I t Taq I t

B Eday (N) 0 Eday <N) B Eday (N)

«* 1 gain : : 2 gains . . 1 gain2 losses

▼ V \fA Mav (S) W May (S) A May (S)

«: 4 gains 7 7 gains *

397

Page 425: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.3: Distribution of introduced Eday mtDMA cm the Isle of May

from September 1985 to September 1987.

The inset illustrates the introduction experiment, whereby mice from

Eday (Orkney Archipelago) were released onto the Isle of May (Firth of

Forth, Scotland) in April 1982.

The mice were released at the south end of the May as depicted by the

cross (X) in the island maps.

Male samples are indicated by squares and females by triangles;

similarly, Eday and May mtDMA genes are shown by shaded and unshaded

symbols respectively.

The island was divided into four major regions (A-D respectively) for

analysis as illustrated in the September 1985 map of the isle.

398

Page 426: (Hus domesticus. Rut t y ) - UCL Discovery

*3

\Pt}Q&

Page 427: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.4; The temporal and spatial spread of Introduced Eday genefrequencies across the Isle of May in Sept,.' 1985, 19.8.6* and 19fl7i-.L .

Mitochondrlal DBA and II. Y-Chromosome DKA.

The frequencies of both DJTA markers (mtDKA and Y-chromosome DNA markers

respectively) across the four major regions (A-D, respectively) of the

isle of Kay.

400

Page 428: (Hus domesticus. Rut t y ) - UCL Discovery

yNa 'dlxjo^oLljoj

“/v "X W

Q '

f*>l o CO CD ^ CNJ

----------------VNO'IW *W3 (HOnOOUiNI 30 13N3n03U3

4 9 1

Page 429: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.5: Overall frequencies of Introduced Eday genes in September1985. 1986 and 1987; I. Mitochondrial PEA and Y-chrQfflQSQme DEA.IIi

composite genotypes (mtDFA/ Y).

402

Page 430: (Hus domesticus. Rut t y ) - UCL Discovery

A 0N 3M i3U 3

1 3W0S0W0MH0-A

LO CO

avo3 cnonooau* 30 nN3no3a3 Tvyn

4 0 3

Page 431: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.6: Distribution of mitochondrial DIA and Y- chromosome

composites (mtDIA / Y) across the Isle of May from September 1985 to

September 1987.

Open circle symbols represent the composite genotypes (mtDIA/ Y) mapped

across the island in 1985, 1986 and 1987. Unshaded circles illustrates

both mtDIA and Y-chromosome DIA (M/M) from the sample are "May-type";

completely shaded circles where both mtDIA and Y- chromosome DIA (E/E)

in the sample are the introduced "Eday-type'; quarter shaded circles

shows individuals with Eday-type nrtDHA and May-Type Y (E/M) ; half

shaded circles depict the individuals with May-type mtDIA and Eday-type

Y (M/E).

404

Page 432: (Hus domesticus. Rut t y ) - UCL Discovery

asEoi/3©E

u>L > . > •

S S u j u cbJE^ 0 ■ vs ■ vs mm m ms W§ EuiEu f «f2 o ® c # * “

405

Page 433: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.7: Frequencies of each of the composites (mtDJA / Y chromosome

DJA) In the four arbituary regions of the island (A-D) from Sept.1 _1985^

1986. and 1987. displayed graphically^

406

Page 434: (Hus domesticus. Rut t y ) - UCL Discovery

Freq

uenc

y of

com

posi

te

MT

DN

A1 Y

-PR

OB

E

type

s

Sept'1986

Stpt'1985

A B C D [ ABCD| t ABCD' JABCD

M T O N A / Y-CHROM OSOMEc o m p o s it e t y p e s

4 0 7

Page 435: (Hus domesticus. Rut t y ) - UCL Discovery

FIGURE 6.8; The distribution of mice across the Isle of May In September

1982 I. and II. Original pre-introduction mice recaptures (male and

females respectively) III. 'Hybrids' (as monitored by the allozyma

data).

Shaded and unshaded circles in Figure 6.8 I (males) & II (females),

depict recapture sites of original pre-intrduction Eday and May mice,

respectively. Circles connected by arrows indicate samples which were

caught in April 1982 (labelled 1), afew days after the release of the

introduced Eday individuals and then recaptured six months later in

September, 1982 (labelled 2). Unconnected circles indicate samples from

September 1982 only.

Figure 6.8 III illustrates the distribution of post-introduction

"hybrids" (carrying at least one Eday-derived allele) of both sexes

(depicted by the male and female symbols, respectively) in September

1982; most were found clustered near the release site, but afew were

found on the north of the island.

408

Page 436: (Hus domesticus. Rut t y ) - UCL Discovery

409

Page 437: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 6 .1 : Hinf I restriction fragment digests of Isle of May and Orkney

hQusamice .(Xus damesticus,

Mitochondrial DIA isolated from pre-introduction Isle of May (Firth of

Forth, I.E. Scotland) and Northern Orkney Isles, Eday, Westray, and

Faray house mice, by cesium chloride density ultra-centrifugation in a

swingout rotor. The mtDIA was digested with restriction endonuclease

Hinf I and separated on a silver stained 5% polyacrylamide gel. Lambda

Bgl I used as a molecular weight marker is located to the left of the

gel, the sizes (in base pairs) of these fragments indicated alongside.

0 indicates the major fragment differences between the Isle of May and

Orkney mice. The Isle of May (M) individuals, represented in lane 1, has

digestion pattern A (same as the known base sequence), and the Orkney's

namely Eday, Vestray, and Faray (lane 2-4, labelled E, V, and F,

respectively) have a variant pattern C. The fragment differences

observed are in the range 500-200 bp which are too small to routinely

and unambiguously detect, thus this restriction endonuclease was not

employed as a mtDIA diagnostic marker for the Isle of May introduction

experiment.

Page 438: (Hus domesticus. Rut t y ) - UCL Discovery

HINF I

M £ W

BH£!

I

2c

3

c

4c

Page 439: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 6.2: Alu I restriction fragment digests of Isle of May and OrkneyXus damesticus mtDIA.

Mitochondrial DIA isolated from fresh liver by CsCl ultra-

centrifugation, in a swing-out rotor from Xus d am es ticu s from Orkney and

the Isle of May, Firth of Forth, Scotland. Restriction fragment profiles

produced by digestion with the tetranucleotide restriction endonuclease

Alu I, separated on a 5% vertical polyacrylamide gel, and silver stained

are illustrated. Lambda DIA cut with Bgl I enzyme was used as the

molecular weight marker as depicted to the far right of the gel ( / ),

the sizes of some of the fragments are indicated in base pairs to the

right.

Lane 1 shows Isle of May (M) sample, lanes 2-5 show Eday (E), Vestray

(V), and Faray (F), Orkney, respectively.

0 + indicates the major fragment differences between the samples.

There are small fragment differences within Orkney, as well as between

Eday and May samples and as such Alu I enzyme was not suitable as a

mtDIA molecular marker for the introduction.

412

Page 440: (Hus domesticus. Rut t y ) - UCL Discovery

ALU I

M E W W A BGL I

9649

413

Page 441: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE.6.3 ; Tag I and Mbo I restriction fragment profiles of May and

Eday house mice.

Mitochondrial DIA isolated using the simplified phenol extraction

procedure (Jones e t a l . t 1988) from house mice (X us d o m e s ticu s) from the

island of Eday (Orkney) and Isle of May (Firth of Forth, Scotland) and

from May after the introduction of Eday animals in April 1982. The mtDIA

was digestd with Taq I (lanes 1-5) and Mbo I (lanes 6-11). The fragments

were separated by vertical electrophoresis on a 5% polyacrylamide gel

and visualised by silver staining.

Lanes 1 and 11 show mtDIA isolated from an inbred laboratory mouse

(C57B1/6J) digested with Taq I and Mbo I respectively, to produce

molecular weight markers, some of the sizes of which are indicated to

the left and right of lanes 1 and 11 respectively, in base pairs

[calculated from the published reference sequence data -Bibb et al.,

19813. The restriction fragment patterns produced by this laboratory

mouse are, by convention, designated type 'A'.

Mo and Eo are original (pre-introduction) animals from the Isle of May

and Eday, respectively as seen in lanes 3 & 2 (Taq I) and 9 A 10 (Mbo

I). The diagnostic fragment differences distinguishing between May or

Eday types are shown by the shaded squares (Taq I) and triangles (Mbo I)

symbols, with + or - signs to indicate the loss or gain of a fragment

relative to each other. Eday Mbo I digestion profiles (pattern 0) are

very similar in appearance to the known base sequence (pattern A),

however there are small fragment differences which are indicated by the

shaded circle symbols. May Mbo I digests, on the other hand, are quite

distinctive showing pattern V, whilst May Taq I digests are identical to

414

Page 442: (Hus domesticus. Rut t y ) - UCL Discovery

BL/

6 E

c M

0 95

1/7

<?28

/7

958/

7 J

9/7

c?10

/7

M0

Eo

BL

/6

CNCN

CO CD CO CNr * CO r -r ^ O CD CSl

Page 443: (Hus domesticus. Rut t y ) - UCL Discovery

the known base sequence revealing pattern A; Eday Taq I digests show

pattern B.

lanes 4 & 5 (Taq I) and 6-8 (Mbo I) illustrate post-introduction animals

from September 1987; they were designated May or Eday by the two letter

codes of mtDHA composite genotype compiled from both Taq I & Mbo I

enzymes (May -'AV; Eday -'BO').

416

Page 444: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 6.4 : Rsa I and Hae III restriction fragments profiles of genomic

PEA probed with a Y-speclflc sequence from house mice Mus d a m e s ticu s

from the isles of May and Eday.

Southern blots of genomic DMAs, from male house mice, digested with Rsa

I (lanes 1-4) and Hae III (lanes 5-9) and detected by the single­

stranded 32P labelled Y-specific probe (pYCR8/B). Original pre-

introduction (prior to April 1982) Eday animals (lanes 3 & 8 -Rsa I and

Hae III respectively) and May (lanes 4 & 9 -Rsa I and Hae III

respectively), plus post-introduction animals from September 1985,

(lanes 1-2 for enzyme Rsa I and 5-7 for Hae III), are illustrated.

Mo variation between Eday and May populations was detected with Rsa I.

However, Hae III digestion lacked of one fragment (approximate size 930

bp) in the May profiles (lane 9 - indicated by the arrow) when compared

with Eday profiles. Hae III enzyme was chosen to routinely discern May

and Eday Y-Chromosome DMA types after the introduction.

Page 445: (Hus domesticus. Rut t y ) - UCL Discovery
Page 446: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 6 .5 : Hae III restriction fragments patterns produced by Southern

Blot analysis and probed with, a Y-specific sequence from_poatn

introduction Hay house mice from September 1986.

Autoradiograph of post-introduction male Isle of May (from September

1986) genomic DIA digested with Hae III, separated in a 0.7% agarose

gel, southern blotted and hybridised with the 32P labelled Y-specific

probe (pYCR8/B).

Only lane 1 revealed a ' May' type pattern, discernable by the

distinctive lack of the 930 bp fragment (indicated by the arrow), lanes

2-14 were designated 'Eday' type pattern. Lanes 10 & 13 are underloaded

(as indicated in the ethidium bromide stained agarose gel prior to

blotting), and on longer exposure reveal the Eday type pattern.

419

Page 447: (Hus domesticus. Rut t y ) - UCL Discovery
Page 448: (Hus domesticus. Rut t y ) - UCL Discovery

PLATE 6.6 : Hae III restriction fragment patterns produced by Southern

Blot analysis and probed with a Y-specific sequence^from— September

1987 post-introduction Isle of Kay house mice,

Genomic DHA from post-introduction Isle of May house mice from September

1987, digested with Hae III, were electrophoresed on a 0.7% agarose gel,

transferred to a membrane filter by southern blotting and hybridised to

a 33P labelled Y-specific sequence <pCR8/B).

Lanes 2-12 illustrate 'Eday* type pattern; only one individual shows the

'May' type pattern (Lane 13). Track 5 & 11 were underloaded, but both

revealed the 'Eday' pattern on longer exposure times. Lane 1 - female

C57BL/6 DHA which showed no homology to the probe and no hybridisation

bands were detected even after extensive exposures of over 2 weeks. Thus

this Y-specific probe can be effectively used as a paternal molecular

marker.

421

Page 449: (Hus domesticus. Rut t y ) - UCL Discovery

1 2 3 4 5 6 7 8 9 K) 11 12 13

Page 450: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

ZUi_Di§cyssigNi

" I f d i f f i c u l t i e s be not in su p erab le in a d m ittin g th a t a l l th e in d iv id u a ls o f th e same species, and lik e w is e th e species of the same genus, have proceeded from one source, then a l l the lead in g fa c ts o f geographical d is t r ib u t io n are e x p lic a b le on th e th eo ry of m ig ra tio n , to g e th e r w ith subsequent m o d ific a tio n and m u lt ip l ic a t io n D f new forms. We can thus understand th e h igh im portance of b a r r ie r s , whether o f lan d , or w ate r, in sep ara tin g th e severa l zo o lo g ica l and b o ta n ic a l p ro v in ce s ."

(Darw in, 1859. The O rig in o f S p e c ie s .) .

Gene flo w is th e product of an organism 's d is p ers a l a b i l i t y , the

d is t r ib u t io n of i t s h a b ita t and physica l b a r r ie rs to i t s movement. Thus,

both g e n e tic a l and e co lo g ic a l data a re re q u ire d fo r a thorough

understanding of present day p a tte rn s of m icrogeographic v a r ia t io n of a

s p ec ie s . M itochondria l DNA, by v ir tu e o f i t s numerous d e s ira b le p ro p e rtie s

(s e c tio n 1 .2 .1 ) , has proved to be an extrem ely u sefu l m olecular marker fo r

t r a c in g m atria rch a l phylogenies, c o lo n is a tio n and gene flo w among species

and c o n s p e c ific s , and u lt im a te ly fo r in fe r r in g h is to r ic a l phylogeography

(s e c tio n 1 .2 .2 ) . Here I s h a ll discuss th e phylogeography of th e house

mouse, and th e use of s e x -s p e c if ic markers and is la n d p o p u la tio n s fo r

in v e s t ig a t in g models of gene flo w and c o lo n is a tio n events . In a d d it io n , the

l im ita t io n s of mtDNA as a ph y lo g en etic marker and suggestions fo r fu r th e r

work w i l l be discussed.

Zii-.Ii_Phylggeography_gf_the_hguse_m gusei_An_integrated_aBBrgachi

E a r l ie r s tu d ies have i l lu s t r a t e d th e va lu e of mtDNA in co n ju n ctio n w ith

n u c lea r markers in re co n s tru c tin g th e complex e v o lu tio n a ry h is to ry w ith in

and between taxa of the house mouse species complex (B u lf ie ld , 1985;

s e c tio n 1 .3 ) .

4 23

Page 451: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

The fo u r main taxa of th is species complex (Bonhomme e t a i m , 1984; see f i g

1.2A fo r geographic d is tr ib u t io n s ) a re thought to have ra d ia te d from S.E

A sia (M isonne, 1969) to In d ia , A f r ic a , through A rabia and E th io p ia about 1 -

3 m il l io n years ago. At present they e x h ib it a p a ra p a tr ic d is t r ib u t io n ,

y e t , wherever they meet they h y b r id is e . For example, i t has been shown th a t

th e c o lo n is a tio n of Japan by mice was th e r e s u lt o f a t le a s t two in vas io n s

which p a r a l le l those of man. I n i t i a l n u c lea r s tu d ie s using c y to lo g ic a l

(M oriwaki e t a i m , 1986), biochem ical techn iques (Minezawa e t a im , 1979,

1981), and rDNA spacer reg ions (Suzuki e t a i m , 1985), have i l lu s t r a t e d th a t

th e c o lo n is a tio n process of th e Japanese a rch ip e lag o was complex and

m u lt ip le . Two d is t in c t mtDNA typ es , w ith c le a r ly d is c e rn ib le geographic

o r ie n ta t io n s were observed (Yonewaki e t a im , 1981, 1986, 1988). The H u s

w u s c u l u s mtDNA type occupies th e c e n tra l p a rt of Japan, w h ils t th e M u s Wm

c a s ta n e u s mtDNA typ e is r e s t r ic te d to two d is ju n c t areas , th e north and

south p e r ip h e ra l reg io n s . Fu rth er d e ta ile d p ro te in e le c tro p h o re s is data

has, however, i l lu s t r a t e d a predom inantly M u s w u s c u l u s nuc lear gene

component on th e main Japanese is la n d , although a small Mm Wm c a s t a n e u s

element was seen in th e n o rth , but not in th e south (Bonhomme e t a im ,

1989). In te r e s t in g ly , th e l a t t e r study showed th a t mouse p o p u la tio n s from

Ogasawara, south-w estern is la n d s of C h ic h i, had a strong H u s d o w e s t i c u s

component, but was absent from th e main Japanese Is la n d , i l lu s t r a t in g a

p o ss ib le th re e fo ld o r ig in fo r mice in Japan. A d d it io n a lly , Yonewaki Sc

co lleagues (1988) have a lso rep o rted a d o w e s t i c u s type mtDNA in Northern

Kyushu (S a s a g u ri). The M u s w u s c u l u s Y chromosome type predom inates in a l l

th e samples from th e Japanese is la n d s and in Asia in general (Boursot e t

a im , 1989; N ish ioka Sc Lamothe, 1987).

Page 452: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

Considering a l l th e a v a ila b le evidence from mtDNA, n u c lear markers and

h is to r ic a l d a ta , Yonewaki Sc co lleagues (1988) proposed th a t the Japanese

M u s » • m o l o s s i n u s o r ig in a te d from th e h y b r id is a tio n o f a Chinese race of

Mm w u s c u l u s and th e sou th -east Asian subspecies Mm Wm c a s t a n e u s .

They concluded th a t Mm w » c a s t a n e u s was th e f i r s t to co lo n ise Japan from

southern China or southeast Asia and e s ta b lis h e d c o lo n ie s everywhere. A

second c o lo n is a tio n from th e w est, o f Chinese Mm w u s c u l u s la t e r d isp laced

the previous occupants, which were d riven to th e no rth ern reg io ns of Japan,

w h ils t th e Chinese Mm w u s c u l u s s e t t le d in t h e ir p resent day d is t r ib u t io n .

During th is process, ex ten s ive h y b r id is a tio n occurred lead in g to the

heterogeneous nuc lear genotype seen in th e present M u s w , w o l o s s i n u s .

A n th ro p lo g ica l evidence is concordant w ith t h is s cen ario (Egami e t a im ,

1981), not s u rp r is in g in view of t h e ir commensalism w ith man, suggesting

mice invaded Japan w ith humans. The M u s d o w e s t i c u s component observed in

the southeastern is la n d s is probably th e r e s u lt of a very recen t adm ixture.

The c o lo n is a tio n of th e Japanese a rch ip e lag o rep resen ts a c le a r cut case of

r e t r ic u la t e e v o lu tio n , however, a ra th e r d i f f e r e n t s itu a t io n e x is ts in

Europe, where M u s d o w e s t i c u s meets M u s w u s c u l u s and a hybrid zone is

formed (Zimmerman, 1949; U rs in , 1952), ranging north as fa r as Denmark

(Selander e t a im , 1969; van Zegeren St van Gortmerssen, 1981) and south as

fa r as B u lg a ria (Bonhomme e t a im , 1983). The p o s it io n of th is zone roughly

co incides w ith th a t of the c a rr io n and hooded crows ( C o r p u s c . c o r o n e St C.

Cm c o r a x ) (M eise, 1928). E le c tro p h o re tic a n a ly s is o f d ia g n o s tic p ro te in s

from mice trapped across the hybrid zone shows an abrupt and concordant

change of many nuclear genes over 20 k ilo m e tre s (Hunt St S elander, 1973;

Page 453: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

Sage e t a l 1986; Vanlerberghe e t a l 1988a, b ) .

In t r a s p e c if ic comparisons o-f M u s s p r e t u s (a fe r a l spec ies endemic to th e

w estern M ed iterranean , sym patric w ith th e commensal species M u s

d o m e s t i c u s i fo r a geographic d is t r ib u t io n see f i g . 1 .2 B ), u t i l i s i i n g both

mtDNA and allozym e v a r ia t io n have i l lu s t r a t e d c le a r macrogeographic

s tru c tu r in g and d i f f e r e n t ia t io n (Boursot e t a l 1985). Three predominant

mtDNA genotypes were found among 77 in d iv id u a ls using r e s t r ic t io n a n a ly s is

w ith 6 r e s t r ic t io n endonucleases. Each of these r e s t r ic t io n genotypes were

d if fe r e n t ia te d to some e x te n t , and unequally d is tr ib u te d across Europe and

North A fr ic a . In a d d it io n , e le c tro p h o re tic analyses revea led a c le a r

red u ctio n of allozym e v a r ia t io n from North A fr ic a (H = 0 .1 1 4 ) through

Ib e r ia (H = 0 .0 7 8 ) to southern France (H = 0 .0 3 4 ) (J a cq u a rt, 1986).

Considering th a t th e re were no mice in western Europe during th e la te

Q uarternary , the c o lo n is a tio n o f th e Ib e r ia n P eninsula and southern France

from Northern A fr ic a must have been a recen t even t, w ith in th e la s t few

thousand years fo llo w in g the end of the la s t Ice Age. Th is may have

re s u lte d in a succession of founder even ts , each tim e a new area was

co lon ised , producing a g e n e t ic a lly heterogeneous sp ec ies , in s p ite of o ften

considerab le geneflow . In a d d it io n , P le is to cen e mice from N. A fr ic a (dated

approx. 3 MYr o ld ) have been shown to possess p e c u lia r te e th c h ara c te rs ,

s p e c if ic to recent Mm s p r e t u s , but les s e x te n s iv e ly developed. This

provides fu r th e r support fo r th e hypothesis th a t Mm s p r e t u s d i f fe r e n t ia te d

as a geographical is o la te r e s t r ic te d to N. A fr ic a during th e P le is to cen e

b efore spreading to southeast Europe w ith the help o f N e o lith ic n av ig a to rs

(T h a le r, 1986).

Page 454: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

Comparable s tu d ie s o-f M u s d o w e s t i c u s have i l lu s t r a t e d les s geographical

d i f f e r e n t ia t io n in t h is species than in M u s s p r e t u s (mtDNA - F e r r is e t

a i m , 1983; allozym es - B r it to n -D a v id ia n , 1985). Th is lack of

macrogeographic s tru c tu r in g has been a t t r ib u te d to m u lt ip le founder events

due to th is sp ec ies ’ c lo se a s s o c ia tio n w ith man (Bonhomme. 1986a, b ) .

However, d e s p ite th is , ra re v a r ia n ts o ccu rrin g in th e east M ed iterranean

(G reece, Is r a e l , and Egypt) have not been detected in western Europe,

suggesting gene flo w is not strong enough to com plete ly re-hom ogenise

p o p u la tio n s over the e n t ir e s p ec ies ’ range during th e short tim e which M u s

d o w e s t i c u s has been present in western Europe. Although i t may have th e

p o te n t ia l to prevent lo c a l p o p u la tio n s from evo lv in g r a p id ly , and becoming

d is t in c t from the an ce s tra l ty p e . T h is is perhaps e x a m p lifie d by th e ra p id

divergence of is la n d form s, which have lim ite d e x te rn a l gene flo w , and by

mainland p o pu la tions which tend to evo lve is o la t in g mechanisms such

Robertsonian fus ions (Capanna, 1982; B r itto n -D a v id ia n e t a im , 1989).

M icrogeographic s tru c tu r in g is a ls o ev id e n t w ith in B r it is h house mouse

( M u s d o w e s t i c u s ) p o p u la tio n s . In t h is s tudy, I used r e s t r ic t io n s i t e

v a r ia t io n in mtDNA of th e B r it is h house mouse to survey p o p u la tio n s ranging

from the northern is le s of Orkney to the southern co u n ties of Somerset and

Hampshire (Chapter 4 ) , in an a ttem pt to reco n s tru c t th e ir e v o lu tio n a ry

re la t io n s h ip s . Clonal d iv e r s ity was r e la t iv e ly h ig h , e s p e c ia lly in the

southern samples, and a phy logenetic d is c o n t in u ity was observed (as

id e n t i f ie d from hand drawn s in g le enzyme parsim onies and from both

c la d is t ic a n a ly s is and UPGMA phenograms), which d is tin g u ish e d a l l samples

from the north from those in th e south, or ra th e r , a l l those from the

Page 455: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

northw est from those in th e so utheast, because Ire la n d and th e Is le o f Man

are very s im ila r to those from Orkney and N .E . S co tlan d . The gen etic

"break" between th e two types appears to map to th e G reat Glen f a u l t . Such

geographic p a tte rn in g demonstrates th a t d is p e rs a l and gene flo w have not

been s u f f ic e n t to o v e rr id e h is to r ic a l b iogeographic in flu e n c e s on

p o p u la tio n su b d iv is io n on a more lo c a l s c a le . The g en etic d iffe re n c e s noted

using mtDNA analyses were concordant w ith o th e r g e n e tic evidence, in c lu d in g

th e Y chromosomal DNA (Chapter 5 ) , morphometries (D av is , 1983), and

c y to g en e tic data (B rooker, 1982; Nash e t a i m , 1983; Scriven & Brooker,

1990).

A p r e re q u is it fo r understanding and re c o n s tru c tin g th e e v o lu tio n a ry h is to ry

of th e B r i t is h house mouse, is a knowledge of i t s h is to ry and c o lo n is a tio n

p a tte rn s throughout Europe. Although w e ll s tu d ied by g e n e t ic is ts , the house

mouse has a very poor fo s s il re co rd , owing to th e r e la t iv e s c a r ity of

c o lle c t io n s from remote A s ia t ic c o u n tr ie s where th e m a jo r ity of i t s

e v o lu tio n a ry h is to ry occurred (T h a le r , 1986). Thus, th e fragm entary na tu re

of th e a rch a e o lo g ic a l evidence means these data a re of l i t t l e va lue when

considered in is o la t io n . However, to g e th e r w ith g e n e tic , h is to r ic a l and

a n th ro p o lo g ic a l evidence a cohesive p ic tu re of house mouse progression

through N.W Europe to the B r it is h Is le s can be o b ta in ed .

The o ld e s t M u s fo s s il is M u s a u c t o r (Jacobs, 1978) from P ak is tan dated

approxim ate ly 7 MY B .P. The o ld e s t known M urid , dated about 12 MY B.P. is

P r o g o n o m y s c a t h a l a i , found in both Europe and A fr ic a , w h ils t th e o ld es t

specimen south of the Sahara, in E th io p ia , is dated a t 9 MY B.P. Y et, th e

Page 456: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

f i r s t M u s found in A fr ic a dates from about 3 MY B .P . in N. A fr ic a (Jaeger,

1975) and a ls o south of th e Sahara (Jaeger and Wasselma, 1976; S a b a tie r ,

1979, 1982). Biochemical d is c r im in a tio n of the fo u r species of house mice

in Europe (F ig 1.2A; Bonhomme e t a i m , 1984 ), led to c le a re r m orphological

d is t in c t io n s , and improved id e n t i f ic a t io n of th e fo s s i l record (A u ffra y e t

a im , 1989).

The e a r l ie s t remains of M u s d o w e s t i c u s in Europe a re dated about 8 ,000

B.C. from Is ra e l (A u ffra y e t a im , 1988). Th is corresponds to the N a tu fian

a rch aeo lo g ica l e ra , th e s ta r t o f human sedentism and th e e a r l ie s t d w e llin g

(V a lla , 1988). E a r l ie r fo s s il remains in Is ra e l a re those of M u s

s p r e t i o d e s (Mm a b o t t i ) . Thus, i t is p o s tu la te d th a t Mm d o w e s t i c u s

m igrated to Is r a e l , from i t s p lace of o r ig in in S .E Asia (Jacobs, 1978)

about 10,000 years ago. C o lo n isatio n of th e C ircum -M editerranean reg ions

and those areas ad jacen t to i t appears to have been very slow during the

E p ip a le o lith ic to th e N e o lith ic ; s u b fo s s ils were found concentrated around

th e M iddle East dated about 6 -1 0 ,0 0 0 B.P. ( Is r e a l , Cyprus, Turkey, Egypt;

A u ffray e t a im , 1989; B ro th w e ll, 1981). Between th e second and f i r s t

m illen ium (th e Bronze Age), the house mouse e s ta b lis h e d i t s e l f very ra p id ly

in th e West M editerranean Basin, e s p e c ia lly th e M editerranean is le s

(S a rd in ia , B a le a r ic and P ituyses is la n d s ; Vigne & A lcover, 1985), Spain,

and I t a ly . Most l i k e ly , th e increase in n a v ig a tin g a b i l i t i e s and g re a te r

s ea fa rin g d is tan ces aided the spread of th e house mouse from the M iddle

East to many p laces in Europe (Camp, 1980). M u s d o w e s t i c u s f i n a l ly reached

the northwest of Europe during th e Iro n Age (F ran ce- De Rougin, in press;

B r it is h Is le s -C o rb e t, 1974; Yalden, 1977). In c o n tra s t, north c e n tra l

Page 457: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

Europe was co lon ised co n s id e rab le e a r l ie r by Mm w u s c u l u s , from the

N e o lith ic (Belgium - M i l lo t t e & Thevenin, 1988), to th e Bronze Age (H olland

- B ro th w e ll, 1981).

Thus, House mouse se ttlem e n ts in Europe are b e lieved to have g e n e ra lly

accompanied th e estab lishm ent o f human g ra in c u ltu re which spread in two

d ire c t io n s . M u s w u s c u l u s 9 i n i t i a l l y an e n t i r e ly ab o rg in a l form , is thought

to have reached the b a l t ic sea from C en tra l Asia v ia eas te rn Europe along

th e Danube during th e p o s t-g la c ia l optimum. From i t s estab lish m en t in

n orthern Europe, M . w u s c u l u s became a semi-commensal form and subsequently

fo llo w ed th e spread of g ra in -fa rm in g in to n o r th -c e n tra l France. M u s

w u s c u l u s is b e lie v ed to have been presen t over much of n orthern Europe by

4200 B.C. On th e otherhand, M u s d o w e s t i c u s reached Europe much la t e r than

w u s c u l u s , a r r iv in g as a commensal associated w ith th e spread, from North

A fr ic a in to Spain and thence to southern France, o f th e N e o lith ic g ra in

c u ltu re (Zimmerman, 1949). M u s d o w e s t i c u s was probably r e s t r ic te d to th e

west M editerranean b asin , when w u s c u l u s dominated C en tra l Europe. By 3 ,000

B.C. the long is o la te d farm ing t r a d i t io n s of western M editerranean and

northern and eastern Europe made c o n ta c t. The probable zone of contact

between the two species a t th is tim e was thought to l i e severa l hundred

m iles west o f the present day boundary (W aterbolk, 1968). Only by the Iron

Age did d o w e s t i c u s come to occupy southern B r i ta in , no rth ern France, and

western Germany.

The biogeography of these two e x ta n t species prov ides some evidence,

e s p e c ia lly w ith the estab lishm ent of a p en in su la r re fu g e zone in Denmark,

Page 458: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

o f a r e t r e a t of the Eastern species o f H , w u s c u l u s . MtDNA s tu d ie s of

Danish p o pu la tions support these conclusions (Vanlerberghe e t a i m , 1988).

S im i la r ly , th e occurrence of w u s c u l u s s u b fo s s ils in th e e x ta n t area o f

dom esticus a lso confirm s th is h yp o th es is . Moreover, th e mtDNA genome

c a r r ie d by Scandinavian and Danish H u s w u s c u l u s belongs to th e H u s

d o w e s t i c u s lin e a g e , founded by a few backcrossed in d iv id u a ls c a rry in g

n u c lea r w u s c u l u s genes, but a d o w e s t i c u s mtDNA, w ith th e c o lo n is a tio n

proceeding step by step from East H o ls te in , in Germany, is la n d hopping v ia

th e B a lt ic is la n d s to Sweden. T h is p ro v id es evidence th a t th is reg io n was

co lo n ised by w u s c u l u s a f te r co n tact between the two European species of

th e house mouse (G y llensten & W ilson, 1987; Vanlerberghe e t a im , 1988).

Gene exchange occurred when the two forms f i r s t met over 5 ,0 0 0 years ago

and is s t i l l going on today (Hunt & S elander, 1973).

N u c lea r, mtDNA and Y-chromosome DNA markers a l l showed d i f f e r e n t p a tte rn s

of in tro g re s s io n a t vario u s p laces in th e h ybrid zone, in both d ire c t io n

and in te n s ity . For example, in Scandinavia and Denmark th e re is

asym m etrical gene flo w of mtDNA northwards from H u s d o w e s t i c u s to H u s

w u s c u l u s (F e r r is e t a im , 1983b; G y llen sten & W ilson, 1987). C onversely,

mtDNA gene flo w is reversed in th e so u th -eas te rn p a r t (Greece) o f the

h yb rid zone (Boursot e t a im , 1984). As th e mixing o f th e two genomes is not

com plete d esp ite longstanding h y b r id is a t io n , th is i l lu s t r a t e s th a t g en etic

is o la t io n is not n e c e s s a rily equated w ith re p ro d u c tive is o la t io n . S e le c tio n

a g a in s t in trogressed genes has been hypothesized to in v o lv e reduced f i tn e s s

in backcross generations caused by d is ru p tio n of co-adapted gene complexes.

Indeed, th e re is some p a r t ia l male s t e r i l i t y in th e northern h a lf of th e

Page 459: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

zone (F o re jt Sc Iv a n y i, 1974; F o r e jt , 1981), and any hybrids appear to have

a h ig h er p a ra s ite load than the pure p a re n ta l types (Sage e t a im , 1986b).

F u rth e r , th e n o n -in tro g res s io n of th e Y chromosome across th e contact zone

seems to f i t th e hypothesis of codapted gene systems (Bishop e t a im , 1985;

Vanlerberghe e t a im , 1986; Tucker e t a im , 1988).

Biochem ical s tu d ie s o f the house mouse in th e C ircum -M editerranean reg io n

(B r it to n -D a v id a in , 1989; Navajas Y Navarro Sc B ritto n -D a v id ia n , 1989) are

concordant w ith the c o lo n is a tio n hypothesis suggested by th e fo s s il d a ta .

The southern European popu lations of th e house mouse a re g e n e t ic a lly very

s im i la r , and th e re was no c o r re la t io n between phylogeny and geography. Y e t,

M idd le Eastern p o pu la tions are g e n e t ic a l ly more d is t in c t . Th is suggests

th a t th e f i r s t c o lo n is a tio n occurred very e a r ly and was lo c a lis e d to th e

Eastern M editerranean B asin , fo llo w ed much la t e r by a ra p id and recen t

expansion of mice in to Southern Europe. From whence, c o lo n is a tio n proceeded

to N orthern Europe and A fr ic a . Th is is concordant w ith th e known spread of

e a r ly farm ing from th e Near east through th e M editerranean in to northern

Europe from a rch e o lo g ica l and g e n e tic polymorphism s tu d ies of modern human

p o p u la tio n s (C la rk , 1975; Ammerman Sc C aval1 i -S fo r z a , 1985; S okal, 1988).

In view of th e evidence of house mouse progression through Europe i t is

h ig h ly u n lik e ly th a t mtDNA divergences noted between th e two groups (NW and

SE) d efin ed in th is study of B r i t is h p o p u la tio n s , could have a risen in

s i t u , as in s u ff ic e n t tim e has elasped s in ce th e ir c o lo n is a tio n . This

suggests th a t mice of the two groups d iverged elsewhere b efore co lo n is in g

B r i ta in , con firm ing th a t they were in tro d u ced . The e a r l ie s t fo s s il evidence

Page 460: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

in B r i ta in was of pre-Roman Iro n Age in th e south o f B r i ta in , no fo s s ils of

t h is p erio d were recorded in the n o rth . Samples from both th e coasta l

reg io n s o f M ed ite rran ean , through Spain, e s p e c ia lly North Spain and from

Scandinavia (Norway) a re req u ired to r ig o ro u s ly te s t th e c o lo n is a tio n

th e o r ie s o f th e B r i t is h house mouse. At present I can on ly te n ta t iv e ly

suggest, based on h is to r ic a l and a n th ro p o lo g ica l evidence, th a t the

southern typ e co lon ised B r ita in a t the same tim e as th e northw est Europe,

fo r example from France in the la s t m illen ium across th e English Channel,

and th e n orthern type may o r ig in a te more re c e n tly from Norse descent (8 th

century A .D .) due to th e mass m ig ratio n s of th e V ik in g s , but o r ig in a l ly

from th e spread of mice north from southern Europe, a d i f fe r e n t ro u te to

th e w e s te rly and n o rth -w e s te r ly ones. There have been many c o lo n is ts to the

Orkneys, as a p t ly summarised by George Mackay Brown’ s poem " what is an

O rcadian?” (F ig 7 .1 ) , many of whom could p o te n t ia l ly have brought mice w ith

them. However, the an ce s tra l o r ig in s of the Orkney and N-W lin ea g e a t

present remain s p e c u la tiv e , pending fu r th e r in v e s t ig a t io n s .

The area around th e Great Glen f a u l t appears to be an e f fe c t iv e b a r r ie r

p reven tin g th e h y b r id is a tio n of th e two types, as th e re appears to be no

b a r r ie rs to gene flo w fu r th e r south where in d iv id u a ls from th e West

Midlands have mixed ancestry as i l lu s t r a t e d by composite data of Y

chromomsomal and mtDNA d a ta . Th is may rep resen t very re ce n t adm ixture due

to improved communications from the p o rts to the b rew eries . However,

in t r in s ic fa c to rs , such as t e r r i t o r i a l i t y , mate and h a b ita t p re fe ren ces ,

and other s o c ia l t r a i t s , may a lso re ta rd gene flo w (Bush e t a i m , 1977).

Page 461: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

D e s p ite d iffe re n c e s in s t a b i l i t y or d e n s ity , m ale-m ale agression is common

among a l l house mouse p o p u la tio n s and appears to form th e b as is of s o c ia l

s tru c tu r in g in th is sp ec ies . That th e s o c ia l o rg a n is a tio n of commensal

p o p u la tio n s of mice is d iv id ed in to r ig id t e r r i t o r i e s , u s u a lly c o n s is tin g

o f between 4-10 in d iv id u a ls , defended by a s in g le m ale, who dominates

s e v e ra l breeding fem ales , a few of t h e ir o ffs p rin g and some su bord inates ,

i s not d isputed (D e fr ie s Sc MacClearn, 1972; S elander, 1970; reviewed by

K le in , 1975). However, th a t th is "d em ic -s tru c tu re" is ty p ic a l of a l l house

mouse p o pu la tions and agress ive defence l im it s in te r-d e m ic gene flow

(Anderson, 1964, 1965, 1970; Anderson e t a l . , 1964; Anderson Sc H i l l , 1965;

Bennett e t a l . , 1967; Myers, 1974) is to hopeless ly s im p lify th e s itu a t io n ,

(B e rry , 1981; 1986; Sage, 1981). Indeed, n e a rly every lo n g itu d in a l study of

mice l iv in g in a s tre s s fu l f e r a l environment has i l lu s t r a t e d a degree of

p o p u la tio n mixing (L id ic k e r , 1976; B erry Sc Jakobson, 1974), a ls o gene flo w

has been documented in commensal p o p u la tio n s (Baker, 1981). D espite these

s tu d ie s i t is commonly b e lie v ed th a t im m igrants in to an e s tab lis h ed

p o p u la tio n are u n lik e ly to be re p ro d u c tiv e ly successful and g en etic d r i f t

w i l l p lay an im portant r o le in shaping th e ir p o pu la tion s tru c tu re (Reimer Sc

P e tra s , 1967; S in g le to n Sc Hay, 1983).

That th is concept is too in f le x ib le and gene flo w is im portan t in the

e v o lu tio n of n a tu ra l po p u la tio n s (Mayr, 1982) has remained a c o n tro v e rs ia l

issue in e v o lu tio n a ry b io lo g y . One view is th a t gene flo w is common and

ensures th e cohesiveness of species (Mayr, 1963; S ta n le y , 1979). I t can

a ls o be regarded as having a re ta rd in g e f fe c t on s p e c ia tio n , p reventing or

d is ru p tin g lo c a l adap tatio n s through th e constant in p u t o f immigrant genes

Page 462: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

(Rockwell & Cook, 1977). A l te r n a t iv e ly , gene flo w may be uncommon, o f on ly

minor s ig n if ic a n c e in e vo lu tio n because of the low p ro p en s ity of many

organism s, and the s tren g th of lo c a l s e le c t io n to overcome th e e f fe c ts of

gene flo w (E h r lic h Sc Raven, 1969; E n d le r, 1977), Th is view is challenged by

Jackson Sc Pounds (1 9 7 9 ), who observe an in verse re la t io n s h ip between

d i f f e r e n t ia t io n among co n sp ec ific p o p u la tio n s and th e o p p o rtu n ity fo r gene

f lo w . A d d it io n a lly , gene flo w may re p res e n t a new source of g en etic

v a r ia t io n to po p u la tio n s as d is p e rs e rs may c a rry unique genes or gene

com binations. From whatever p e rs p e c tiv e , gene flo w is in te g ra l to the

s u b s tru c tu rin g of species and operates such th a t some le v e l of g en etic

c o n tin u ity is m aintained. The ongoing controversay stems p a r t ly from th e

d i f f i c u l t i e s in measuring gene flo w in n a tu ra l p o p u la tio n s .

G e n e ra lly , th e re are two basic ways to measure gene flo w , " d ire c t" and

" in d ir e c t" methods. D ire c t es tim ates in c lu d e using estim ates of d is p ers a l

d is tan ces (from m a rk -re le a s e -re c a p tu re d a ta ) and th e breeding success of

d is p e rs e rs , to in fe r th e amount of gene flo w a t th a t moment in tim e . Many

problems are encountered w ith t h is approach, in p a r t ic u la r d is p ers a l or

m ig ratio n w i l l not re s u lt in gene flo w unless in d iv id u a ls become p a rt o f

th e breeding popu lation in a new a re a . M onito ring m ig ra tio n over a f u l l

g en era tio n poses serio u s p ra c t ic a l d i f f i c u l t i e s in most sp ec ies ,

fu rth erm o re , in te rm it te n t gene flo w and occassional long d is tan ce d is p ers a l

are v i r t u a l ly im possible to m onitor, but may have im portant evo lu tonary

consequences. A d d it io n a lly , the re la t io n s h ip between d is p ers a l and gene

flo w may be com plicated by non-random mating and s o c ia l o rg a n is a tio n of a

species (Rockwell & Barrowclough, 1987).

Page 463: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

V is a b le mutants may a lso be used in d ir e c t es tim ates of gene flo w

(Dobzhansky St W righ t, 1947; Bateman, 1947a, b; Handel, 1982; G leaves,

197 3 ), but th e s e a re g e n e ra lly ra re in n a tu ra l p o p u la tio n s . An a lte r n a t iv e

approach in c lu d es the a p p lic a tio n of " in d ir e c t H methods (W rig h t, 1943,

1965, 1969; S la tk in , 1981, 1980, 1985b; N ee l, 1973; N e i, 1975; fo r review s

see S la tk in , 1985a, 1987). E m pirica l s tu d ie s have g iven encouraging re s u lts

from in d ir e c t estim ates of gene flo w (S la tk in , 1981, 1985b; Larson e t a l . ,

1984; Caccone, 1985; Singh St Rhomberg, 1987). However, comparisons between

methods have shown th a t th e re a re d iscrep an c ies between estim ates (W arples,

1987; Johnson e t a l . , 1988; but see S la tk in , 1985), and numerous problems

assoc iated w ith a l l approaches which may b ia s r e s u lts (E n d le r, 1977;

E a s te a l, 1986; S la tk in St B arton, 1989; S la tk in , 1981, 1985a, 1987; Larson

e t a l . , 1984).

O ther, le s s prob lem atic d ire c t approaches in c lu d e studying changes in gene

freq u en c ies from an adm ixture o f p re v io u s ly is o la te d , g e n e t ic a l ly d i f fe r e n t

p o p u la tio n s , as has been demonstrated in human (Crawford e t a l . , 1981;

Franco e t a l . , 1982) and g ia n t toad p o p u la tio n s (E a s te a l, 1986). S im ila r ly ,

a c tu a l gene flo w has been measured d i r e c t ly by examining th e spread of

d is t in c t iv e a l le le s in a p o p u la tio n , severa l s tu d ies m onitoring th e spread

of in troduced genes (Jones e t a l . , 1981; Coyne e t a l . , 1982; Baker, 1981;

S in g le to n St Hay, 1983; Murray St C la rk e , 1984 ), such as the Is le of May

in tro d u c tio n experim ent.

Z iliil.F g llo w in g _ g e n e _ flg w _ w ith _ s e x _ s p e c ific _ m a rk e rs

The Is le of May experim ent a ffo rd ed an e x c e lle n t o p p o rtu n ity (chapter 6) to

m onitor th e spread of in troduced Eday genes, from severa l d i f fe r e n t

Page 464: (Hus domesticus. Rut t y ) - UCL Discovery

C H A P T E R S E V E N

p e rs p e c tiv e s , not on ly can conventional n u c lear a l l e le s be monitored but

sex s p e c if ic c o n tr ib u tio n s to gene flo w can be assessed using m aternal and

p a te rn a l s p e c if ic genes, such as mtDNA and Y s p e c if ic DNA sequences.

A d d it io n a lly , th e I s le of May is a closed p o p u la tio n , where em ig ra tio n is

excluded, and immmigration s t r i c t l y m onitored. In t h is s itu a t io n marked

in d iv id u a ls ( id e n t i f ie d by unique com binations of to e and ear c lip p in g s )

can be e a s ily fo llo w ed using m a rk -re le a s e -re c a p tu re methods.

Fo llow ing comparable experim ents (re le a s e of t-h e te ro zy g o u s mice onto Great

G ull is la n d by Anderson & co lleag u es , 1964; in tro d u c tio n of la b o ra to ry mice

onto Shetland is la n d s by Berry e t a l . , 1982), our e xp e c ta tio n was th a t the

in troduced mice might e ith e r form an is o la te w ith in th e e x is t in g

p o p u la tio n , from which a l le le s might s lo w ly in tro g re s s in to the surrounding

demes or th a t they would f a i l to s u rv iv e , d isappearing q u ic k ly . C ontrary to

e x p e c ta tio n , evidence from mtDNA and Y chromosome DNA, Robertsonian

tra n s lo c a tio n s , allozym es and morphometries show Eday mice to have spread

ra p id ly and h yb rid ised w ith the edemic May p o p u la tio n (B erry , T rig g s ,

Bauchau, Jones Sc S criv en , 1990). The in troduced Y-chromosome ap p aren tly

spread a t a ra p id r a te , s im ila r to th e a llozym es, and was u n ifo rm ly

d is tr ib u te d across th e whole is la n d , w h ils t Eday mtDNA increased in

inc idence and d is t r ib u t io n a t only o n e -th ird th a t r a te . Th is suggests th a t

gene flo w was la rg e ly male determ ined, probably a t t r ib u ta b le to such

fa c to rs as male biased d is p e rs a l, d i f f e r e n t ia l male re p ro d u c tive success,

and non-random m ating, none of which are m utua lly e x c lu s iv e . Thus, in view

of these re s u lts , i t is obvious th a t th e re were no s o c ia l b a r r ie rs

r e s t r ic t in g gene flo w .

Page 465: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

However, l i k e many is la n d fo rm s th e o r ig in a l I s le o f May m ice were unusual

in a number o f b e h a v io u ra l/p h y s io lo g ic a l t r a i t s compared w ith t h e i r

m a in la nd n e ig h b o u rs , and th e se may have c o n t r ib u te d t o th e success o f th e

in t r o d u c t io n . Not o n ly d id th e y e x h ib i t s t a r t l i n g l i t t l e g e n e t ic

v a r i a b i l i t y f o r a mammal (monomorphic f o r some 70 enzyme and

h is t o c o m p a t ib i l i t y lo c i - K in g , p e rs comm.) b u t th e y had th e a b i l i t y t o

become t o r p id (T r ig g s , 1977). For a s m a ll mammal w ith a h ig h m e ta b o lic r a te

t h i s b e h a v io u r c o u ld be c o n s id e re d an a d a p ta t io n t o t im e s when fo o d i s

s c a rc e and am bien t te m p e ra tu re s lo w . F u rth e rm o re , T r ig g s (1977; p e rs

com m .), u s in g a r t i f i c i a l n e s ts f i t t e d w ith a m o n ito r in g d e v ic e , d is c o v e re d

th a t th e s e m ice e x h ib ite d some fo rm o f c o o rd in a te d fo ra g in g a c t i v i t y ,

le a v in g and re tu r n in g t o th e n e s t to g e th e r . T h is was in te r p r e te d as

e v id e n c e o f c o -o p e ra t iv e b e h a v io u r, m ice le a v in g t o fo ra g e (pe rhaps n o t

n e c e s s a r i ly to g e th e r ) b u t r e tu r n in g when t h e i r body te m p e ra tu re s ta r te d to

d ro p , warm ing up a g a in by h u d d lin g b e fo re a n o th e r p e r io d o f a c t i v i t y ;

th e re b y c o n s e rv in g an in d iv id u a l ’ s re s o u rc e s . T h is e ve n t was so rh y th m ic

th ro u g h o u t each n ig h t th a t i t seems u n l ik e ly to have been a response to

p re d a to rs .

Hence, th e h ig h c o e f f ic e n t o f g e n e t ic re la te d n e s s in t h i s is o la te d in b re d

p o p u la t io n , to g e th e r w ith th e ex trem e e n v iro n m e n t, may have fo s te re d th e

e v o lu t io n o f c o -o p e ra t iv e b e h a v io u r. In a d d it io n t o th e s e unusua l

c h a ra c te rs o r ig in a l May m ice had s m a lle r l i t t e r s th a n e i t h e r m a in land o r

Eday p o p u la t io n s . T oge the r th e se t r a i t s co u ld be env isag e d as a s u i te o f

a d a p ta t io n s p e r m it t in g e x is ta n c e on an is la n d , where in t e r s p e c i f i c

c o m p e t it io n and p re d a t io n a re m in im a l, b u t food re s o u rc e s a re o fte n sca rce

Page 466: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

and th e p h y s ic a l env ironm en t s e v e re . Thus, th e 1 i f e - h i s t o r y s t r a te g y o f May

m ice i s geared t o low ju v e n i le m o r t a l i t y , a t ta in e d by th e p ro d u c t io n o f a

fe w , ’ h ig h q u a l i t y ’ o f f s p r in g ca p a b le o f w ith s ta n d in g th e r ig o u r s o f t h i s

e n v iro n m e n t by a co m b in a tio n o f t h e i r u n iq u e p h y s io lo g ic a l and b e h a v io u ra l

a d a p ta t io n s .

C o n v e rs e ly , Eday m ice a re commensal w ith man, c o l le c te d fro m co rn r i c k s , a

warm, d ry h a b i ta t where th e re i s a supe r abundance o f fo o d ; a v e ry

d i f f e r e n t e nv iron m e n t t o th a t e x p e rie n c e d by th e f e r a l m ice o f May. The

commensal m ice were n o ta b ly more a g g re s s iv e , perhaps as a consequence o f

t h e i r re s o u rc e r ic h e n v iro n m e n t. Here th e em phasis in 1 i f e - h i s t o r y s t r a te g y

s w itc h e s to m ax im is in g re p ro d u c t iv e o u tp u t w ith th e c o n c o m itta n t expense o f

g re a te r ju v e n i le m o r t a l i t y , w ith m ales com peting f o r access to fem a les

r a th e r th a n re s o u rc e s . T h is , to g e th e r w ith th e low c o e f f ic e n t o f

re la te d n e s s in t h i s o u tb re d p o p u la t io n , may have e f f e c t i v e ly c irc u m v e n te d

e v o lu t io n o f c o -o p e ra t iv e b e h a v io u r; n e i th e r i s th e re e v id e n ce o f

t o r p i d i t y .

Thus, t h i s c o lo n is a t io n even t has p e r tu rb e d th e p o p u la t io n dynam ics o f th e

is la n d m ice . E a r ly census d a ta o f o r ig in a l May m ice (T r ig g s , 1977) d id n o t

show th e s t r i k i n g seasona l v a r ia t io n s in p o p u la t io n numbers now a p p a re n t in

censuses o f th e ’ h y b r id s ’ ; which a re v e ry low in s p r in g and h ig h in autum n,

s u g g e s tin g th e re i s h ig h m o r ta l i t y d u r in g th e w in te r and e a r ly s p r in g . One

m ig h t s p e c u la te th a t t h i s i s because th e a d a p ta t io n s w hich enab led th e

o r ig in a l May m ice to s u rv iv e th e h a rsh c o n d it io n s a t t h i s t im e o f y e a r,

have been d is ru p te d by gene f lo w fro m th e commensal Eday in t r o d u c t io n s .

Page 467: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

ZiIi3l_Cgignisatign_and_5ex_speci£ic_{narl<er5

T w e n ty - th re e mtDNA geno types were obse rved fro m 430 B r i t i s h house m ice ,

assayed u s in g 14 r e s t r i c t i o n endo nu c le a ses ; o f th e s e o n ly e ig h t mtDNA ty p e s

were re p re s e n te d in th e n o r th -w e s te rn g ro u p , f i v e o f w h ich were d is t r ib u t e d

in th e O rkneys and n e ig h b o u rin g m a in la n d , w ith a f u r t h e r th re e geno types

found in I r e la n d and I s le o f Man. The re m a in in g f i f t e e n mtDNA geno types

were r e s t r ic t e d t o m a in land B r i t a in , s o u th o f th e G re a t G len f a u l t . The

d is t r ib u t io n o f s p e c i f i c mtDNA r e s t r i c t i o n fra g m e n t p a t te rn s su gg e s ts a t

le a s t two s e p a ra te c o lo n is a t io n e v e n ts t o th e O rkneys and N .E . S c o tla n d ,

and perhaps th r e e in I re la n d and Man, o f w h ich tw o a re p ro b a b ly o f m ice

fro m th e same a n c e s tra l sou rce as th o s e in th e n o r th . L e v e ls o f mtDNA

h e te ro g e n e ity were much lo w e r w i t h in p o p u la t io n s fro m C a ith n e s s and

S u th e r la n d th a n in th e O rkneys, s u g g e s tin g t h a t th e d i r e c t io n o f

c o lo n is a t io n was fro m th e n o r th e rn O rkneys , t o M a in la nd Orkney and f i n a l l y

t o th e n e ig h b o u r in g m a in la nd . There was no s ig n i f i c a n t re d u c t io n fo r

n u c le a r encoded a llo z y m ic v a r i a b i l i t y in e i t h e r is la n d o r m a in land

l o c a l i t i e s in th e n o r th . Thus, i t appears t h a t th e c o lo n is e rs c a r r ie d a

la rg e amount o f n u c le a r-c o d e d g e n e tic v a r i a b i l i t y , b u t a l im i t e d s e le c t io n

o f mtDNA c lo n a l ty p e s .

Data from Y chromosomal genotypes was much le s s in fo r m a t iv e . O nly two Y

geno types were observed in bo th O rkney and N.E S c o tla n d , and two in

I r e la n d , a lth o u g h e ig h t were found in th e S.E g ro u p , making 12 Y geno types

fro m 91 B r i t i s h m ice exam ined. The few er Y c lo n e s , to g e th e r w ith th e

a pp a re n t la c k o f h e te ro g e n e ity per sam ple lo c a t io n , when compared w ith th e

mtDNA ana lyse s may be a t t r ib u t a b le t o te c h n ic a l p ro b le m s , n o t le a s t o f

Page 468: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

w hich i s sm a ll sam ple s iz e s , lo w e r r e s o lu t io n o f m e th o d o lo g ie s used to

d e te c t v a r ia t io n , and a s m a lle r number o f r e s t r i c t i o n enzymes used to assay

f o r v a r ia t io n . I t may a ls o be a consequence o f sex s p e c i f i c d i f fe re n c e s

in f lu e n c in g p o p u la t io n s t r u c tu r e , most im p o r ta n t o f w h ich a re d i f f e r e n t i a l

male re p ro d u c t iv e su cce ss , and m a le -b ia se d d is p e r s a l . T h e ir r e la t i v e

im p o rta n ce i s d i f f i c u l t t o assess from s t r a ig h t fo r w a r d s u rv e y d a ta .

However, a lo n g i tu d in a l s tu d y o f th e in t r o g r e s s io n o f tw o p o p u la t io n s ,

unam b iguous ly marked f o r Y, mtDNA, and autosom al genes, in an e x p e rim e n ta l

s i t u a t io n would t e s t th e soundness o f th e m e thodo lgy in v o lv e d in th e la r g e r

s u rv e y . J u s t such an env iron m e n t was c re a te d by th e I s le o f May

in t r o d u c t io n e x p e rim e n t. T h is i s a somewhat s im p l i f ie d s i t u a t io n , a h a l f ­

way-house between th e f i e l d and th e la b o r a to r y , and as such an id e a l

e nv irom en t in w h ich t o conduct e x p e rim e n ts a d d re s s in g q u e s t io n s o f

c o lo n is a t io n and p o p u la t io n s t r u c tu r e and dynam ics.

For in s ta n c e , B e rry (1970) suggested th a t th e m a jo r i t y o f n o r th e rn is la n d

m ice o r ig in a te d fro m in t r o d u c t io n s in t o empty h a b i t a ts . However, i f one

is la n d were c o lo n is e d s e v e ra l t im e s , each t im e by m ice fro m g e n e t ic a l ly

d i f f e r e n t sou rce p o p u la t io n s , perhaps ove r s e v e ra l hundred y e a rs , would i t

be p o s s ib le t o d e te c t e v id en ce o f th e s e m u l t ip le in t r o d u c t io n s some

thousands o f g e n e ra tio n s la te r ? . May in t r o d u c t io n e x p e rim e n t d a ta are

u s e fu l in a d d re s s in g such q u e s t io n s , as th e i n i t i a l s i t u a t io n on th e is la n d

can be lik e n e d to th a t w hich a t one t im e may have e x is te d in th e Orkney

a rc h ip e la g o , o r indeed d u r in g c o lo n is a t io n s e lse w h e re . Hence, we have a

system which may r e c a p i tu la te h is t o r ic a l e v e n ts , th e a n a ly s e s o f w hich must

o th e rw is e be a p o s t e r io r i , and th e re fo re n o t o b je c t iv e .

Page 469: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

Upon in t r o d u c t io n g e n e t ic a l ly v e ry d iv e rs e m ice s u c c e s s fu l ly in te r b r e d . As

i s th e case when most in b re d p o p u la t io n s in t e r a c t w ith o u tb re d ’ c o lo n is t s ’

th e l a t t e r a re in v a r ia b ly th e more s u c c e s s fu l. So i t was in t h i s case , w ith

th e Eday males s p re a d in g a c ro ss th e is la n d more r a p id ly th a n th e fe m a le s .

B e ing more a g g re s s iv e th a n th e endemic m ales gave them g re a te r access to

fe m a le s w h ich , to g e th e r w ith th e ’ r a re male e f f e c t ’ , may have c o n t r ib u te d

t o th e ra p id spread o f th e Eday Y a t th e expense o f th e May Y chromosome.

However, th e in tro d u c e d mtDNA appears t o c o - e x is t w ith th e endem ic c lo n e ,

pe rhaps because fem a le d is p e rs a l and f i t n e s s d i f f e r e n t i a l s a re le s s

d ra m a tic . Hence, t h i s lo n g i tu d in a l s tu d y sugges ts th a t th e d iv e r s i t y o f

mtDNA c lo n e s found on in t r o g r e s s io n /c o lo n is a t io n i s l i k e l y t o p e r s is t , o r

even in c re a s e , whereas m a le -m a le c o m p e t it io n e rodes d iv e r s i t y o f th e Y and

w ith i t a l l t ra c e s o f c o lo n is a t io n e v e n ts .

I f , w ith some re s e rv a t io n s , t h i s in t r o d u c t io n e xp e rim e n t i s re g a rde d as a

m icrocosm o f c o lo n is a t io n e ve n ts w h ich must have o c c u rre d d u r in g th e

e v o lu t io n o f B r i t i s h house mouse p o p u la t io n s then i t p ro v id e s a c le a r

unambiguous e x p la n a tio n f o r th e c o n t r a s t in g d iv e r s i t ie s o f Y and mtDNA

c lo n e s . F u r th e r , i t j u s t i f i e s th e c h o ic e o f mtDNA as a p h y lo g e n e t ic m arke r.

7 .1 .4 s L im ita t io n s o f mtDNA as a p h y lo g e n e t ic m arke r.

These must be id e n t i f ie d and t h e i r re le v a n c e e v a lu a te d f o r each p a r t i c u la r

d a ta s e t . The id e a l p h y lo g e n e t ic m arker sh ou ld be f r e e fro m re v e rs a ls , in

a d d it io n to p a r a l le l o r co n ve rg e n t (te rm ed hom oplasy) e v o lu t io n a r y change.

However, many w o rke rs (Lansman e t al., 1983; Aquadro Sc G reenberg , 1983;

George Sc Ryder 1986) have no ted h y p e rv a r ia b le s i t e s w h ich te n d to m uta te

more f r e q u e n t ly than o th e r s i t e s , re p e a te d ly s w itc h in g "o n " and " o f f " , w ith

Page 470: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

re s p e c t t o r e s t r i c t i o n enzyme r e c o g n it io n , d u r in g e v o lu t io n . T h is

phenomenon has been a t t r ib u te d to th e much h ig h e r r a t e o f t r a n s i t i o n a l base

s u b s t i t u t io n s compared t o t ra n s v e rs io n s in c lo s e ly r e la te d s p e c ie s (Lansman

e t al., 1983; Brown e t al., 1982; Aquadro e t al., 1984; A v is e e t al., 1 987 ).

Homoplasy has th e e f f e c t o f in t r o d u c in g a m b ig u ity i n t o p lacem ent o f some

c lo n e s . N e v e rth e le s s , a c tu a l s i t e conve rgences can e a s i ly i d e n t i f i e d by

e xam in ing r e s t r i c t i o n maps f o r p a i r s o f enzymes (" tw o enzyme d ile m m a s";

Lansman e t al., 1983; A v is e Sc Lansman, 1983 ), and e xc lu d e d fro m th e

p h y lo g e n e t ic a n a ly s e s . A ls o , hom oplasy i s id e n t i f i e d when th e t o t a l

n e tw o rk le n g th s exceed th e observed m in im a l m u ta t io n a l d is ta n c e s between

ta x a (o u tp u t d is ta n c e s can be g re a te r th a n in p u t d is ta n c e s ) . S im i la r ly ,

w i t h in th e p h y lo g e n e t ic in fe re n c e s o ftw a re (PAUP - S w o ffo rd , 1985), th e

c o n s is te n c y in d ex (C l - F a r r is , 1970 ), w h ich i s c a lc u la te d as th e sum o f th e

ra n ge s o f a l l c h a ra c te rs in th e d a ta d iv id e d by th e number o f e v o lu t io n a ry

changes on th e t r e e (B rooks et al., 1 98 6 ), i s an in d ic a to r o f th e amount o f

hom oplasy in a t r e e . H igh v a lu e s o f C l in d ic a te m in im a l hom oplasy. The

in c id e n c e o f hom oplasy in c re a s e s th e more d iv e rg e n t th e p o p u la t io n s ; t h i s

s tu d y c o n c e n tra te s on c lo s e ly r e la te d p o p u la t io n s , in a r e c e n t ly d e r iv e d

s p e c ie s , th u s re v e rs a ls and co n ve rg e n t e v o lu t io n a re u n l ik e ly t o s e r io u s ly

a f f e c t th e c o n fid e n c e w ith w hich in t r a s p e c i f i c p h y lo g e n e t ic in fe re n c e s a re

made. The lo w e r c o n s is te n c y in d e xe s f o r t r e e s c o n s tru c te d u s in g in d iv id u a ls

fro m w o rld w id e sam p ling l o c a l i t i e s , u s in g s u i te s b o th two and e le ven

r e s t r i c t i o n enodnucleases to assay f o r v a r ia t io n , compared w ith t r e e s u s in g

th e B r i t i s h house mouse sam ples o n ly , w ith 14 enzymes, i l l u s t r a t e th a t a

la rg e number o f th e c h a ra c te rs in v o lv e d re p re s e n t c o n v e rg e n t, p a r a l le l o r

re v e rs a l e v e n ts . T h is i s p ro b a b ly because fra g m e n ts o f id e n t ic a l m o le c u la r

Page 471: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

w e ig h t were c la s s i f ie d as shared fra g m e n ts , w h ich may have e vo lve d

in d e p e n d e n tly in th e more d is t a n t ly r e la te d l in e a g e s . As mtDNA i s

u n ip a r e n ta l ly in h e r i te d and la c k s re c o m b in a t io n , th e e n t i r e m ito c h o n d r ia l

genome can be c o n s id e re d an o p e ra t io n a l taxo n om ic u n i t (OTU), hence th e

number o f p o s s ib le c h a ra c te r s ta te s a re phenomenal w ith th e consequence

th a t hom oplasy may g e n e ra l ly have m in im a l e f f e c t s on p h y lo g e n e t ic a n a ly s e s

(A v is e et al., 1987).

The use o f mtDNA sequence d iv e rg e n c e f o r th e s tu d y o f in t r a s p e c i f i c

e v o lu t io n a ry h is t o r y may be compromised i f th e genome i s open t o s e le c t iv e

fo r c e s . There i s e v id e n ce o f s e le c t io n o p e ra t in g on th e mtDNA genome a t

b o th th e m o le c u la r and p o p u la t io n le v e ls . The re m a rka b le economy o f

v e r te b ra te mtDNA and th e c o n s e rv a tio n o f gene o rd e r su g g e s ts t h a t th e

genome i s under t i g h t s iz e c o n s t r a in ts ( A t t a r d i , 1985 ). M u ta t io n a l changes

occu r a t d i f f e r e n t f re q u e n c ie s in d i f f e r e n t re g io n s o f th e mtDNA genome

(Daw id, 1972; U p h o lt Sc Dawid, 1977; Brown e t al., 1979 ), th e le a s t v a r ia b le

gene re g io n s a re b o th 12S and 16S rib o s o m a l genes (c h a p te r 3 ; Lansman et

al., 1983; F e r r is et al., 1983; Cann et al., 1984; Ovenden St W h ite , 1990),

in d ic a t in g s tro n g fu n c t io n a l c o n s t r a in ts on most o r a l l o f th e s e base

sequences. Ind e ed , ribosom es have b o th a secondary and t e r t i a r y s t r u c tu r e ,

s ta b l is e d by com plem entary base p a i r in g , w h ich i s e s s e n t ia l f o r t r a n s la t io n

o f p o ly p e p tid e s (H ixson Sc Brown, 1986 ), hence th e d e le te r io u s n a tu re o f any

s ig n i f ic a n t changes in th e se re g io n s .

W ith in th e most v a r ia b le gene re g io n s th e re i s a s ig n i f i c a n t excess o f

s i l e n t s u b s t i t u t io n s , s u b s t i t u t io n ra te s in tw o-codon ve rse s fo u r-c o d o n

Page 472: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

amino a c id - fa m il ie s b e in g in c o n s is te n t w ith th e n e u t ra l model (C hapte r 3 ;

Cann e t al., 1984; W olstenho lm e Sc C la ry 1985), a g a in in d ic a t in g th a t

s e le c t iv e c o n s t r a in ts may be o p e ra t in g . Hence, i t appears t h a t w i th in

an im al mtDNA base sequence p l a s t i c i t y c o e x is ts w ith fu n c t io n a l c o n s t r a in ts

because s u b s t i t u t io n s o ccu r a t e i t h e r " s i l e n t " t h i r d codon p o s i t io n s

(M o r itz e t al., 1987 ), o r th e re i s a p reponderance o f s t r u c t u r a l l y s im i la r

n u c le o t id e t r a n s i t i o n s as opposed to t ra n s v e rs io n s (Brown e t al., 1982;

Aquadro e t al. 1984; W hittam e t al., 1986; c h a p te r 3 ) .

P o p u la tio n sam ples sugges t th e re a re uneven ra te s o f mtDNA e v o lu t io n in

some s p e c ie s , perhaps a t t r ib u t a b le t o b o u ts o f s e le c t io n on mtDNA, making

th e m o le c u la r c lo c k appear e p is o d ic ( G i l le s p ie , 1986; T em p le ton , 1987;

Vaw ter 8c Brown, 1986; D e s a lle 8c T em p le ton , 1988). S e le c t io n c o u ld a ls o

e x p la in d i s t i n c t g e o g ra p h ic "b re a k s " in mtDNA g en o typ e s , o r d i f fe r e n c e s in

t h e i r f re q e n c ie s . S im i la r ly , th e low sequence d iv e rg e n c e s observed in some

n a tu ra l p o p u la t io n s may be a t t r ib u t a b le t o a few s e le c t i v e ly advantageous

mtDNA genotypes d o m in a tin g most p o p u la t io n s (D e s a lle e t al., 1987b; A v ise

e t al., 1988).

The e f fe c t o f base sequence v a r ia t io n on th e r e la t i v e e f f ic e n c y o f c e l lu la r

r e s p ir a t io n and u l t im a t e ly on th e f i t n e s s o f in d iv id u a ls c a r r y in g th e

m utant mtDNA i s la r g e ly unknown. However, in te rm s o f th e m o le c u la r

e v o lu t io n o f th e mtDNA m o le c u le , th e m a jo r i t y o f d e te c te d d if fe re n c e s , such

as s i le n t base s u b s t i t u t io n s o r s m a ll a d d it io n s o r d e le t io n s in th e D -loo p

do n o t a f f e c t th e o rg a n ism ’ s f i t n e s s . N e v e rth e le s s , mtDNA c o n ta in s genes

whose p ro d u c ts a re c r u c ia l to energy p ro d u c t io n , hence i t i s expected th a t

Page 473: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

some mtDNA m u ta tio n s would be v is a b le t o s e le c t io n .

A s s o c ia t io n o f p a r t i c u la r mtDNA h a p lo ty p e s w ith human d is e a s e s has been

d e m on s tra te d (H o lt et al., 1988; L e s t ie n n e 8c P onso t, 1988: W a lla c e , 1987;

W a lla ce e t al., 1988 a , b ; Z e v ia n i e t al., 1989). A ls o , mtDNA a rrangem ents

a re im p lic a te d in c y to p la s m ic m ale s t e r i l i t y in some p la n t s p e c ie s (Dewey

e t al., 1986 ), and many d rug r e s is t a n t m u ta tio n s have been mapped t o mtDNA

in y e a s t (B e a le 8c Know les, 1978 ). S im i la r ly , s e v e ra l s tu d ie s (Adams 8c

Rothman, 1982; W hittam e t al., 1986; A v is e e t al., 1988; MacRae Sc A nderson,

1988; E x c o f f ie r , 1990; Fos e t al., 1990) have suggested s e le c t io n does

o p e ra te on mtDNA, a lth o u g h th e re i s no consensus as to i t s c h a r a c te r is t ic s .

C o n v e rs e ly , Qvenden 8c W hite (1990) have shown th e re a re o n ly v e ry weak

s e le c t iv e fo rc e s o p e ra t in g on a f i s h s p e c ie s (Galaxias truttaceus) , w h ile

none was n o t d e te c te d in a s tu d y o f Drosophila mtDNA c lo n e s (C la rk 8c

L yckeg a a rd , 1988; N ig ro 8c P ro u t, 1990).

However, d e s p ite m ounting e v id e n ce -for s e le c t io n , i t i s g e n e ra l ly b e lie v e d

th a t th e p h y lo g e n e t ic v a lu e o f mtDNA i s independen t o f i t s n e u t r a l i t y

(A v is e , 1986; A v ise et al., 1987); synapom orphic c h a ra c te r s ta te s sh ou ld

a llo w th e d e te c t io n o f m o n o p h y le tic assem blages re g a rd le s s o f t h e i r

s e le c t iv e v a lu e . However, uneven r a te s o f m o le c u la r change (due t o s p o ra d ic

s e le c t io n on mtDNA v a r ia n ts ) can s e r io u s ly a f f e c t th e a c c u ra te d a t in g o f

s p e c ie s o r p o p u la t io n d iv e rg e n c e s based on mtDNA a lo n e , and subsequent

phenograms (d e r iv e d fro m UPGMA) may be in a c c u ra te . Y e t, in s p i t e o f th e se

uneven ra te s o f e v o lu t io n th e mtDNA c lo c k sh o u ld s t i l l be v a l id because i t s

r a te i s averaged ove r t im e , as i t i s f o r m o le c u la r c lo c k s a s s o c ia te d w ith

Page 474: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

n u c le a r genes (MacRae 8c Anderson, 1988).

In summary, t r e e c o n s t ru c t io n based upon c la d i s t i c methods w h ich a llo w

p a r a l le l is m s , back m u ta tio n s , and uneven r a te s o f e v o lu t io n a r y change, a re

p r e fe r r e d as th e s e r e f l e c t more c lo s e ly th e known house mouse mtDNA

s u b s t i t u t io n p a t te rn s ; g iv e n th e a v a i l a b i l i t y o f th e co m p le te mtDNA

sequence fro m one mouse and r e s t r i c t i o n fra g m e n t and r e s t r i c t i o n mapping

s tu d ie s .

Ziii5i_EytyC§_§tudi.esiC u r re n t ly a v ia la b le methods f o r a s s a y in g mtDNA v a r ia t io n between ta x a

d i f f e r in b o th th e p ro p o r t io n o f th e genome th a t can be exam ined and in th e

n a tu re o f th e in fo rm a t io n th e y p ro v id e . The most s e n s i t iv e and in fo r m a t iv e

te c h n iq u e in v o lv e s sequenc ing , w h ich u n t i l r e c e n t ly e n ta i le d th e t im e -

consum ing and la b o r io u s ta s k o f c o n s t r u c t in g and s c re e n in g genomic

l i b r a r i e s f o r each in d iv id u a l exam ined (Brown et al., 1982; D e s a lle et al.,

1987b; H ig u ch i et al., 1987). W h ile r e s t r i c t i o n , fra g m e n t a n a ly s is and DNA-

DNA h y b r id is a t io n s tu d ie s show p o o re r r e s o lu t io n . A com prom ise, com b in ing

h ig h r e s o lu t io n and s e n s i t i v i t y , a p p l ic a b le t o r a p id , r o u t in e p o p u la t io n

s u rv e y s , has made use o f r e s t r i c t i o n mapping te c h n iq u e s , s p e c i f i c a l l y th e

sequence com parison method. However, t h i s te c h n iq u e i s o n ly u s e fu l f o r

s p e c ie s o f w h ich a com p le te sequence i s a v a i la b le f o r one in d iv id u a l

(Anderson et al., 1981, 1982; B ibb et al., 1981; Roe et al., 1985; De B r i j n

e t al., 1983; C la ry 8c W olstenho lm e, 1985 ).

A ra p id sequencing method co u ld overcom e th e s e p ro b le m s, and t h i s has been

made p o s s ib le by th e d is c o v e ry t h a t p ro d u c ts o f th e po lym erase ch a in

Page 475: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

r e a c t io n (PCR) (S a ik i et al., 1985) can be sequenced d i r e c t l y (W ris c h n ik e t

al., 1987). More r e c e n t ly th e p ro cess o f a m p l i f ic a t io n has been au tom ated ,

w ith th e adven t o f th e th e rm o s ta b le ta q po lym erase (S a ik i e t al., 1988),

m aking t h i s te c h n iq u e r o u t in e ly a v a i la b le in most m o le c u la r la b o r a to r ie s ,

f o r a m p l i f ic a t io n o f hundreds o f sam ples pe r day (Kocher e t al., 1989).

T h is d i r e c t sequenc ing approach has fou n d many a p p l ic a t io n s v a ry in g from

th e s tu d y o f human mtDNA v a r ia t io n (W ris c h n ik e t al., 1987; V ig i la n t e t al.,

1988, 1989; H ig u c h i e t al., 1988; Paabo e t al., 1988 ), and human mtDNA

d is o rd e rs (Z e v ia n i e t al., 1989) t o bas idom yce tous fu n g i taxonom y (B runs e t

al., 1989).

M u ta t io n a l changes d e te c te d in t h i s mtDNA s u rv e y o f B r i t i s h house mouse

p o p u la t io n s a re p re d o m in a n tly base s u b s t i t u t io n s (C hap te r 3 ) . However, th e

r e s t r i c t i o n mapping te c h n iq u e i s g e n e ra l ly n o t s e n s i t iv e enough to d e te c t

s m a ll le n g th v a r ia t io n s . F u tu re in v e s t ig a t io n s c o u ld a p p ly th e PCR

approach , a m p lify in g DNA f o r d i r e c t sequenc ing t o se a rch f o r le n g th

v a r ia n ts . P h y lo g e n e t ic a n a lyse s in d ic a te th a t a d d it io n s o r d e le t io n s

u s u a l ly o ccu r o n ly once d u r in g th e e v o lu t io n o f mtDNA, th u s le n g th v a r ia n ts

may p rove t o be h ig h ly in fo r m a t iv e p h y lo g e n e t ic m a rke rs . For exam ple,

s e v e ra l in d iv id u a ls have been re p o r te d t o la c k one o f th e two a d ja c e n t

c o p ie s o f a 9 bp sequence n o rm a lly p re s e n t in human mtDNAs; t h i s d e le t io n

i s th o u g h t t o be a v a lu a b le a n th ro p lo g ic a l m arker f o r East A s ian

p o p u la t io n s (W ris c h n ik et al., 1987). Ind e ed , abou t one f i f t h o f Japanese

examined e x h ib ite d th e d e le t io n (H o r ia & M atsunga, 1986), w h ich a ls o

appears to be common in th e peo p le s o f c o a s ta l Papua New Guinea and

P o ly n e s ia (H e rtz b e rg et al., 1989; S to n e k in g et al., 1989). Y e t, th e

Page 476: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

d e le t io n Has n o t observed among New Guinea H ig h la n d e rs , A u s t r a l ia n

a b o r ig in e s n o r in a 7000 yea r o ld b ra in fro m L i t t l e S a l t S p r in g s ,

so u th w e s te rn F lo r id a , Am erica (W ris c h n ik et a im , 1987; S to n e k in g et a l , ,

1989; Paabo at aim, 1988 ). These d a ta sugges t th a t m ig ra n ts fro m E ast A s ia

c o n t r ib u te d t o th e Found ing o f p o p u la t io n s in New G uinea , b u t n o t

A u s t r a l ia . Sequences fro m th e a n c ie n t sam ple i l l u s t r a t e d th a t t h i s

in d iv id u a l b e lo n g s t o a mtDNA lin e a g e w hich i s ra re in th e O ld W orld and

has n o t been re p o r te d among e x ta n t n a t iv e Am ericans (Paabo e t a im , 1988).

A v is e & c o lle a g u e s (1987) env isaged fo u r p o s s ib le c a te g o r ie s o f mtDNA

"p h y lo g e o g ra p h ic " s c e n a r io s o c c u r r in g in n a tu ra l p o p u la t io n s (s e c t io n

1 .2 .2 ) . An in te n s iv e s u rv e y o f mtDNA v a r ia t io n in th e B r i t i s h house mouse,

u s in g 14 r e s t r i c t i o n enzymes, i l l u s t r a t e d th a t th e s e p o p u la t io n s f a l l

between th e boundary o f c a te g o r ie s I I I and IV , whereby th e p o p u la t io n s a re

c h a ra c te r is e d by low o v e r a l l sequence d iv e rg e n c e , b u t w ith "some'’

g e o g ra p h ic o r ie n ta t io n . T h is c o n t ra s ts w ith a le s s e x te n s iv e w o rld w id e

su rve y o t th e house mouse, u s in g few e r le s s d is c r im in a t in g r e s t r i c t i o n

enzymes ( F e r r is et a im , 1983), in w h ich th e p o p u la t io n s f e l l w i th in

c a te g o ry I I I , w ith low sequence d iv e rg e n c e s show ing l i t t l e o r no

m acrogeograph ic s t r u c t u r in g . T h is i l l u s t r a t e s th a t th e c a p a c ity to

d is t in g u is h in d iv id u a ls o r c o n s p e c if ic s by mtDNA i s a fu n c t io n o f th e

d is c r im in a to r y power o f th e assay, in a d d it io n t o th e in h e re n t v a r i a b i l i t y

o f th e genome. Thus, b io g e o g ra p h ic in t e r p r e ta t io n s a re p a r t l y dependent on

th e r e s o lu t io n o f th e te c h n iq u e s used. For in s ta n c e , th e v a r ia t io n d e te c te d

in b o th c h u c k w a lla s and menhadens i s v e ry h ig h (te rm ed 'mtDNA f in g e r p r in t s '

- A v ise e t a im , 1989), f a l l i n g a t one end o f a con tinuum o f mtDNA

Page 477: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

v a r i a b i l i t i e s . Towards th e o th e r end o f th e ra n ge , le s s v a r ia b le s p e c ie s

can be d is c r im in a te d u s in g e i t h e r a b a t te r y o f te t r a n u c le o t id e r e s t r i c t i o n

endonuc leases (Cann e t al., 1984; t h i s s tu d y , c h a p te rs 3 & 4) o r by d i r e c t

sequenc ing o f e i t h e r la rg e o r h y p e rv a r ia b le re g io n s o f th e genome

(W r is c h n ik e t al., 1987). A l t e r n a t iv e ly i f mtDNA i s in v a r ia n t , genomic DNA

f in g e r p r in t in g te c h n iq u e s ( J e f f r e y s e t al., 1985) a re p ro b a b ly a p p ro p r ia te

f o r e s t im a t in g r e la t i v e g e n e tic v a r i a b i l i t y and re c o n s t ru c t in g p h y lo g e n ie s

o f sm a ll c lo s e ly re la te d b u t is o la te d p o p u la t io n s ( G i lb e r t e t al., 1990).

U l t r a c e n t i f u g a t io n in v o lv in g cesium c h lo r id e g ra d ie n ts i s commonly used f o r

i s o la t io n o f mtDNA fo r c o n v e n tio n a l RFLP o r r e s t r i c t i o n mapping s tu d ie s .

However, t h i s method i s s lo w , r e q u ir in g expe n s ive equipm ent (Lansman e t

al., 1981); even more ra p id p ro ce d u re s in v o lv in g bench u l t r a c e n t i f u g e s

(C a rr & G r i f f i t h , 1987) a re s t i l l la b o r io u s and may n o t be s u i t a b le f o r

p o p u la t io n b io lo g y s tu d ie s . However, r e c e n t ly deve loped new o r im proved

mtDNA is o la t io n methods in c lu d in g a lk a l in e l y s is (P a lav & P a lv a , 1985;

A fonso e t al., 1988; Tamura & Aotsuka, 1988) and phenol e x t r a c t io n

p ro ce d u re s (Jones e t al., 1988; see append ix 1) a re a p p lic a b le to e x te n s iv e

p o p u la t io n s c re e n in g , where la rg e numbers o f in d iv id u a ls need to be

a n a lyse d r a p id ly . In a d d it io n , n o n - in v a s iv e sam p ling o f mtDNA (P la n te e t

al., 1987) i s u s e fu l f o r in v e s t ig a t io n s o f p o p u la t io n s t r u c tu r e , d is p e rs a l

and s o c ia l in te r a c t io n s on bo th m ic ro - and m acro -geog raph ic s c a le s . T h is i s

e s p e c ia l ly im p o rta n t in cases where rem oval by sam p ling c re a te s a

"d is p e rs a l s in k " th a t may be f i l l e d by n e ig h b o u rin g in d iv id u a ls (G aines &

McClenaghan, 1980), th e re b y d is tu r b in g th e p o p u la t io n dynam ics o r

s t r u c tu r e .

Page 478: (Hus domesticus. Rut t y ) - UCL Discovery

CHAPTER SEVEN

Summary..

In summary, i t appears th a t th e e x c ite m e n t caused by th e a p p l ic a t io n and

u t i l i t y o f mtDNA as a m o le c u la r m arker in th e s tu d y o f p o p u la t io n and

e v o lu t io n a r y b io lo g y i s w e ll fou n de d . M ito c h o n d r ia l DNA sequence d iv e rg e n c e

a n a ly s e s can p ro v id e d e ta i le d know ledge o f e v o lu t io n a ry r e la t io n s h ip s a t

many d i f f e r e n t le v e ls . For exam ple, t h i s s tu d y has i l l u s t r a t e d th a t mtDNA

is o la te d fro m th e B r i t i s h house mouse (Hus domestic us R u tty ) and mapped

u t i l i s i n g th e h ig h r e s o lu t io n sequence com parison te c h n iq u e , has p ro v id e d

in s ig h t s , n o t o n ly in t o th e m o le c u la r b a s is o f e v o lu t io n a ry change o f th e

mtDNA m o le cu le (c h a p te r 3 ) , as w e ll as g e o g ra p h ic v a r ia t io n , zoogeography

and in t r a s p e c i f i c p hy log e ny (C hap te r 4 ) , b u t a ls o p ro v id e s a d d it io n a l

in fo r m a t io n re g a rd in g p o p u la t io n dynam ics , d is p e rs a l (and gene f lo w ) , and

s o c ia l s t r u c tu r e (C hap te r 6 ) , fro m a m a te rn a l s ta n d p o in t . Y e t, as rem arked

by A v ise & c o lle a g u e s (1987) " th e a s e x u a l, m a te rna l t ra n s m is s io n o f mtDNA

i s a d ou b le edged s w o rd ." , mtDNA m o le c u la r genea logy can o n ly be viewed

fro m a fe m a le p e rs p e c t iv e . MtDNA re p re s e n ts a s in g le g e n e tic m arker w h ich

i s n o t l in k e d t o th e n u c le a r genome and b o th s to c h a s t ic l in e a g e s o r t in g and

d i f f e r e n t a l in t r o g r e s s io n may le a d t o d i f fe r e n c e s between n u c le a r and mtDNA

m a rke rs . Thus, p a t te rn s o f mtDNA v a r ia t io n need be in te r p r e te d w ith

c a u t io n .

I t i s q u i te c le a r th a t f o r a th o ro u g h u n d e rs ta n d in g o f o rg an ism a l

p h y lo g e n y , s e v e ra l m o le c u la r approaches a re nece ssa ry in c lu d in g m a te rn a l,

p a te rn a l and n u c le a r DNA s tu d ie s . Ind e ed , th e male p e rs p e c t iv e i s perhaps

b o th n ece ssa ry and com plem entary in s tu d ie s o f p o p u la t io n s t r u c tu r e and

gene f lo w (c h a p te r 6 ) .

Page 479: (Hus domesticus. Rut t y ) - UCL Discovery

F ig u re_Z i!i_W h at_ is_an _O rcad ian ?

F i r s t th e a b o r ig in e sT hat houked S kara B rae from th e sand.Then th e P ie ts ,Those sm a ll d a rk cu n n in g men.Who sc ra w le d t h e i r h is t o r y in s to n e . . .And the n th e t i g e r s fro m th e e a s t o ve r th e sea,The b lo n d b u tc h e r in g V ik in g s ,Whose la s t w o rry on sea o r la n d ,Was p u r i t y o-f ra c e , as th e y s ta g g e re d couchwards A f te r a f i l l o f a le .F in a l l y , t o make th e m ix tu re t h ic k and s la b ,The o f f - s c o u r in g o f S c o tla n d ,The lo w e s t s le a z ie s t p im ps from L o th ia n and th e M earns, Fawning in th e t r a i n o f B la ck P a t.And ro b b in g and ra p in g ad l i b .

But t h a t 's n o t a l l .For many a hundred s h ip s have r ip p e d t h e i r f la n k s On Rora Head, o r th e Noup,And Basque s a i lo r la d s and bearded s k ip p e rs fro m B r i t t a n y L e f t o f f t h e i r b r in y ways to c le a v e a fu r ro w Through Orkney c r o f t s and la s s e s .

Not to speak o f two w o r ld warsAnd hordes o f E n g lis h and Yanks and I t a l i a n s and P o le s Who to o k up t h e i r s ta t io n s h e re :By day th e guns , by n ig h t th e a n c e s tra l b ox -be d .O nly t h i s m orn ing I d e l iv e re d a b a irnA t Maggie o ' C o rs la n d 'sW ith a s u b t le s i l k - s e l l i n g K r is h n a s m ile .

A f in e m ix te r -m a x te r !

George Mackay Brown (ta ken fro m M i l l e r , 1976)

Page 480: (Hus domesticus. Rut t y ) - UCL Discovery

BIBLIOGRAPHY.

Abbas, E. , Guerin, P., Bessieres, P., Ruffle, J., and Lucotte, G.(1988). Sequences Y-chromosome humain specifique presentes chez les singes Anthropoides. Biochem. Syst. Ecol. 18, 105-109.Adams, E.E. (1972). Consensus techniques and tbe comparison of taxonomic trees. Syst. Zool. 21, 390-397.Adams,J., and Rothman, E.D. (1982). Estimation of phylogenetic relationships from DMA restriction patterns and selection of endonuclease cleavage sites. Proc. natl. Acad. Sci. USA. 79, 3560-3564.Adolf, S., and Klein, J. (1981). Robertsonian variation in Xus musculus from central Europe, Spain, and Scotland. J. Hered. 72, 219-221.Afonso, J.M., Pestano, J., and Herrandez, H. (1988). Rapid isolation of mitochondrial DBA from Drosophila adults. Biochem. Genet. 26, 381-386.Ammerman, A.J., and Cavalli-Sofrza, L.L. (1985). The Beolithlc transition and the genetics of populations in Europe. Princeton University Press, E. J.Anderson, P.K. (1964). Lethal alleles in Mus musculus; local distribution and evidence for isolation of demes. Science, E.Y. 145, 177-178.Anderson, P.K. (1965). The role of breeding structure in evolutionary processes of Xus musculus populations. Proc. Symp. Mutational Processes. 17-21. Prague.Anderson, P.K. (1970). Ecological structure and gene flow in smallmammals. In: Variation nf nHTfmwHfln populations, (eds) Berry, R. J. andH.E. Southern, Symp. zool. Soc. Lond. 26, pp299-325, Academic Press, London.Anderson, P.K., Dunn, L.C., and Beasley, A.B. (1964). Introduction of a lethal allele into a feral house mouse population. Am. Eat. 98, 57-64.Anderson, P.K., and Hill, J.L. (1965). Mus musculus; Experimental induction of territory formation. Science, E.Y. 148, 1753-55.Anderson, S., Bankier, A.T. , Bareli, B.G., de Bruijn, M. H.L., Coulson,A.R., Drouin, J., Eperon, I.C., Eierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith A.J.H., Staden, R., and Young, I.G. (1981). Sequence and organization of the human mitochondrial genome. Eature, London. 290, 457-465.Anderson, S., de Bruijn, M. H.L., Coulson, A.R., Eperon, I., Sanger, F., and Young, I.G. (1982). Complete sequence of bovine mitochondrial DEA.J. Mol. Biol. 156, 683-717.

Page 481: (Hus domesticus. Rut t y ) - UCL Discovery

Aquadro, C.F., and Kilpatric, C. V. (1981). Morphological and biochemical variation and differentiation in insular and mainland deer mice (Peromyscus m aniculatus). In: Mamnallan population genetics. (Eds). M. H. Smith, and J. Joule. pp214-230, Univ. of Georgia Press, Athens, Georgia.Aquadro, S., and Greenberg, B.D. (1983). Human mitochondrial DMA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics 103, 287-312.Aquadro, C.F., Kaplan, I., and Rlsko, K. (1984). An analysis of the dynamics of mammalian mitochondrial DMA sequence evolution. Mol. Biol. Evol. 1, 423-434.Arnold, H. (1978). Provisional distribution maps of British mammals. Biological Records Centre. Institute of Terrestrial Ecology, Abbots Ripton, Huntingdon.Ashley, M.A., and Wills, C. (1987). Analysis of mitochondrial DBA polymorphisms among Channel Island deer mice. Evolution. 41, 854-63.Attardi, G. (1985). Animal mitochondrial DMA: An extreme example of genetic economy. In, Genome evolution in procaryotes and eukaryotes (D.C. Reamey ed.). Int. Rev. Cytol. 93.Auffray, J-C., Tchernov, E., and Bevo, E. (1988). C. R. Acad. Sci. Paris. 307, 517-522.Auffray, J-C., Vanlerberghe, F., and Britton-Davidian, J. (1989). House mouse progression in Eurasia: A synthetic Approach. (Abstract). Fifth International Theriological Congress, Italy.Auffray, J-C., Tchernov, E., Bonhomme, F. , Heth, G., Simson, S., and Bevo, E. (in press). Z. Saugetier-kunde.Avise, J.C. (1986). Mitochondrial DMA and the evolutionary genetics of higher animals. Phil. Trans. R. Soc. Lond. B312, 325-42.Avise, J.C. (1987). Identification and interpretation of mitochondrial DBA stocks in marine species. In: ETQg*. StQGJL .IdetttiiigallPn..WQrkshQp> ed H. Kumpf, E.L. Bakamura, pp. Panama City, FL: Publ. Batl. Oceanogr. Atmos. Admin.Avise, J.C. (1989). Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution. 43, 1192-1208.Avise, J.C. and Lansman, R.A. (1983) Genetic polymorphism and the role of mutation in evolution. In: Evolution of Genes and Proteins (M. Bei and R.K. Koehn, eds.). Sinauer, Sunderland, Massachusetts, pp. 165-190.Avise, J.C., and VriJenhoek, R.C. (1987). Mode of inheritance and variation of mitochondrial DBA in hybridogenetic fishes of the genus P o ec ilio p s is. Mol. Biol. Evol. 4, 514-525.

Page 482: (Hus domesticus. Rut t y ) - UCL Discovery

Avise, J.C., Giblin-Davidson, C., Laerm, J., Patton, J.C. and Lansman,R. A. (1979). Mitochondrial DMA clones and matriarchal phylogeny within and among geographic populations of the the pocket gopher Geomys p in e tis . Proc. natl. Acad. Sci. USA, 76, 6694-6698.Avise, J.C., Shapira, J.F., Daniel, S.V., Aquadro, C.F., and Lansman, R.A. (1983). Mitochondrial DMA differentiation during the speciation process in Peramyscus. Mol. Biol. Evol. 1, 38-56.Avise, J.C., Bermingham, E., Kessler, L.G., Saunders, B.C. (1984a). Characterization of mitochondrial DBA variability in a hybrid swarm between subspecies of bluegill sunfish (.Lepomis m acrochirus). Evolution 38, 931-941.Avise, J.C., Beigel, J.B., and Arnold, J. (1984b). Demographic influcences on mitochondrial DBA lineage survivorship in animal populations. J. Mol. Evol. 20, 9-105.Avise, J.C., Helfman, G.S., Saunders, B.C., and Hales, L.S. (1986). Mitochondrial DBA differentiation in Borth Atlantic eels: Population genetic consequences of an unusual life history pattern. Proc. Batl.Acad. Sci. USA 83, 4350-4354.Avise, J.C., Arnold, J., Ball, M.R., Bermingham, E., Lamb, T., Beigel, J.E., Reeb, C.A., and Saunders, B.C. (1987a). Intraspecific phylogeography: the mitochondrial bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 18, 489-522.Avise, J.C., Reeb, C.A., Saunders, B.C. (1987b). Geographic population structure and species differences in mitochondrial DBA of mouthbrooding marine catfish (Ariidae) and demersal spawning toadfishes (Batrachoididae). Evolution, 41, 991-1002.Avise, J.C., Ball, M.R., and Arnold, J. (1988). Current verses historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DBA lineages and inbreeding theory for neutral mutations. Mol. Biol. Evol. 5, 331-344.Avise, J.C., Bowen, B. V., and Lamb, T. (1989). DBA fingerprints from hypervariable mitochondrial genotypes. Mol. Biol. Evol. 6, 258-269.Baker, A.E.M. (1981). Gene flow in house mice: introduction of a new allele into free-living populations. Evolution, 35, 243-58.Baker, C.S., Palumbi, S.R., Lambertsen, R.H., Veinrich, M.T., Calambokidis, J., and O'Brien, S.J. (1990). Influence of seasonal migration on geographic distribution of mitochondrial DBA halotypes in humpback whales. Mature, Lond. 344, 238-240.Ball, R.M., Freeman, S., James, F.C., Bermingham, E., and Avise, J.C.(1988). Phylogeographic population structure of redwinged blackbirds assessed by mitochondrial DBA. Proc. natl. Acad. Sci. USA. 85, 1558- 1562.

Page 483: (Hus domesticus. Rut t y ) - UCL Discovery

Banbury, P. (1975). Man and the sea; from the Ice Age to the Borman Conquest. London.Barash, D. P. (1982). Sociobiology and behaviour. Hodder and Stoughton, London.Baron, B., Metezeau, P., Hatat, D., Roberts, C., Goldberg, M., and Bishop, C.E. (1986). Cloning of DBA libraries from mouse Y chromosomes purified by flow cytometry. Somat. Cell. Mol. Genet. 12, 289-93.Barrett-Hamilton, G.E.H., and Hinton, M.A.C. (1910-21). A history of British mammals. London; Gurney a Jackson.Bateman, A.J. (1947a). Contamination of seed crops. I. Insect pollination. J. Genet. 48, 257-75.Bateman, A.J. (1947b). Contamination of seed crops. II. Wind pollination. Heredity 1, 235-46.Beale, G., and Knowles, J. (1978). Extranuclear genetics. Edward Arnold, London.Beauchamp, G.K., Yamazaki, K., and Boyse, E.A. (1985). The chemosensory recognition of genetic individuality. Sci. Am. 253, 66-72.Beirne, R.P. (1952). The origin and histaory of British fauna. London: Methuen.Bentzen, P., Leggott, W.C., and Brown, G.G. (1988). Length variation and restriction site heteroplasmy in the mtDBA of American shad (Alosa sapidissim a). Genetics. 118, 509-518.Bennett, D. , Bruck, R., Dunn, L.C., Klyde, B., Shutsky, F., and Smith, L.J. (1967). Persistence of an introduced lethal in a feral house mouse population. Am .Bat, 101, 538-539.Bermingham, E. , and Avise, J.C. (1986). Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics 113, 939- 965.Bermingham, E., Lamb, T., and Avise, J.C. (1985). Large scale polymorphism and individual heterpolasmy in the mitochondrial DBA of lower vertebrates. Genetics. 110, s77.Bermingham, E., Lamb, T. , and Avise, J.C. (1986). Size polymorphism and heteroplasmy in the mitochondrial DBA of lower vertebrates. J. Heredity 77, 249-252.Berry, R.J. (1964). The evolution of an island population of the house mouse. Evolution, Lancaster. Pa. 18, 468-483.Berry, R.J. (1966). The origin of island mice. Mamm. Soc. Bull. 26, 8-9.

Page 484: (Hus domesticus. Rut t y ) - UCL Discovery

Berry, R.J. (1968). The ecology of an island population of the house mouse. J. Anim. Ecol. 37, 445-70.Berry, R.J. (1969). History in the evolution of Apademus s y lv a tlc u s at one edge of its range. J. Zool. Lond. 159, 311Berry, R.J. (1970). Covert and overt variation, as exemplified by British mouse populations. Symp. Zool. Soc. Lond. 26, 3-26.Berry, R.J. (1975). On the nature of genetical distance and island races of Apodemus sy lvaticus . J. Zool. Lond. 176, 293-296.Berry, R.J. (1978). Genetic variation in wild house mice: where natural selection and history meet. Amer. Sci. 66, 52-60.Berry, R.J. (1981). Population dynamics of the house mouse. Symp. Zool. Soc. Lond. 47, 395-425.Berry, R.J. (1981b). Town mouse, country mouse: adaption and adaptability in Xus domesticus (Xus musculus domesticus). Mamm. Rev. 11, 91-136.Berry, R.J. (1983). Diversity and diifferentiation; the importance of island biology for general theory. Oikos, 41, 523-529.Berry, R.J. (1985). Evolutionary and ecological genetics of the bank vole and wood mouse. Symp. Zool. Soc. Lond. 55, 1-31.Berry, R.J. (1985b). The Hatural History of Orkney. V. Collins, Sons & Co. Ltd. London.Berry, R.J. (1986). Genetical processes in wild mouse populations: Past myths and present knowledge. Curr. Top. Microbiol. Immunol. 127, 86-94.Berry, R.J. (1986b). Genetics of insular populations of mammals, with particular reference to differentiation and founder effects in British small mammals. Biol. J. Linn. Soc. 28, 205-230.Berry, R.J. and Jakobson, M.E. (1974). Vagility in an island population of the house mouse. J. Zool. Lond. 173, 341-354.Berry, R.J. and Jakobson, M.E. (1975). Ecological genetic of an island population of the house mouse. J. Zool. lond. 175, 523-540.Berry, R.J., and Peters, J. (1977). Heterogenous heterozygosities in Xus musculus populations. Proc. R. Soc. Lond. B197, 485-503.Berry, R.J., and Tricker, B.J.K. (1969). Competition and extinction: the mice of Foula, with notes on those of Fair Isle and St. Kilda. J. Zool, Lond. 158, 247-265.Berry, R.J., and Rose, F.E.I. (1975). Islands and the evolution of X lerotus a rv a lis (Microtinae). J. Zool. Land. 177, 395

Page 485: (Hus domesticus. Rut t y ) - UCL Discovery

Berry, R.J., Evans, I.B., and Sennitt, B.f.C. (1967). The relationship and ecology of Apodemus s y lv a tlc u s from the small Isles of the Inner Hebrides, Scotland. J. Zool. Lond. 152, 333-346.Berry, R.J., Jakobson, M. E., and Peters, J. (1978). The house mouse of the Faroe Islands: a study of microdifferentiation. J. Zool. Lond. 182, 73-92.Berry, R.J., Sage, R.D., Lidicker, V.Z., and Jakobson, V.B. (1981). Genetical variation in three pacific house mouse iMus musculus) populations. J. Zool. Lond. 193, 391-404.Berry, R.J., Cuthbert, A., and Peters, J. (1982). Colonisation by house mice: An experiment. J. Zool. Land. 198, 329-36.Berry, R.J., Triggs, G.S., King, P., lash, H.R., and Hoble, L.R. Hybridisation and gene flow in House mice Introduced into an existing population. Proc. Roy. Soc. lond. (in press). Proc. Roy. Soc. Lond.Berry, R.J., Triggs, G.S., Bauchau, V., Jones, C.S., and Scriven, P. (1990). Gene flow and Hybridisation following introduction of Mus domesticus into an established population. (In press) Biol. J. Linn.Soc.Bibb, M.J., Van Etten, R.A., Wright, C.T., Walberg, H.W. , and Clayton, D.A. (1981). Sequence and gene organisation of mouse mitochondrial DBA. Cell. 26, 67-180.Birky, C.W., Maruyama, T., and Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts and some results. Genetics. 103, 513-527.Birky, C.W., Fuerst, P., and Maruyama, T. (1989). Organelle gene diversity under migration, mutation, and drift: equilibrium expectation, effects of heteroplasmic cell, and comparison to nuclear genes.Genetics. 121, 613-627.Birley, A.J. and Croft, J.H. (1986). Mitochondrial DBAs and phylogenetic relationships. In: DBA s y s te ra a tic s , (ed) S.K. Dutta, 1, 107-37. Boca Raton: CRC.Bishop, C.E., Guellaen, G., Geldwerth, D., Voss, R., Fellows, M., and Weissenbach, J. (1983). Single copy DBA sequences specific for the human Y chromosome. Bature, London. 303, 831-832.Bishop, C.E., Guellaen, G., Geldwerth, D., Fellows, M., and Weissenbach, J. (1984). Extensive sequence homologies between Y and other human chromosomes. J. Mol. Biol. 173, 403-417.Bishop, C.E., Boursot, P., Baron, B., Bonhomme, F., and Habat, D.,(1985). Most classical M. m. domesticus laboratory mice strains carry a K. m. musculus Y chromosome. Bature, London. 315, 70-72.

Page 486: (Hus domesticus. Rut t y ) - UCL Discovery

Bishop, C.E., Roberts, C., Michot, J-L., Bagamine, C., Winking, H., Guenet, J-L., and Weith, A. (1987). The use of specific DBA probes to analyse the Sxr mutation in the mouse. Development, 101 (suppl.), 167- 75.Bishop, C.E., Weith, A., Mattel, M-G. and Roberts, C. (1988). Molecular aspects of sex determination; an alternative model for the origin of the Sxr region. Phil. Trans. R. Soc. Lond. B322, 119-24.Bodmer, W.F., and Cavalli-Sforza, L.L. (1976). Genetics, evolution, and Man. W. H. Freeman, San franclsco.Bonhomme, F. (1986). Evolutionary relationships in the genus Xus. In:The Wild Mouse in Immunology (eds. M, Potter, J.H. Badeau, and M.P Cancro) Springer-verlag. pp. 19-34.Bonhomme, F. (1986b). Molecules, populations and species evolution in the genus Xus. In: Modern aspects of species nraimmUa! Rodentla) (eds), Iwatsuki, K. , Raven, P.H., and Bock, W.J. University of Tokyo Press, pp. 125-143.Bonhomme, F., Brittan-Davidian, J., Thaler, L., and Triantaphyllidis, C. (1978). Sur 1'existence en Europe de quatre groupes de souris (genre Xus. L) du rang espece et semi-espece; demontree par la genetique biochimique. C. R. Acad. Sci. Paris. 287, 631-633.Bonhomme, F. , Catalan, J., Orsini, P., Guerassimov, S., and Thaler, L. (1983). Le complexe d'especes du genre Xus en Europe Centrale. I. Genetique. Z. f. Saugetierkunde. 48, 78-86.Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V.M.,Moriwaki, K., Bevo, E., and Thaler, L. (1984). Biochemical diversity and evolution in the genus Xus. Biochem. Genet. 22, 275-303.Bonhomme, F. , Guenet, J.L. , Dod, B. , Moriwaki, K. , and Bulfield, G. (1987). The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biol. J. Linn. Soc. Lond. 30, 51-58.Bonhomme, F., Miyashita, B. , Boursot, P., Catalan, J., and Moriwaki, K.(1989). Genetical variation and polyphyletic origin in Japanese Xus musculus. Heredity, 63, 299-308.Bonhomme, F., and Guenet, J.L. (in press). The wild house mouse and its relatives. In: Genetic variants and strains of the laboratory mouse. Second Edition, Oxford Univversity Press.Bossi, L., and Smith, D.M. (1984). Conformational change in the DBA associated with an unusual promoter mutation in a tRBA operon of Salmonella. Cell. 39, 643-652.Boursot, P., Bonhomme, F., Britton-Davidian, J., Catalan, J., Yonewaki, H., Orsini, P., Guerassmot, S., and Thaler, L. (1984). Introgression differentielle des genomes nucleaires et mitochondrieux chez deux semi- especies europeenes de souris. C. R. Acad. Sci. Ser. III. 299, 365-370.

Page 487: (Hus domesticus. Rut t y ) - UCL Discovery

Boursot, P., Jacquart, Th., Bonhomme, F., Britton-Davidian, J., and Thaler, L. (1985). Differenciation geographique du genome mitochondrial chez Xus spretirs, Lataste, C. R. Acad. Sci. Paris. 301, 157-161.Boursot, P., Yonewaki, H., and Bonhomme, F. (1987). Heteroplasmy in mice with the deletion of a large coding region of mitochondrial DIA. Mol. Biol. Evol. 4, 46-55.Boursot, P., Bonhomme, F., Catalan, J., and Moriwaki, K. (1989). Variations in a Y chromosome repeated sequence across subspecies of Xus musculus. Heredity. 63, 289-97.Bowen, B.V., Meylan, A.B., and Avise, J.C. (1989). An odyssey of the green sea turtle: Ascension Island revisited. Proc. natl. Acad. Sci.USA. 86, 573-579.Boyse, E.A., Beauchamp, G.K., and Yamazaki, K. (1987). The genetics of body scent. Trends in Genetics. 3, 97-102.Britten, R.J. (1986). Rates of DBA sequence evolution differ between taxonomic groups. Science 231, 1393-1398.Britton-Davidian, J. (1985). Differenciation genique et chromosomique chez les souris Xus musculus domesticus et Xus spretus. Relations avec la distribution spatiale des populations. Doctoral Thesis. USTL. Montpellier.Britton-Davidian, J. (1989). Genic differentiation in X. m. domesticus throughout Europe, Middle East and Borth Africa: Macrogeographic patterns and colonisation events. Vth International Theriological Congress, Rome.Britton-Davidian, J., Bonhomme, F., Croset, H., Capanna, E., and Thaler, L. (1980). Variabilite genetique chez les populations de souris (genre Xus. L) a nombre chromosomique reduit. Comptes Rendus de l’Academie des Sciences, Paris. 290, 195-198.Britton-Davidian, J. , Maclean, J.H., Croset, H., and Thaler, L. (1989). Genic differentiation and origin of Robertsonian populations of the house mouse Xus musculus domesticus Rutty). Genet. Res. Camb. 53, 29-44.Brooker, P.C. (1982). Robertsonian translocations in Xus musculus fromB.E. Scotland and Orkney. Heredity.48, 305-309.Bronson, F.H., Dagg, C.P, and Snell, G.D. (1966). Reproduction. In: E.L. Green (Ed) Biology of the laboratory mouse. 187-204. McGraw^hill. B. Y.Bronson, F.H. (1979). The reproductive ecology of the house mouse.Quart. Rev. Biol. 54, 265-299.Bronson, F.H. (1984). The adaptability of the house mouse. Sci. Am. 250, 90-97.

Page 488: (Hus domesticus. Rut t y ) - UCL Discovery

Brooks, D.R., O'Grady, R.T., and Viley, E.O. (1986). A measure of information content of phylogenetic trees and its use as optimality criterion. Sys. Zool. 35, 571-581.Brothwell, D. (1981). The Pleistocene and Holocene archaeology of the house mouse and related species. Symp. Zool. Soc. Lond. 47, 1-13.Brown, G.G. and Simpson, M. V. (1981). Intra and Interspecific variation of the mitochondrial genome in R attus norvegicus and R attus ra ttu s : restriction enzyme analysis of variant mitochondrial DBA molecules and their evolutionary relationships. Genetics. 97, 123-143.Brown, G.G., Castora, F.J.,Frenz, S.C., and Simpson, M. V. (1981). Mitochondrial DBA polymorphism: evolutionary studies on the genus Rattus. Ann. B.Y. Acad. Sci. 361, 135-153.Brown, G.G., and Simpson, M.V. (1982). Bovel features of animal mtDBA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proc. natl. Acad. Sci. USA. 79, 3246-3250.Brown, G.G., and Desrosiers, L.J. (1983). Rat mitochondrial DBA polymorphism: sequence analysis of a hypervariable region for insertion- deletion. Bucleic. Acids. Res. 11, 6699-6708.Brown, G.G., Gadaleta, G., Pepe, G., Saccone, C., SbisA, E. (1986). Structural conservation and variation in the D-loop containing region of vertebrate mitochondrial DBA. J. Molec. Biol. 192, 503-511.Brown, R.Z. (1953). Social behaviour, reproduction and population changes in the house mouse (Jtus musculus. L). Ecol. Mongr. 23, 217-240.Brown, V.H. (1980). Polymorphism in mitochondrial DBA of humans as revealed by restriction endonuclease analysis. Proc. Batl. Acad. Sci.77, 3605-3609.Brown, V.H. (1981). Mechanisms of evolution in animal mitochondrial DBA. Ann. B.Y. Acad. Sci. 361, 119-134.Brown, V. H. (1983). Evolution of mitochondrial DBA. In: Evolution of Genes and Proteins (M. Bei and R. K. Koehn, eds.) Sinauer, Sunderland, Massachusetts, pp. 62-88.Brown, V.H. (1985). The mitochondrial genome of animals. In: MacIntyre, R.J (eds) Molecular evo lu tionary genetics. Plenum, B.Y, pp95-130.

Brown, V.H., and Goodman, H. M. (1979). Quantitation of lntrapopulatlon variation by restriction endonuclease analysis of human mitochondrial DBA. In: Extrachromosomal DBA D.J. Cummings, P, Borst, I.B, Dawid, S. M, Veissman and C.F, Fox (Eds). Academic Press, B.Y. pp 488-499.Brown, V.H., George, Jr. M., and Vilson, A.C. (1979). Rapid evolution of animal mitochondrial DBA. Proc. natl. Acad. Sci. USA. 76, 1967-71.

Page 489: (Hus domesticus. Rut t y ) - UCL Discovery

Brown, V.H., Prager, B.M. , Vang, A., and Vilson, A.C. (1982). Mitochondrial DMA sequences of primates: tempo and mode of evolution. J. Mol. Bvol. 18, 225-239.Bruce, H.M. (1959). An exteroceptive block to pregnancy in the mouse. Bature, Lond. 184, 105.Bruce, H.M. and Parrott, D.M.V. (1960). Role of olfactory sense in pregnancy block by strange males. Science, B.Y. 131, 1526.Bruns, T.D., Fogel, R., White, T.J., and Palmer, J.D. (1989).Accelerated evolution of a false-truffle from a mushroom ancestor.Bature, Lond. 339, 140-142.Bulfield, G. (1985). Mitochondrial DBA and house mouse speciation.Trends in Genetics. 1, 39.Buroker, B.E., Brown, J.R., Gilbert, T.A., O'Hara, P.J., Beckenbach,A.T., Thomas, V.Kk., Smith, M.J. (1990). Length heteroplasmy of sturgeon mitochondrial DBA: an illegitimate elongation model. Genetic. 124, 157- 163.Burt, V.H. (1943). Territoriality and homerange concepts as applied to mammals. J. Marnm. 24, 346-52.Bush, G.L., Case, S.M., Vilson, A.C., and Patton, J.L. (1977). Rapidspeciation and chromosomal evolution in mammals. Proc. natl. Acad. Sci. USA. 74, 3942-46.Butler, R.G. (1980). Population size, social behaviour, and dispersal in house mice: a quantitative investigation. Anim. Beh. 28, 78-85.Caccone, A. (1985). Gene flow in cave arthropods: a qualitative andquantitative approach. Evolution, 39, 1223-1235.Caldwell, L.D. (1964). An investigation of competition in natural populations of mice. J. Mamm. 45, 12-30.Camp, G. (1980). Bavigation et gens de mer en Mediterranee de la prehistoire a nos jours. In: C.B.R.S.Ed. 1-16.Cann, R.L. (1982). The evolution of human mitochondrial DBA. Ph.d.Thesis. University of California, Berkeley.Cann, R.L. (1986). Bucleotide sequences, restriction maps, and human mitochondrial DBA diversity. In: Genetic variation and its maintenancefSociety for the study of Human Biology Symposium 27, pp77- 86. (eds) Roberts, D.F., and De Stefano, G.f. Cambridge University Press.Cann, R.L. and Vilson, A.C. (1983). Length mutations in human mitochondrial DBA. Genetics. 104, 699-711.

Page 490: (Hus domesticus. Rut t y ) - UCL Discovery

Cann, R.L., Brown, V.H, and Vilson, A.C. (1982). Evolution of human mitochondrial DBA: a preliminary report, pp. 157-165. In: Human genetics. Part A: The unfolding genome. (Eds) B. Bonne-Tamir, T. Cohen, and R.B. Goodman. Alan liss, B.Y.Cann, R.L., Brown, V.H. , and Vilson, A.C. (1984). Polymorphic sites and the mechanism of evolution in human mitochondrial DBA. Genetics. 106, 479-499.Cann, R.L., Stoneking, M., and Vilson, A.C. (1987). Mitochondrial DBA and human evolution. Bature, London. 325, 31-36.Cantatore, P., and Saccone, C. (1987). Organisation, Structure and evolution of mammalian mitochondrial genes. Int. Rev. Cytology. 108, 149-208.Capanna, E. (1982). Robertsonian numerical variation in animal speciation; Xus musculus, an emblematic problem. In: A.R. Liss. Inc. Mechanisms of Speciation. 155-177. Bew York.Carlson, S.S., Mross, G.A., Vilson, A.C., Mead, R.T., Volin, L.D., Bowers, S.F., Foley, B.T., Meijsers, A.O., and Margoliash, E. (1977). Primary structure of mouse, rat and guinea pig cytochrome c.Biochemistry. 16, 1437-1442.Carlson, S.S., Vilson, A.C., and Maxson, R.D. (1978). Science, B.Y. 200, 1183-1185.Carr, S.M., and Griffith, 0.M. (1987). Rapid isolation of animal mitochondrial DBA in a small fixed angle rotor at ultrahigh speed. Blochem. Genet. 25, 385-390.Casanova, M., Leroy, P., Boucekine, C., Viessenbach, J., Bishop, C . E ., Fellows, M., Purrello, M. , Fiori, G., and Siniscalco, M. (1985). A human Y-linked DBA polymorphism and its potential for estimating genetic and evolutionary distance. Science. B.Y. 230, 1403-1406.Castora, F.J., Arnheim, B., Simpson, M.V. (1980). Mitochondrial DBA polymorphism: evidence that variants detected by restriction enzymes differ in nucleotide sequence rather than in methylation. Proc. Batl. Acad. Sci. USA 77, 6415-6419.Catzeflis, F.M. , Sheldon, F.H., Ahlquist, J.E., Sibley, C.G. (1987). DBA-DBA hybridization evidence of the rapid rate of muroid rodent DBA evolution. Mol. Biol, Evol. 4, 242-253.Chapman, R.V., Stephens, J.C., Lansman, R.A., and Avise, J.C. (1982). Models of mitochondrial DBA transmission genetics and evolution in higher eukaryotes. Genet. Res. 40, 41-57.Chitty, D., and Kempson, D. A. (1949). Pre-baiting small mammals and a new design of live trap. Ecology. 30, 536-42.

Page 491: (Hus domesticus. Rut t y ) - UCL Discovery

Chomyn, A., Mariottini, P., Cleeter, M., Ragan, F., Matsuno-Yagi, A., Hatefi, Y. , Doolittle, R,, and Attardl, G. (1985). Six unidentified reading frames of human mitochondrial DBA encode components of the respiratory-chain BADH dehydrogenase. Bature, london. 314, 592-597.Clark, A.G., and Lyckegaard, E.X.S. (1988). Batural selection with nuclear and cytoplasmic transmission. III. Joint analysis of segregation and mitochondrial DBA in Drosophila melanogaster. Genetics. 118, 471- 481.Clarke, G. (1975). The Earlier Stone Age Settlement of Scandinavia.Cambridge University Press, Cambridge,England.Clary, D.O., and Yolstenholme, D.R. (1985). The mitochondrial DBA molecule of Drosophila yakubai Bucleotide sequence, gene organisation, and genetic code. J. Mol. Evol. 2, 252-271.Clayton, D.A. (1982). Replication of animal mitochondrial DBA. Cell. 28, 693-705.Clayton, D.A. (1984). Transcription of the mammalian mitochondrial genome. Ann. Rev, Biochem. 53, 573-594.Corbet, G.B. (1961). Origin of the British insular races of smallmammals and the 'lusitanian' fauna. Bature, London. 191, 1037-1040.Corbet, G.B. (1964). Regional variation in the bank vole Clethrionmys g la reo lu s in the British Isles. Proc. Zool. Soc. Lond. 143, 191-219.Corbet, G.B. (1969). The geological significance of the presentdistribution of mammals in Britain. Bull. Mamm. Soc. 31, 14-16.Corbet, G.B. (1971). Provisional distribution maps of British mammals. Mamm. Rev. 1, 95-142.Corbet, G.B. (1974). The distribution of mammals in historic times. In: The,..changing , f lo r a and fau n a .o f B r ita in , (ed. Hawksworth, D.L.), pp. 179-202. Academic press, London.Corbet, G.B. (1986). Temporal and spatial variation of dental pattern in the voles, K icrotus a rv a lis of the Orkney Isles. J. Zool. Lond. A208,395Cox, T.P. (1984). Ethological isolation between local populations of house mice CMus musculus) based on olfaction. Anim. Beh. 32, pl068-77.Coyne, J.A., Boussy, L.A., Prout, T., Bryant, S.H., Jones, J.S. and Moore, J.A. (1982). Long distance migration of Drosophila. Am. Bat. 119, 589-595.Crawford, M.H., Gondzalez, B.I., Schanfield, M.S., Dykes, D.D.,Skradski., K., and Polesky, H.F. (1981). The black Caribs (Garifuna) of livlngton, Guatemala: Genetic markers and admixture estimates. Hum.Biol. 53, 87-103.

Page 492: (Hus domesticus. Rut t y ) - UCL Discovery

Croizat, L., Belson, G., and Rosen, D.E. (1974). Centers of origin and related concepts. Syst. Zool. 23, 265-287.Danna,K.J., Sack, G.H., and Bathans, D. (1973). Studies of simian virus 40 DBA part 7, a cleavage map of the SV40 genome. J. Mol. Biol. 78, 363- 376.Darlington, P.J. Jr. (1957). Zoogeography: The geographical distribution nf John Viley & Sons, B.Y.Darwin, C. (1859). Qn the Origin of Species. London: MurrayDavis, S.J.M. (1983). Morphometric variation of populations of house mice CKus domesticus) in Britain and Faroe. J. Zoo. Lond. 199, 521-534.Dawid, l.B. (1972). Evolution of mitochondrial DBA sequences in Xenopus. Dev. Biol. 29, 139-151.Dawid, l.B., and Blackler, A.V. (1972). Maternal and cytoplasmic inheritance of mitochondrial DBA in Xenopus. Develop. Biol. 29, 152-161.De Bruijn, M.H.L. (1983). Drosophila melanogaster mitochondrial DBA, a novel organisation and genetic code. Bature, London, 304, 234-241.De Rougln, L. (in press). Actes du 2eme Congres International " Le Rongeur et i'Espace". Lyon.tDefries, J.C. and McClearn, G.E. (1972). Behavioural genetics and the fine structure of mouse populations; a study in microevolution. In: Evolutionary biology. 5. 279-291, Eds Dobzhansky, T., Hecht, M.R., and Steere, V.C. B.Y: Appleton-Century-Crofts.Delany, M. J., and Whittaker, H. M. (1969). Variation in the skull of the longtailed field-mouse, Apodemus s y lv a tlc u s in mainland Britain. J.Zool. Lond. 157, 147-157.Delong, K. T. (1967). Population ecology of feral house mice. Ecology.48, 611-34.Densmore, L.D., Wright, J.V., and Brown, V.H. (1985). Length variation and heteroplasmy are frequent in mitochondrial DBA from parthenogenetic and bisexual lizards (genus Cnemidophorus). Genetics, 110, 689-707.Desalle, R., and Templeton, A. (1988). Founder effects and the rate of mitochondrial DBA evolution in Hawaiian Drosophila. Evolution. 42, 1076- 1084.Desalle, R., Templeton, A., Mori, I., Pletscher, S., and Spencer Johnson, J. (!987). Temporal and spatial heterogeneity of mtDBA polymorphisms in natural populations of Drosophila mercatorum. Genetics. 116, 215-223.

Page 493: (Hus domesticus. Rut t y ) - UCL Discovery

Desalle, R., Freedman, T., Prager, E.M., and Vilson, A.C. (1987b). Tempo and mode of sequence evolution in mitochondrial DBA of Hawaiian Drosophila. J. Mol. Evol. 26, 157-164.Dewey, R.B., Levings III, C.S., and Timothy, D.H. (1986). Bovelrecombinants in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male sterile cytoplasm. Cell, 44, 439- 449.Dobzhansky, Th. (1937). Genetic and the origin of species. B.Y:Columbia University Press.Dobzhansky, Th., and Vright, S. (1947). Genetics of natural populations. X. Dispersion rates in Drosophila pseudobscura. Genetics, 28, 304-40.Doda, J.B., Vright, C.T., and Clayton, D.A. (1981). Elongation ofdisplacement loop strands in human and mouse mitochondrial DBA isarrested near specific template sequences. Proc. natl. Acad. Sci, USA. 78, 6116-6120.Dueser, R.D. and Potter, J.H. (1986). Habitat use by insular small mammals: relative effects of competition and habitat structure. Ecol.67, 195-201.Duncan, A. A.M. (1959). Documents relating to the priory of the Isle of May, c. 1140-1313. Proc. Soc. Antiq. Scot., 90, 52.Easteal, S. (1986). The ecological genetics of introduced populations of the giant toad, Bufo marinus. IV. Gene flow estimated from admixture in Australian populations. Heredity, 56, 145-156.Egami, B., Umehara, T., Kamiyama, S., and Bakane, C. (1981). Bihenjin towa nanlka. (Vhat characters does the Japanese human race have in the fields of physical and cultural anthropology?). Proceedings of Amagi Symposium Kodansha, Tokyo.Eggeling, V.J., (1960) The Isle of May; A Scottish Bature Reserve. Edinburgh and London: Oliver & Boyd.Ehrich, P.R, and Raven, P.H. (1969). Differentiation of populations. Science, B.Y. 165, 1228-32.Eicher, E.M., Philips, S.J., and Vashburn, L.L. (1983). The use of molecular probes and chromosomal rearrangements to partition the mouse Y chromosome into functional regions. In: Recombinant DBA and Medical Genetic (eds. A. Messer and I.H. Porter), pp. 57-71. B.Y. Acedemic Press.Eicher, E. M., and Vashburn, L.L. (1986). Genetic control of primary sex determination mice. Ann. Rev. Genet. 20, 327-60.Eicher, E.M., Hutchinson, K.V., Phillips, S.J., Tucker, P.K. , and Lee,B.K. (1989). A repeated segment on the mouse Y chromosome is composed of

Page 494: (Hus domesticus. Rut t y ) - UCL Discovery

reteroviral-related, Y-enriched, and Y-specific sequences. Genetics,122, 181-192.Eldredge, I., and Gould, S.J. (1970). Punctuauted equilibria: An alternative to phyletic gradualism. In: Models in Paleobiology. (Eds),T.J.M. Schipf, pp82-115. San Francisco: Freeman.Ellerman, J.R. (1941). The families and genera of living rodents. VolumeII. Brit. Mus. (Mat. Hist). London.Endler, J.A. (1977). Geographic variation. Speciation. and Clines. Princeton Uinversity Press, Princeton, H.J.Erickson, R.P. (1987). Evolution of four human Y chromosomal unique sequences. J. Mol. Evol. 25, 300-307.Evans, D. (1977). Field vole, Microtus agrestis. In: The handbook ofBritish Manrmala. (Eds), Corbet, G.B & Southern, H.I. ppl85-193, Oxford: Blackwell.Excoffier, L. (1990). Evolution of human mitochondrial DMA: Evidence for departure from a pure neutral model of populations at equilibrium. J.Mol. Evol. 30, 125-139.Fairley, J .S. (1971). A critical re-appraisal of the status in Ireland of the Eastern house mouse. Irish. Mat. Jorn. 17, 2-5.Farris, J.S. (1970). Methods for computing wagner trees. Syst. Zool.19, 83-92.Fauron, L.M.R., and Volstenholme, D.R. (1980). Intraspecific diversity of nucleotide sequences within the adenine + thymine rich region of mitochondrial DMA molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans. Mucl. Acids. Res. 8, 5399-5410.Felnberg, A.P., and Vogelstein, B.(1983). A technique for radiolabeling DMA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6-13.Feinberg, A.P., and Vogelstein, B. (1984). Addendum - a technique for radiolabelling DMA restriction endonuclease fragments to high specific activities. Anal. Biochem. 137, 266-67.Felsenstein, J. (1982). How can we infer geography and history from gene frequencies? J.Theoret. Biol. 96, 9-20.Ferris, S.D., and Berg, V.J. (1987). The utility of mitochondrial DMA in fish genetics and fishery management. In: Population Genetics and Fishery Management. M, Ryman and F, Utter, eds., University of Washington Press.Ferris, S.D., Brown, V. H. , Davidson, V.S. , and Vilson, A.C. (1981a). Extensive polymorphism in the mitochondrial DMA of apes. Proc. natl.Acad. Sci. USA. 78, 6319-6323.

Page 495: (Hus domesticus. Rut t y ) - UCL Discovery

Ferris, S.D. , Vilson, A.C., and Brown, V.H. (1981b). Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DMA. Proc. natl. Acad. Sci. USA. 78, 2432-2436.Ferris, S.D., Sage, R.D., and Vilson, A.C. (1982). Evidence from mitochondrial DMA sequences that common laboratory strains of inbred mice are descended from a single female. Mature, Lond. 295, 163-5.Ferris, S.D., Sage, R.D., Prager, E. K., Ritte, U., and Vilson, A.C.(1983). Mitochondrial DMA evolution in mice. Evolution. 105, 681-721.Ferris, S. D., Sage, R. D., Huang, C-M., Mlelson, J.T., Ritte, U., and Vilson, A.C. (1983b). Flow of mitochondrial DMA across a species boundary. Proc. natl. Acad. Sci. USA. 80, 2290-2294.Festing, M.F.V., and Lovell, D .P. (1981). Domestication and developement of the mouse as a laboratory animal. Symp. Zool. Soc. Land. 47, 43-60.Figueroa, F., Tichy, H. , Berry, R.J. and klein, J. (1986). MHC polymorphism in island populations of mice. Current topics in Microbiology and Immunology. 27, 100-106.Fischer Lindahl, K. (1985). Mitochondrial inheritance in mice. Trends in Genetics. 5, 135-139.Fitch, V.H., and Margoliash, E. (1967). Construction of phylogenetic trees. Science, M.Y. 155, 279-84.Ford, C.E. (1966). Communication. Transplantation. 4, 333-5.Forejt, J. (1981). Hybrid sterility gene located in the T/t H-2 supergene on chromosome 17. In: Reisfeld, R. A., Ferrone, S. (Eds), Current trends in Histocompatibility, vol. 1, Plenum Press. M.Y. london. pi 03.Forejt, J., and Ivanyi, P. (1974). Genetic studies in male sterility of hybrids between laboratory and wild mice (Xus musculus. L). Genet. Res. Camb. 24, 189-206.Fort, P., Bonhomme, F., Darla, P., Piechaczyk, M., Jeanteur, P., and Thaler, L. (1984). Clonal divergence of mitochondrial DMA versus populational evolution of nuclear genome. Evol. Theory. 7(2), 81-90.Fos, M., Dominguez, M. A., Latorre, A,, and Moya, A. (1990).Mitochondrial DMA evolution in experimental populations of Drosophila subobscura. Proc. natl. Acad. Sci. USA. 87, 4198-4201.Franco, m.H.I.P., Veimer, I.A,, and Salzano, F.M. (1981). Blood polymorphisms and racial admixture in two Brazilian populations. Amer.J. Phys. Anthrop. 58, 127-132.Gaines, M.S. and McCleraghan L.R. Jr. (1980). Dispersal in small mammals. Ann Rev. Ecol. Syst. 11, 163-196.

Page 496: (Hus domesticus. Rut t y ) - UCL Discovery

Garesse, S. (1988). Drosophila melanogaster mitochondrial DMA; Gene organisation and evolutionary considerations. Genetics, 118, 649-663.George, M. Jr., and Ryder, 0.A. (1986). Mitochondrial DMA evolution in the genus Equus. Mol. Biol. Evol. 3, 535-46.Gilbert, D.A., Lehman, M., O'Brien, S.J., and Vayne, R.K. (1990).Genetic fingerprinting reflects population differentiation in the Calfiornia Channel Island Fox. Mature, Lond. 344, 764-67.Giles, R.E., Blanc, H., Cann, H. M., and Vallace, D.C. (1980). Maternal inheritance of human mitochondrial DMA. Proc. natl. Acad. Sci. USA. 77, 6715-6719.Gillespie, J.H. (1986). Matural selection and the molecular clock. Mol. Biol. Evol. 3, 138-155.Gleaves, J.T. (1973). Gene flow mediated by wind borne pollen. Heredity 31, 366-366.Goddard, J.M., Masters, J.M., Jones, S.S., Ashworth, V. D. , and Volstenholme, D.R. (1981). Mucleotide sequence variants of Rattus norvegicus mitochondrial DMA. Chromosoma. 82, 595-609.Gotoh, 0., Hayashi, J-I., Yonekawa, H., and Tugashira, Y. (1979). An improved method for estimating sequence divergence between related DMAs from changes in restriction endonuclease cleavage sites. J. Mol. Evol.14, 301-310.Gould, S.J. (1980). Is a new and general theory of evolution emerging? Paleobiology, 6, 119-30.Graves, J.E., Ferris, S.D., Dizon, A.E. (1984). Close genetic simlarity of Atlantic and Pacific skipjack tuna (.Katsuvonus pel amis) demonstrated with restriction endonuclease analysis of mitochondrial DMA. Mar. Biol. 79, 315-319.Greenberg, B. D., Mewbold, J.E., and Sugino, A., (1983). Intraspecific nucleotide sequence variability surrounding the origin of replication in human mitochondrial DMA. Gene. 21, 33-49.Greenwood, P.J. (1980). Mating systems, Philopatry, and dispersal in birds and mammals. Anim. Beh. 28, 1140-1162.Griffith, J. , Bleyman, M. , Rauch, C.A., Kitichin, P.A., and Englund,P.T. (1986). Visualisation of the bent helix in kinetoplast DMA by electron microscopy. Cell, 46, 717-724.Gropp, A., Winking, H., Redi, C., Capanna, E.,Britton-Davidian, J., and Moack, G. (1982). Robertsonian karyotype variation in wild house mice fron rhaeto-Lombardii. Cytogenet. Cell. Genet. 34, 67-77.Guerin, P., Berriche, S., Intratar, S., Rouger, P., Salmon, D., Salmon, Ch., and Lucotte, G. (1988a). Les techniques de polymorphisms de l'ADM

Page 497: (Hus domesticus. Rut t y ) - UCL Discovery

de sondes du chromosome Y appliquees au problems de filiations pere-fils dans les analyses de paternites. Rev. Fr. Transfus. Immunohematol. 23, 513-520.Guerin, P., Rouger, P., and Lucotte, G. (1988b). lew Taq I BO variant detected with the probe 49f probe on the human Y chromosome. Mucleic Acids. Res. 16, 7759.Guillemette, J.G., and Lewis, P.I.L. (1983). Detection of subnanogram quantities of DMA and RMA on native and denaturing and agarose gels by silver staining. Electrophoresis. 4, 92-5.Gyllensten, U., Wharton, D., and Wilson, A.C. (1985). Maternal inheritance of mitochondrial DMA during backcrossing of two species of mice. J. Hered. 76, 321-324.Gyllensten, U., and Wilson, A.C. (1987). Interspecific mitochondrial DMA transfer and the colonization of Scandinavia by mice. Genet. Res. 49, 25-29.Gyllensten, U. , and Wilson, A.C. (1987b). Mitochondrial DMA of Salmonids: Inter and Intraspecific variability detected with restriction enzymes. In: Population Genetics and Fishery Management. M, Rymanand F, Utter, eds., University of Washington Press.Haldane, J.B.S. (1932). The causes of Evolution. London: Longmans & Green.Hale, L.R., and Singh, R.S. (1986). Extensive variation and heteroplasmy in size of mitochondrial DMA among geographic populations of Drosophila melanogaster. Proc. natl. Acad. Sci. USA. 83, 8813-8817.Hall, G.H., and Muralidharan, K. (1989). Evidence from mitochondrial DMA that African honey bees spread as continuous maternal lineages. Mature, lond. 339, 211-213.Hamilton, W.D., Axelrod, E. , and Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proc. natl. Acad. Sci. USA. 87, 3566-3573.Handel, S.M. (1982). Dynamics of gene flow in an experimental population of Cucumis melo (Cucurbitaceae). Am. J. Bot. 69, 1538-46.Harris, H. (1966). Enzyme polymorhisms in man. Proc. Roy. Soc. Lond. B. 164, 298-310.Harrison, R.G. (1989). Animal mitochondrial DMA as a genetic marker in population and evolutionary biology. Trends in Ecology and Evolution. 4, 6-11.Harrison, R.G., Rand, D.M., and Wheeler, W.C. (1985). Mitochondrial DMA size variation within individual crickets. Science, M.Y. 228, 1446-1447.

Page 498: (Hus domesticus. Rut t y ) - UCL Discovery

Hauswlrth, V.V., and Laipis, P.J. (1982). Mitochondrial DMA polymorphism in a maternal lineage of Holstein cows. Proc. natl. Acad. Sci. USA. 79, 4686-4690.Hauswlrth, V.V Van De Valle, M.J., Laipis, P.J., and Olivo, P.D. (1984). Heterogeneous mitochondrial DMA D-loop sequences in bovine tissues.Cell. 37, 1001-1007.Hayashi, J. , Yonekawa, H. , Gotoh, 0., Vatanabe, J., and Tagashlra, Y. (1978). Strictly maternal inheritance of rat mitochondrial DMA. Biochem. Biophys. Res. commun, 83, 1032-1038.Haysaka, K. , Takashi,G., and Horia, S. (1988). Molecular phylogeny and evolution of primate mitochondrial DMA. Mol. Evol. Biol. 5, 626-644.Hazout, S. and Lucotte, G. (1987). Vers une gdndalogie du chromosome Y. Ann. GAnAt 29, 246-252.Hecht, M.B., Liem, H., Kleene, K.C., Distel, R.J., and Ho S-M. (1984). Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DMA or by methylation of the oocyt mitochondrial DMA. Develop. Biol. 102, 452-461.Hendy, M. D. , and Penny, D. (1992). Branch and bound algorithms to determine minimal evolutionary trees. Math. Biosci. 59, 277-290.Hennig, V. (1966). Phylogenetic Systematics. 263 pp. Urbana: University of Illinois Press.Hertzberg, M., Xickleson, K.M.P., Serjeantson, S.V. , Prior, J.F., and Trent, R.J. (1989). An Asian-specific 9-bp deletion of mitochondrial DMA is frequently found in Polynesians. Am. J. Hum. Genet. 44, 504-510.Higuchi, R. , Bowman, B., Freiberger, M., Ryder, O.A., and Vilson, A.C.(1984). DMA sequences from the quagga, an extinct member of the horse family. Mature, London. 312, 282-284,Higuchi, R., Vrischnik, L.A., Oakes, E., George, M. , Tong, B., and Vilson, A.C. (1987). Mitochondrial DMA of the extinct quagga: relatedness and extent of post-mortem change. J. Mol. Evol. 25, 283-287.Higuchi, R. von Beroldlngen, C.H., Sensabough, G.F., and Erlich, H.A. (1988). DMA typing from single hairs. Mature, Lond. 332, 543-546.Hinton, M.A,C. (1910). A preliminary account of the British fossil voles and lemmings; with some remarks on the Pleistocene climate and geography. Proc. Geol. Assoc. Lond. 21, 489.Hixson, J.E., and Brown, V.H. (1986). A comparison of the small ribosomal RMA genes from the mitochondrial DMA of the Great Apes and humans: sequence, structure, evolution and phylogenetic implications.Mol. Biol. Evol. 3, 1-18.

Page 499: (Hus domesticus. Rut t y ) - UCL Discovery

Holmquist, R. (1976). Solution to a gene divergence problem under arbitrary stable nucleotide probabilities. J. mol. Evol. 8, 337-349.Holmquist, R. (1983). Transitions and transversions in evolutionary descent: an approach to understanding. J. Mol. Evol. 19, 134-144.Holt, I.J., Harding, A.E., and Morgan-hughes, J.A. (1988). Deletions of muscle mitochondrial myopathies. Mature, lond. 331, 717-719.Hooker, J.D. (1853). Introductory Essay, pp. I - XXXIX. In: The botany of the Anatarctic voyage of H.M. Discovery ships Erebus and Terror in the years 1853-55. II. Florae Novae Zelandiae. London: Reeve Bros.Horai, S., Gojobori, T., and Matsunaga, E. (1984). Mitochondrial DMA polymorphism in Japanese. Hum. Genet. 68, 324.Horla, S., and Matsunaga, E. (1986). Mitochondrial DMA polymorphism in Japanese. II. Analysis with restriction enzymes of four or five base pair recognition. Hum, Genet. 72, 105-117.Howell, M. (1985). Anomalous electrophoretic mobility of mouse mitochondrial DMA restriction fragments. Plasmid. 14, 93-96.Howell, M., Appel, J-» Cook, J.P., Howell, B., and Hauswlrth, V.V. (1987). The molecular basis of Inhibitor resistance in a mammalian mitochondrial cytochrome b mutant. J. Biol. Chem. 262, 2411-2414.Hunt, V.G., and Selander, R.K. (1973). Biochemical genetics of hybridisation in European House mice. Heredity, 31 (1), 11-33.Hurst, J.L. (1987a). Behavioural variation in wild mice Xus domesticus. Rutty: a quantitative assessment of female social structure. Anim. Beh. 35, 1846-1857.Hurst, J.L. (1987b). Mating in free-living wild house mouse (Xus domesticus). Motes. Mamm. Soc. 53, 623-628.Hutchinson, C.A., Mewbold, J.E., Potter, S.S., and Edgell, M.H. (1974). Maternal inheritance of mammalian mitochondrial DMA. Mature, Lond, 251, 536-538.Jackson, J.F., and Pounds, J.A. (1979). Comments on assessing the dedifferentiating effect of gene flow. Syst. Zool. 28, 78-85.Jacobs, L.L. (1978). Fossil rodents (Rhizamyidae and Xurldae)from Meogene Slwaliks deposits, Pakistan. Mus. Mo. Arlz. Press. Bull.52, 1.Jacquart, Th. (1986). Structure genetique et phylogenie intraspecifique chez les souris sauvage Xus spretus (Lataste, 1883). These de Doctorat. Univ. Sci. Tech. Languedec, Montpellier. 122p.

Page 500: (Hus domesticus. Rut t y ) - UCL Discovery

Jaeger, J.J. (1975). Les Rongeurs du Miocene moyen et superieur du Mahgreb. These. Doc. Sci. University of Montpellier, Montpellier,France.Jaeger, J.J., and Vesselman, H. B. (1976). Fossil remains of micromammals from the Ocne Group deposits. In: Earliest man and enviroments in the Lake Rudolf Basin. (Eds), Coppens, Clark-Howell, Isaac, and Leakey. University of Chicago Press, Chicago, pp351-36Jaeger, J-J, Tong, H., Denys, C, (1986). The age of the Xus - Rattus divergence: paleontological data compared with the molecular clock. C.R. Acad. Sci. Paris [II] 302, 917-922.Jeffreys, A.J., Vilson, V., and Thein, S.L. (1985). Hypervariable minisatellite regions in human DMA. Mature, Lond. 314, 67-73.Johnson, M.J., Vailace, D.C. , Ferris, S.D., Rattazzi, M.C. , and Cavaili Sforza, L.L. (1983). Radiation of human mitochondrial DMA types analysed by restriction endonuclease cleavage patterns. J. Mol. Evol. 19, 255- 271.Johnson, M.S., Clarke, B., and Murray, J. (1988). Discrepancies in the estimation of gene flow in Partula. Genetics. 120, 233-238.Jones, C.S., Tegelstrom, H., Latchman, D., and Berry, R.J. (1988). An improved rapid method for mitochondrial isolation suitable for use in the study of closely related populations. Biochem. Genet. 26, 83-86.Jones, K.V., and Singh, L. (1981). Conserved repeated DMA sequences in vertebrate sex chromosomes. Hum. Genet. 58, 46-53.Jones, J.S. (1990). The sinking of the Kon-tiki. Trends in Ecology and Evolution. 5 (5), 167-168. Book review of The Colonisation of the Pacific: a Genetic Trail. (1989). (Eds) A.V.S., Hill and S.V., Serjeantson, Oxford Press, (Research Monographs on Human Population Biology, Mo. 7).Jones, J.S., Bryant, S.H., Lewontin, R.C., Moore, J.A. and Prout, T. (1981). Gene flow and geographical distribution of a molecular polymorphism in Drosophila pseudobscura. Genetics, 98, 157-178.Jukes, T.H. (1982). Silent nucleotide substitutions in evolution. Presented at the meeting of the society for the study of evolution and the American Society of Maturalists, Stony Brook, M.Y.Kaplan, M., and Langley, C.H. (1979). A new estimate of sequence divergence of mitochondrial DMA using restriction endonuclease mappings. J. Mol. Evol.13, 295-304.Kerr, R.A. (1983). An early glacial two-step? Science, M.Y. 221, 143- 144.

Page 501: (Hus domesticus. Rut t y ) - UCL Discovery

Kessler, L.G., and Avise, J.C. (1984). Systematic relationships among waterfowl (Anatldae) inferred from restriction endonuclease analysis of mitochondrial DMA. Syst. Zool. 33, 370-380.Kessler, L.G. and Avise, J.C. (1985). Microgeographic lineage analysis by mitochondrial genotype; Variation in the cotton rat (Slgmodon hispidus). Evolution. 39, 831-37.Kimura, K., and Crow, J.F. (1964). The number of alleles that can be maintained in a finite population. Genetics. 49, 725-38.Kimura, M. (1983a). The neutral theory of Molecular Evolution.Cambridge: Cambridge University Press.Kimura, M. (1983b). The neutral theory of Molecular Evolution. In:Evolution of Genes and Proteins. (Eds). M, Nei & R, Koehn, pp208-33.Sunderland, Mass: Sinauer Associates.Klein, J. (1975). Biology of the Mouse Histocompatibility H2complex.Berlin & lew York: Springer-Verlag.Klein, J., Gotze, D., Nadeau, J., and Vakeland, E.K. (1981). Population immunogenetics of murine H-2 and t systems. In: The Biology of the Hhuspmouse. (Eds) R.J. Berry. Symposia of the Zoological Society of London.47, pp435-453. Acedemic Press, London.Klein, J., Golubic,M. , Budimir, 0., Schopfer, R., Kasahara, M., and Figueroa, F. (1986). On the origin of t chromosomes. In: M. Potter, J.H. Nadeau, and M.P. Cancro. (eds). The wild mouse in Tmntmology. Springer- Verlag. pp239-246.Kocher, T.D., Thomas, V.K., Meyer, A., Edwards, S.V,, Paabo, S., Villablanca, F.X., and Wilson, A.C. (1989). Dynamics of mtDNA evolution in animals: amplification and sequencing with conserved primers. Proc. natl. Acad. Sci. USA 96, 6196-6200.Kohne, D.B., Chicson, J.A., and Hoyer, B.H. (1972). Evolution of primate DNA sequences. J. Hum. Evol. 1, 627-644.Kioke, K. , Kobayashi, M., Yaginuma, k., Taira, M. , Toshida, E. , and Imai, M. (1982). Nucleotide sequence and evolution of the rat mitochondrial cytochrome b genes containing the ochre termination codon. Gene. 20, 177-185.Lamar, E.E., and Palmer, E. (1984). Y-encoded species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell. 37, 171-77.Lamb, T., Avise, J.C., and Gibbons, V.J. (1989). Phylogeographic patterns in mitochondrial DNA of the desert tortoise (Jferobates agassizi), and evolutionary relationships among the northern American gopher tortoises. Evolution. 43 (1), 76-87.

Page 502: (Hus domesticus. Rut t y ) - UCL Discovery

Lanave, C. , Preparata, G., Saccone, C. , and Serio, G. (1984). A new method for calculating substitution rates. J. Mol. Evol. 20, 86-93.Lanave, C., Preparata, G., and Saccone, C., (1985). Mammalian genes as evolutionary clocks. J. Mol. Evol. 21, 346-350.Lansman, S.A., Shade, R.O., Shapira, J.F. and Avise, J.C. (1981). The use of restriction endonucleases to measure mitochondrial DMA sequence relatedness in natural populations. III. Techniques and potential applications. J. Mol. Evol. 17, 214-26.Lansman, R.A., Avise, J.C., Aquadro, C.F., Shapira, J.F. and Daniel,S. V. (1983). Extensive genetic variation in mitochondrial DVA's among geographic populations of the deer mouse, Peromyscus manlculatus. Evolution. 37, 1-16.Lansman, R.A., Avise, J.C., and Huettel, M.D. (1983b). Crictical experimental test of the possibility of "paternal leakage" of mitochondrial DMA. Proc. Matl. Acad. Sci. USA 80, 1969-1971.Larson, A., Vake, D.B., and Yanev, K.P. (1984). Measuring gene flow among populations having high levels of genetic fragmentation. Genetics, 106, 293-308.Lennington, S. (1983). Social preferences for partners carrying 'good genes' in the wild house mouse. Anim. Beh. 31, 325-333.Lestienne, P., and Ponsot, G. (1988). Kearns-Sayre syndrome with muscle mitochondrial DMA deletion. Lancet, i, 885.Lever, C. (1969). The invaders and how they came here. The field. 394.Lever, C. (1985). Naturalized mammal a nf the world. Longman, London and Mew York.Lewontin, R.C. and Dunn, L.C. (1960). The evolutionary dynamics of a polymorphism in the house mouse. Genetics. 45, 705-22.Lewontin, R.C. , and Hubby, J.L. (1966). A molecular approach to the study of genic heterozygosity in natural populations. II. Amounts of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics, 54, 595-609.Lewontin, R.C. (1974). The genetic basis of Evolutionary Change. Mew york; Columbia Uiversity Press.Li V-H., and Vu, C-I. (1987). Rates of nucleotide substitution are evidently higher in rodents than in man. Mol. Evol. Biol. 4, 74-77.Li, V-H., and Tanimura, M. (1987). The molecular clock runs more slowly in man than in apes and monkeys. Mature, London. 326, 93-96.

Page 503: (Hus domesticus. Rut t y ) - UCL Discovery

Li, V-H., Tanimura, M., and Sharp, P.M. (1987). An evaluation of the molecular clock hypothesis using mammalian DMA sequences. J. Mol. Evol. 25, 330-342.Lidicker, V.Z. (1966). Ecological observations on a feral house mouse population declining to extinction. Ecol. Monograph. 36, 27-50.Lidicker, V.Z. (1975). The role of dispersal in the demography of small mammals. In: " Small mammals: Productivity and Dynamics of populations(ED. by K. Petrusewicz, E.B. Golley, & L, Ryszkowski), pp. 103-128. London: Cambridge University Press.Lidicker, V.Z. (1976). Social behaviour and density regulation in house mice living in large enclosures. J. Anim. Ecol. 45, 677-97.Lidicker, V.Z. (1985). An overview of dispersal in non-volant small mammals. In: Migration: Mechanisms and adaptive significance* (Eds) M.A. Rankin, 369-85. contributions in marine science, Supplement, vol 27.Lidicker, V.Z, and Patton, J.L. (1987). Patterns of dispersal and genetic structure in papulations of small rodents. In: Mammalian Dispersal Patterns, (eds) Chepka-Sade, B.D. and Talpin, Z.T. 144-161. Chicago: University Press.Lucchesi, J.C. (1978). Gene dosage compensation and the evolution of sex chromosomes. Science, M.Y. 202, 711-716.Lucotte, G., Gu6rin, P., Hal16, L., Loirat, F., and Hazout, S. (1989). Y chromosome DMA polymorphisms in two African populations. Am. J. Hum. Genet. 45, 16-20.Lucotte, G., and Mgo, K.Y. (1985). P49f, a highly polymorphic probe that detects Taq I RFLPs on the human Y chromosome. Mucleic Acids Res. 13, 8285.MacRae, A.F., and Anderson, V.V. (1988). Evidence for non-neutrality of mitochondrial DMA haplotypes in Drosophila pseudoobscura. Genetics. 120, 485-494.Maniatis, T. , Fritsch, E.F., and Sambrook, J. (1982). Molecular Cloning.Cold Spring Harbor Laboratory, M.Y.Margoliash, E. (1963). Primary structure and evolution of cytochrome C. Proc. natl. Acad. Sci. USA. 50, 672-79.Marshall, J.T. Jr. (1981). Taxonomy, pp. 17-26. In: The mouse In biomedical reserch. vol. 1, Chap. ", Edited by H.L. Foster, J.@D. Small, and J.G. Fox. cedemic Press, M.Y.Marshall, J.T. Jr., and Sage, R.D. (1981). Taxonomy of the house mouse. Symp. Zool. Soc. Lond. 47, 15-25.

Page 504: (Hus domesticus. Rut t y ) - UCL Discovery

Masukata, H., and Tomizawa, J. (1984). Effects of point mutations on formation and structure of the Rif A primer for CO El DMA replication. Cell, 36, 513-522.Matthews, L. H. (1952). British Mammals. London: Collins.Mayr, E. (1963). Animal species and Evolution. Cambridge, Mass: Belknap Press, Harvard.Mayr, E. (1982). The Growth of Biological Thought. Cambridge, Mass: Harvard University Press.MacHeil, D., and Strobeck, C. (1987). Evoltuionary relationships among colonies of Columbian groung squirrels as shown by mitochondrial DMA. Evolution. 41, 873-881.McLaren, A. (1988). Sex determination in mammals. Trends in Genetics. 4, 153-157.Mclaren, A., Simpson, E., Epplen, J.T., Studer, R., Koopman, P., Evans, E.P., and Burgoyne, P.S. (1988). Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome. Proc. natl. Acad. Sci. USA. 85, 6442-6445.Meise, N. (1928). Die Verbreitung der Aaskiahe (formentreis Corvus. corone. L) J.F. Ornithol. 76, 1-203.Menozzi, P., Piazza, A., and Cavalli-Sfora, L.L. (1978). Synthetic maps of human gene frequencies in Europeans. Science, H,Y. 201, 786-792.Miller, R. (1976). Orkney. B.T. Batsford, Ltd, London.Millotte, J.P., and Thevenin, A. (1988). Les racines des Europeens. HORVATH. Ed., Le Coteau, 518pp.Minezawa, M., Moriwaki, k. , and Kondo, K. (1979). Geogaphical distribution of Hbb** allele in the Japanese wild mice Xus musculusmolossinus. Jpn. J. Genet. 54, 165-172.Minezawa, M., Moriwaki, k., and Kondo, K. (1981). Geographical survey of protein variants in wild populations of Japanese house mice, X. m.molossinus. Jpn. J. Genet. 56, 27-39.Mlsonne, X. (1969). African and Indo-Australian muridae. Evolutionary trends. Ann. in. 8th Zool. 172. Mus. Roy. Afr. Cent., Tervuren,Belgique.Miyata, T., HayashIda, H., Klkuno, R., Hasegawa, M., Kobayashi, M., and Kioke, K. (1982). Molecular clock of silent substitutions: at least six­fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J. Mol. Evol. 19, 28-35.Miyata, T. , Hayashida, H. , Kuma, K., Mitsuyasu, K. and Yasunage, T. (1987a). Male-driven Molecular Evolution: A model and nucleotide

Page 505: (Hus domesticus. Rut t y ) - UCL Discovery

sequence analysis. Cold Spring Harbour Symposium on Quantitative Biology. S2. 863-867.Miyata, T., Hayashida, H., Kuma, K., and Yasunage, T. (1987b). Male- driven molecular evolution demonstrated by different rates of silent substitutions between autosome- and sex-chromosome-linked genes.Proc. Jpn. Acad. 63(8), 327.Monnat, R.J., and Loeb, L.A. (1985). Mucleotide sequence preservation of human mitochondrial DMA. Proc. natl. Acad. Sci. USA. 82, 2895-2899.Monnerot, M., Mounolou, J-C., and Solignac, M. (1984). Intra-individual length heterogeneity of Rana asculenta mitochondrial DMA. Biol. Cell.52, 213-218.Moore, P.D. (1987). Snails and the Irish question. Mature, London. 328, 381-382.Moriwaki, k., Yonekawa, H., Gotoh, 0., Minezawa, M., Vinklng, H., and Gropp, A. (1984). Implications of the genetic divergence between European wild mice with Robertsonian translocations from the view point of mitochondrial DMA. Genet. Res. Camb. 43, 277-87.Moriwaki, K. , Miyashita, M., Suzuki, H., Kurihara, Y., and Yonewaka, H.(1986). Genetic features of major geographical isolates of Kus musculus. In: Current topics in Microbiology and TTnmnrinlngy. (Eds), Potter, M. , Madeau, J.H., and Cancro, M.P. vol. 127, pp. 55-61.Moritz, C., Dowling, T.E. and Brown, V. H. (1987). Evolution of animal mitochondrial DMA: relevance for population biology and systematics.Ann. Rev. Ecol. Syst. 18, 209-92.Muir, T.S. (1885). Ecclesiological Motes on some of the Islands of Scotland. Edingburgh. Douglas.Murray, J., and Clarke, B.C. (1984). Movement and geneflow in Partula taeniata. Malacologla 25, 343-348.Myers, J.H. (1974). Genetic and social structure of feral house mouse populations on Grizzly Island, California. Ecology. 55, 747-59.Madeau, J.H., Vakeland, E.k., Gotze, D., and Klein, J. (1981). The population genetics of the H-2 polymorphism in European and Morth African populations of the house mouse (.Xus musculus. L). Genet. Res. Camb. 37, 17-32.Madeau, J.H., Britton-Davidian, J., Bonhomme, F. , and Thaler, L. (1988). H-2 polymorphisms are more uniformly distributed than allozyme polymorphisms in natural populations of house mice. Genetics, 118, 131- 140.Nallaseth, F.S., and Dewey, M. J. (1986). Moderately repeated mouse Y chromosomal sequence families present distinct types of organisation and evolutionary change. Mucl. Acids. Res. 14, 5295-5307.

Page 506: (Hus domesticus. Rut t y ) - UCL Discovery

Mallaseth, F.S., and Lawthe, R.P., Staffcup, M. Rr. , and Dewey, M.J. (1983). Isolation of recombinant bacteriophage containing male specific mouse RMA. Mol and Gen. Genet. 190, 80-84.Mash, H.R., Brooker, P.C., and Davis, S.J.M. (1983). The Robertsonian translocation house mouse papulations of Morth east Scotland: a study of their origin and evolution. Heredity. 50, 303-310.Mathans, D., and Smith, H.0. (1975). Restriction endonucleases in the analysis and restructuring of DMA molecules. Ann. Rev. Biochem. 44, 273- 293.Mavajas Y Mavarro, M., and Britton-Davidian, J. (1989). Genetic structure of insular Mediterranean populations of the house mouse. Biol. J. Linn. Soc. Lond. 36, 377-390.Meel, J.V. (1973). "Private" genetic variants and the frequency of mutations among South American Indians. Proc. natl. Acad. Sci. USA. 70, 3311-3315.Mei, M. (1975). Molecular Population Genetics and Evolution. Morth. Holland, Amsterdam, Netherlands.Mei, M. (1978). Estimation of average heterozygosity and genetic distance for a small number of individuals. Genetics, 89, 583-590.Mei, M. (1987). Molecular Evolutionary Genetics. Mew York: Columbia Univ. Press.Mei, M., and Li, (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. natl. Acad. Sci. USA, 76, 5269-73.Mei, M., and Tajima, F. (1981). DMA polymorphism detectable by restriction endonucleases. Genetics. 97, 145-163.Mei, M., Maruyama, T., and Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.Meigel, J.E., and Avise, J.C, (1986). Phylogenetic relationships of mitochondrial DMA under various demographic models of speclatlon. In, Evolutionary Processes and Theory, eds E. Mevo, S. Karlin, pp. 515-534. Mew York: Academic Press.Mgo, K.Y., Ruff16, J., and Lucotte, G. (1986a). Comparaison des fragments de restriction sp6cifiques du chromosome Y chez 1* Homme et le Chimpanz6, ansi que chez d'autres esp6ces de Primates. Biochem. Syst. Ecol. 14, 141-148.Mgo, K.Y., Vergnaud, G. , Johnson, J., and Veissenbach, J. (1986b). A DMA probe detecting multiple haplotype of the human Y chromosome. Am. J.Hum. Genet. 38, 407-418.

Page 507: (Hus domesticus. Rut t y ) - UCL Discovery

Miegel, J.E. , and Avise, J.C. (1986). Phylogenetic relationships of mitochondrial DIA under various demographic models of speciation. In: Evolutionary processes and theory. (Eds) E, levo, & S, Karlin. Acedemlc Press, M.Y. pp515-534.Migro, L. and Prout, T. (1990). Is there selection on RFLP differences in mitochondrial DMA? Genetics, 125, 551-555.Mishioka, Y. (1987). Y chromosomal DMA polymorphism in mouse inbred strains. Genet. Res. Camb. 50, 69-72.Mishioka, Y. (1988). Evolutionary characterisation of a Y chromosomal sequence conserved in the genus Mus. Genet. Res. Camb. 52, 145-50.Mishioka, Y. (1989). Genome comparison in the genus Mus: a study of Bl, MIF (mouse interspersed fragment), centromerlc, and Y chromosomal repetitive sequences. Cytogenet. Cell. Genet. 50, 195-200.Mishioka, Y., and Lamothe, E. (1986). Isolation and characterisation of a mouse Y chromosomal repetitive elements. Genetics. 113, 417-432.Mishioka, Y., and Lamothe, E. (1987a). Evolution of a mouse Y chromosomal sequence flanked by highly repetive elements. Genome. 29, 380-383Mishioka, Y., and Lamothe, E. (1987b). The Kus musculus musculus type Y chromosome predominates in Aslan house mice. Genet. Res. Camb. 50, 1965- 198.O'Donald, P. (1977). Mating advantage of rare males in models of sexual selection. Mature, Lond. 267, 151-54.O'Donald, P. (1978). Rare male mating advantage. Mature, Lond. 272, 189.Olivo, P.O., Van De Valle, M.J., Laipis, P.J., and Hauswirth, V.V.(1983). Mucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DMA D-loop. Mature, Lond. 306, 400-402.Ovenden, J.R., Vhite, R.V.G., and Sanger, A.C. (1988). Evolutionary relationships of Gadapsis spp. inferred from restriction enzyme analysis of their mitochondrial DMA. J. Fish. Biol. 32, 137-148.Ovenden, J.R., and Vhite, R.V.G. (1990). Mitochondrial and allozyme genetics of Incipient speciation in a landlocked population of Galaxias truttaceus (Pisces: Galaxlidae'). Genetics, 124, 701-716.Paabo, S., Gifford, J.A., and Vilson, A.C. (1988). Mitochondrial DMA sequence from a 2000 year old brain. Mucl. Acids Res. 16, 9775-9787.Palva, T.K., and Palva, E.T. (1985). Rapid isolation of animal mitochondrial DMA by alkaline extraction. FEBS. Lett. 192, 267.Partridge, L. (1988). The rare male effect: what is its evolutionary significance? Phil. Trans. R. Soc. Lond. B319, 525-39.

Page 508: (Hus domesticus. Rut t y ) - UCL Discovery

Patterson, C. (1980). Methods of paleogeography. pp. 446-500. In: Vlcarlance blogeography: a critque. (Eds), Nelson, G., and Rosen, D.E. Hew York: Columbia Uinversity Press.Patterson, C. (1981). The development of the Forth American fish fauna- a problem of historical biogeography. In: The evolving Bioshere. (Ed) P.L. Farey, British Museum (Hat. Hist), Cambridge University Press.Patton, J.L., and Feder, J.H. (1981). Microspatial genetic heterogeneity in pocket gophers: non random breeding and drift. Evol. 35, 912-920.Pepe, G., Holtrop,M., Gadaleta, G. , Kroon, A. M., Cantatore, P., Galleranl, S., De Benedetto, C., Quagllariello, C., Sbisa, E., and Saccone, C. (1983). Ion-random patterns of nucleotide substitutions and codon strategy in the mammalian mitochondrial genes coding for identified and unidentified reading frames. Biochem. Int. 6, 553-563.Plante, Y., Boag, P.T., and Vhite, B.N. (1987). Han-destructive sampling of mitochondrial DIA from voles (Kicrotus). Can. J. Zool. 165, 175-180.Plante, Y., Boag, P.T., and Vhite, B.H. (1989a). Macrogeographic variation in mitochondrial DMA of meadow voles (Kicrotus pennsylvanicus). Can. J. Zool. 67, 158-167.Plante, Y., Boag, P.T., and Vhite, B.N. (1989b). Microgeographic variation in mitochondrial DNA of meadow voles (Kicrotus pennsylvanicus) in relation to population density. Evol. 43, 1522-37,Platnick, I.I., and Helson, G. (1978). A method of analysis for historical biogeography. Syst. Zool. 27, 1-16.Platt, T.H.K., and Dewey, M.J. (1987). Multiple forms of male-specific simple repetitive sequence in the genus Kus. J. Mol. Evol. 25, 201-6.Platt, T.H.K., and Dewey, M.J. (1989). Variable evolutionary stability of Y chromosomal repeated sequences in the genus Kus. Genet. Res. Camb. 53, 87-93.Poulton, J. (1987). All about Eve. New Scientist. 1560, 51-3.Powell , J.R. and Zuniga, M.C. (1983). A simplified procedure for studying mtDNA polymorphisms. Biochem. Genet. 21, 1051-5.Powell, J.R., Caccone, A., Amato, G.D., and Yoon, C.(1986). Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc. natl. Acad. Sci. USA. 83, 9090-9093.Rand, D.M., and Harrison, R.G. (1986). Mitochondrial DIA transmission genetics in Crickets. Genetics, 114, 955-970.Rand, D.M., and Harrison, R.G. (1989). Molecular population genetics of mitochondrial DNA size variation in Crickets. Genetic, 121, 551-569,

Page 509: (Hus domesticus. Rut t y ) - UCL Discovery

Reimer, J.D. and Petras, M. L. (1967). Breeding structure of the house mouse, Kus musculus in a population cage. J. Mammal. 48, 88-99.Renfew, C. (1985). The prehistory of Orkney. Edinburgh; Edinburgh University Press.Roberts, C. , Veith, A., Passage, E., Michot, J-L., Mattel, M-G., and Bishop, C.E. (1988). Molecular and cytogenetic evidence for the location of tdy and hya on the mouse Y-chromosome short arm. Proc. natl. Acad.Sci. USA, 85, 6446-9.Rockwell, R.F. and Barrowclough, G.F. (1987). Gene flow and the genetic structure of populations. In: Avian Genetics, Academic Press Inc. London Ltd. pp. 223-255.Rockwell, R.F., and Cooke, F. (1977). Gene flow and local adaptations in a clonally breeding dimorphic bird: the lesser snow goose, (Anser caerulescen caerulescens). Am. Nat. Ill, 91-97.Roe, A.B., Ma, D.P,, Vilson, K. , and Vong, J.K.H. (1985). The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J.Biol. Chem. 260, 9759-9774.Rohlf, F.J. (1982). Consensus indices for comparing classifications.Math. Biosci. 59, 131-144.Rogers, J.S. (1972). Measures of genetic similarity and genetic distance. Univ. Texas. Publ. 7213, 145-153.Rosen, D.E. (1978). Vicariant patterns and historical explanation in biogeography, Syst. Zool. 27, 159-188.Rowe, F.P., Taylor, E.J. and Chudley, A.H.J. (1964). The effects of crowding on the reproduction of the house mouse (Kus musculus. L) living in corn-ricks. J. Anim. Ecol, 33, 477-83.Sabatier, M. (1979). Les Rongeurs fossiles de la formation de Hadar et leur interet paleoecologique. Bull.sac. Geol. France. 7, 309.Sabatier, M. (1982). Les Rongeurs du site Pliocene aa hominides de Hadar (Ethiopie). Paleovertebrata. 12 (1), 1-56.Saccone, C. , Cantatore, P., Gadaleta, G., Gallerani, R., Lanave, C.,Pepe, G., and Kroon, A.M. (1981). The nucleotide sequence of the large ribosomal RNA gene and the adjacent tRNA genes from rat mitochondria. Nucl. Acids. Res. 9, 4139-4148.Saccone, C. , Attimanelli, M., and Sbisa, E. (1985). Primary and higher order structural analysis of animal mitochondrial DNA. In: Achievements and perspectives of mitochondrial research. Quagliariello, E., Slater, E.C., Palmieri, F., Saccone, C., and Kroon, A.M. (Eds). Volume II, Biogenesis. Elsevier BV (Biomedical Division) Amsterdam. p37.

Page 510: (Hus domesticus. Rut t y ) - UCL Discovery

Saccone, C., Attimanelli, M., and Sbisa, E. (1987). Structural elements highly preserved during the evolution of the D-loop- containing region in vertebrate mitochondrial DNA. J. Mol. Evol. 26, 205-211.Sage, R.D. (1981). Vild mice. In: The mouse in biomedical research, vol 1, 39-90 (eds) H.L. Foster, I.D. Small, and I.D. Fox, Academic Press,N. Y.Sage, R.D., Vhitney, J.B.III., and Vilson, A.C. (1986). Genetic analysis of hybrid zone between domesticus and musculus mice, (Kus musculus complex):hemagiobin polymorphisms. In: M. Potter, J.H. Nadeau, and M.P. Cancro. (eds). The wild mouse in Immunology. Springer-Verlag. pp75-85.Sage, R.D., Heyneman, D., Lim, k-C., and Vilson, A.C. (1986b). Vormymice in a hybrid zone. Nature, lond. 324, 60-63.Said, K., Jacquart, Th., Mongelard, C., SonJaya,H., Helal, A.N., and Britton-Davidian, J.(1985). Robertsonian house mouse populations in Tunisia; a Karyotypical and biochemical study. Genetica. 68, 151-156.Saika, R.K., Scharf., S., Faloona, F., Mullis, K,B., Horn, G.T., Erlich, H.A., and Arnheim, N. (1985). Enzymatic amplification of the beta globin genomic sequence and restriction site analysis for diagnosis of sickle cell anemia. Science, Vash. 230, 1350-1364.Saika, R.K., Gelfand, D.H., Staffel, S., Scharf, S.J., Hlguchl, R.,Horn, G.T., mullis, K.B., and Erlich, H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, Vash. 239, 487-491.Satta, Y., Ishiwa, H., and Chigusa, S.I. (1987). Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol. Biol. Evol. 4(6), 638-650.Saunders, N.C., Kessler, L.G., and Avise, J.C. (1986). Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Llmulus polyphemus. Genetics 112, 613-627.SAS Institute Inc. (1985). SAS user's guide: Statistics, version 5 edition. SAS Institute Inc., Cary, NC.Schaal, B.A. (1980). Measurements of gene flow in Lupinus taxensis. Nature, Lond. 284, 450-451.Schwartz, E., and Schwartz, H.K. (1943). The wild and commensal stocks of the house mouse, Kus musculus Linnaeus. J. Mammal. 24, 59-72.Scriven, P., and Brooker, P. (1990). Caithness revisited: Robertsonian chromosome polymorphism in Caithness house mice. Heredity. 64, 25-27.Scriven, P. (1990). Introduction of Robertsonian translocations into a feral population of all-acrocentric mice. Proc. Roy. Soc. Lond. (in press).

Page 511: (Hus domesticus. Rut t y ) - UCL Discovery

Scriven, P., and Bauchau, V. (1990). The effect of hybridisation on mandible morphology in an island population of the house mouse, (in press).Searle, J.B. (1989). Genetic studies of small mammals from Ireland andthe Isle of Man. Ir. Fat. J. 23, 112-113.Searle, J.B. (1988). Karyotypic variation and evolution in the commonshrew Sorex araneus. Kew Chromosome Conference III, HMSO, 97-107.Searle, J.B., and Thorpe, R.S. (1987). Korphometric variation of the common shrew (Sorex araneus) in Britain, in relation to karyotype and geography. J. Zool. Lond. 212, 373-377.Searle, J.B., and Vilklnson, P.J. (1987). Karyotype variation in the common shrew (Sorex araneus) in Britain - a "Celtic Fringe". Heredity. 59, 345-351.Searle, J.B., Hubner, R., Wallace, B.M.F., and Garagna, S. (1990). Robertsonian variation in wild mice and shrews. Chromosomes Today, 10. (in press),Selander, R.K. (1970). Behaviour and genetic variation in natural populations. Am. Zool. 10, 53-66.Selander, R.K., and Kaufman, D. V. (1973). Genic variability and strategies of adaptation in animals. Proc. natl. Acad. Sci. USA. 70, 1875-1877.Selander, R.K., Hunt, V.G., and Yang, S.Y. (1969). Protein polymorphism and genic heterozygosity in two European subspecies of the house mouse. Evolution, 23, 379-390.Shields, G.F., and Vilson, A.C. (1987). Calibration of mitochondrial DMA evolution in geese. J. Mol. Evol. 24, 212-217.Simpson, E., Mclaren, A., Chandler, P., and Tomoriari, K. (1984). Expression of H-Y antigen by female mice carrying sxr. Transplantation. 37, 17-22.Singh, G., Feckelmann, N., and Wallace, D.C. (1987). Conformational mutations in human mitochondrial DNA. Nature, London. 329, 270-272.Singh, L., and Jones, K.V. (1982). Sex reversal in the mouse is caused by a recurrent non-reciprocal crossover involving the X and an aberrant Y chromosome. Cell. 28, 205-16.Singh, R.S., and Rhomberg, L.R. (1987). A comprehensive study of genic variation in natural populations of Drosophila melanogaster. I. estimates of gene flow from rare alleles. Genetics. 115, 313-322.Singleton, G.E., and Hay, D. A. (1983). The effect of social orgenisation on the reproductive success and gene flow in colonies of wild house mice, Kus musculus. Beh. Ecol. Sociobiol. 11, 49-56.

Page 512: (Hus domesticus. Rut t y ) - UCL Discovery

SIatkin, X. (1980). The distribution of mutant alleles in a subdivided population. Genetics, 95, 503-523,Slatkin, X. (1981). Estimates of levels of gene flow in natural populations. Genetics. 99, 323-335.Slatkln, X. (1985a). Rare alleles as indicators of gene flow. Evolution. 39, 53-65.Slatkin, X. (1985b). Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16, 393-430.Slatkin, X. (1987). Gene flow and the geographic structure of natural poulations. Science, Vash. 236, 787-792.Slatkin, X. (1989). Detecting small amounts of gene flow from phylogenies of alleles. Genetics. 121, 609-612.Slatkin, X. and Barton, N.H. (1989). A comparison of three indirect methods for estimating the average level of gene flow. Evolution. 43, 1349-1368.Slatkin, X. and Xaddison, V. P. (1989). A cladistic measure of gene flow inferred from phylogenies of alleles. Genetics. 123, 603-613.Smal, C.M. , and Fairley, J.S. (1978). Ir. Nat. J. 19, 237-239.Smith, D,R., Taylor, 0. R., and Brown, V.H. (1989). Neotropical Africanized honey bees have African mitochondrial DNA. Nature, Lond.339, 213-215.Smith, K.D., Young, K.E., Conover Talbot, C.Jr., and Schmeckpeper, B.J.(1987). Repeated DNA of the human Y chromosome. Development, 101, Supplement. 77-92.Sneath, P.H.A., and Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: V. H. Freeman.Snyder, X., Buchman, A.R., and Davis, R.V. (1986). Bent DNA at a yeast autonomously replicating sequence. Nature, 324,87-89.Snyder, M., Frazer, A.R., Laroche, J., Gartner-Kepkay, K.E., and Zourus, E. (1987). Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proc. natl. Acad. Sci. USA. 84, 7595-7599.Sokal, R.R., and Menozzi, P. (1982). Spatial autocorrelations of HLA frequencies in Europe support demic diffusion of early farmers. Am. Nat. 119, 1-17.Sokal, R.R. (1988). Genetic, geographic, and linguistic distances in Europe. Proc. Natl. Acad. Sci. USA 85, 1722-1726.Sokal, R.R., and Rolf, F.J. (1981). Blnmetry. (second edition). Freeman, San Francisco.

Page 513: (Hus domesticus. Rut t y ) - UCL Discovery

Solignac, X., Monnerot, M., Mounolou, J-C. (1983). Mitochondrial DNA heteroplasmy in Drosophila mauritiana. Proc. natl, Acad. Sci. USA. 80, 6942-6946.Solignac, X., Xonnerot, X., Mounolou, J-C. (1986). Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J. Xol. Evol. 23, 31-40.Solignac, X., Genermont, J., Monnerot, X., and Mounolou, J-C. (1987). Drosophila mitochondrial DNA genetics: evolution of heteroplasmy through germ line cell divisions. Genetics. 117, 687-696.Southern, E.M. (1975), Detection of specific sequence among DNAfragments separated by gel electrophoresis. J. Mol. biol. 98, 503-517.Southern, H.N. (1938). A survey of the vertebrate fauna of the Isle of May (Firth of Forth). J. Anim. Ecol. 7, 144-154.Southern, H.N. (1954). Control of rats and mice. Vol. 3, House mice.Oxford University Press.Southern, H.N., and Laurie, E.M.0. (1946). The house mouse (Xus musculus) in corn ricks. J. Anim. Ecology. 15, 134-149.Stanley, S.X. (1979). Xacroevolutlon; pattern and process. Freeman. San Francisco.Stefanini, X., Oura, C., and Zamboni, L. (1969). Ultrastructure of fertilisation in the mouse. 2. Penetration of sperm into the ovum. J. Submic. Cytol. 1, 1-23.Stellwagen, N.C. (1983). Anomalous electrophoresis of deoxyribonucleic acid restriction fragments on polyacrylamide gels. Biochemistry. 22, 6186-6193.Stevens, T.A., Duffield, D.A., Asper, E.D., Hewlett, K.G., Bolz, A.,Gage, L.J., and Bossart, G.D. (1989). Preliminary findings of restriction fragment differences in mitochondrial DNA among killer whales (Orcinus orca). Can. J. Zool. 67, 2592-2595.Stewart, J. (1868). Records of the priory of the Isle of May.Edingburgh.Stoneking, X. (1986). Human mitochondrial DNA evolution in Papua New Guinea. Phd Thesis. University of California, Berkeley.Stoneking, M., Bhatia, K., and Vilson, A.C. (1986). Mitochondrial DNA variation in Eastern Highlanders of Papua New Guinea. In: Genetic variation and its maintenance in tropical populations, (ed. D.F. Roberts and G. De Stefano). Cambridge University Press, England.Stoneking, X., and Vilson, A.C. (1989). Mitochondrial DNA. In: Ihfi. colonisation of the Pacific. A Genetic Trail, edited by A.V.S. Hill and S.V. Serjeantson. Oxford University Press, Oxford.

Page 514: (Hus domesticus. Rut t y ) - UCL Discovery

Stoneking, M., Jorde, L.B., Bhatia, K., and Vilson, A.C. (1990). Geographic variation in Human mitochondrial DNA from Papua New Guinea. Genetics. 124, 717-733.Suzuki, H., Xiyashita, H.,Moriwaki, k., Kominami, R. , Muramatsu, X., Kanehisa, T., Bonhomme, F., Petras, M. L., Yu, Z-C. , and Lu, D.Y. (1985). Evolutionary implications of heterogeneity of nontranscribed spacer region of ribosomal DNA repeating units in various subspecies of Xus musculus. Mol. Biol. Evol. 3, 126-137.Swofford, D.L. (1985). Phylogenetic analysis using parsimony (PAUP) version 2.4. Illinois Natural History Survey, Champaign, IL.Takahata, N. and Palumbi, S. R. (1985). Extranuclear differentiation andgene flow in the finite island model. Genetics. 109, 441-57.Tamura, K., and Aotsuka, T. (1988). Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure. Biochem. genet. 26, 815-819.Taylor, A. B. (1938). The Qrkneyinga Saga. A new translation with introduction and notes. London & Edinburgh.Tchernov, E. (1983). Commensal animals and human sedentlsm in the MiddleEast. 4*-* International Congress of Archeology.Tegelstrom, H. (1986). Mitochondrial DNA in natural populations: an Improved routine for the screening of genetic variation based on sensitive silver staining. Electrophoresis. 7, 226-29.Tegelstrom, H. (1987a). Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (Clethrionomys glareolus). J. Mol. Evol. 24, 218-227.Tegelstrom, H. (1987b). Genetic varaibility in mitochondrial DNA in a regional population of the great tit (Parus major). Biochem. Genet. 25, 95-110.Tegelstrom, H. (1987c). Detection of genetic variation in mitochondrial DNA using sensitive silver staining. Trends in Genetics. 3, 64.Tegelstrom, H., and Vyoni, P. I. (1986). Silanization of the supporting glass plates avoiding fixation of polyacrylamide gels to the glass cover plates. Electrophoresis. 7, 230-1.Templeton, A. (1987). Genetic systems and evolutionary rates. In: Rates of Evolution (Eds.) K.S. V. Campbell and M.F. Day. Allen and Unwin.London.Thaler, L., Bonhomme, F., and Britton-Davidain, J. (1981). Processes of speciation and semi-speciation in the house mouse. Symp. Zool. Soc.Lond. 47, 27-41.

Page 515: (Hus domesticus. Rut t y ) - UCL Discovery

Thaler, L. (1986). Origin and evolution of mice: An appraisal of fossil evidence and morphological traits. In: The Vlld Mouse in Immunology (eds. M, Potter, J.H. Nadeau, and M.P Cancro) Springer-verlag. pp. 1-11. Thomas, V.K, , and Beckenbach, A. T. (1986). Mitochondrial DNA restriction site variation in the Townsend's vole, Kicrotus townsendii. Cand. J. Zool. 64, 2750-2756.Topal, M.D., and Fresco, J.R. (1976). Complementary base pairing and the origin of substitution mutations. Nature, London. 263, 285-289.Triggs, G.S. (1977). Ecology, Physiology, and Survival of an isolated Mouse population. Phd thesis, University of London.Triggs, G.S. (1990). The population ecology of house mice (Kus domesticus, Rutty) on the Isle of May, Scotland, (in press).Tucker, P.K., Lee, B.K. , and Eicher, E.M. (1987), Y chromosome restriction fragment length polymorphism in the genus Kus.Genetics 116, s24Tucker, P.K., Sage, R.D., Vilson, A.C., and Eicher, E.M. (1988). The distribution of sex chromosomes in a hybrid zone between two species of European house mice. XVI International congress. Genetics. (Abs).Tucker, P.K., Lee, B.K., and Eicher, E.M. (1989). Y chromosome evolution in the subgenus Kus (genus Kus). Genetics, 122, 169-179.Twigg, G.I. (1976). Marking animals. In: Techniques in maTtrmnlngy.Chaptpr 3. Mamm. Review. 6, 101-115.Tzagoloff, A. (1982). Mitochondria. Plenum Press, N.Y.Upholt, V.B. (1977). Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids. Res. 4, 1257-1265.Upholt, V.B., and Dawid, I.B. (1977). Mapping of mitochondrial DNA of individual sheep and goats: Rapid evolution in the D-loop region. Cell. 11, 571-583.Ursin, E. (1952). Occurrence of voles, mice and rats (Kuridae) in Denmark, with special note on a zone of intergradation between two subspecies of the house mouse (Kus musculus. L). Vid. Medd. Dansak. Naturhist. Foren. 114, 217-244.Valla, F.R. (1988). La Recherche. 199, 576-584.Vanlerberghe, F., Dod, B. , Boursot, P., Beilis, M., and Bonhomme, F. (1986). Absence of Y-chromosome introgression across the hybrid zone between Kus musculus domesticus and Kus musculus musculus. Genet. Res. Camb. 48, 191-9.

Page 516: (Hus domesticus. Rut t y ) - UCL Discovery

Vanlerberghe, F. , Boursot, P., Nielsen, J.T., and Bonhomme, F. (1988a). A steep cline for mitochondrial DNA in Danish mice. Genet. Res. Camb.48, 291-297Vanlerberghe, F., Boursot, P., Catalan, J., Gerasimov, S., Bonhomme, F. Botev, A., and Thaler, L. (1988b). Analyse genetique de la zone d'hybridation entre les deux sous-especes de souris Xus musculus domesticus et Xus musculus musculus en Bulgarie. Genome, 30, 427-437.Van Valen, L. (1973). A new evolutionary law. Evol. Theory. 1, 1-30.Van Zegeren, K-I., and van Oortmerssen, G.A. (1981). Frontier dispute between the west and east European House mouse in Schleswig-Holstein, Vest Germany. Z. Saugetierkunde 46, 363-369.Vawter, L., and Brown, V. H. (1986). Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science, Vashington. 234, 194-196.Vigilant, L., Stoneking, M., Vilson, A.C. (1988). Conformational mutation in human mitochondrial DNA detected by direct sequencing of enzymatically amplified DNA. Nucleic Acids Res. 16, 5945-5955.Vigilant, L., Pennington, H., Harpending, H., Kocher, T.D., and Vilson, A.C. (1989). Mitochondrial DNA sequences in single hairs from a southern African population. Proc. natl. Acad. Sci. USA. 86, 9350-9354.Vigne, J-D., and Alcover, J.A. (1985). llOerne Congres des Societes Savantes, Montpellier, Sciences II, 79-91.Valberg, M.V., and Clayton, D. A. (1981). Sequence and properties of human KB cells and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids. Res. 9 (20), 5411-5421.Valker, F. (1936). The geology of the Isle of May. Trans. Geol. Soc.Edin., 13, 275.Vallace, D.C. (1987). Maternal genes; mitochondrial diseases. Birth Defects. 23, 137-190.Vallace, D.C., Gurparkash, S., Lott, M.T., Hodge, J.A., Schurr, T.G., Lezza, A.M.S., Elsas, L.J.II., and Nikoskelainen, E.K. (1988a). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science, Vash. 242, 1427-1430.Vallace, D.C., Zheng, X., Lott, M.T., Shoffner, J.M., Hodge, J.A.,Kelley, R.I., Epstein, C.M., and Hopkins, L.C. (1988b). Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological and biochemical characterisation of a mitochondrial disease. Cell, 55, 601- 610.Vallis, G.P. (1987). Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in Triturus cristatins complex. Heredity, 58, 229-238.

Page 517: (Hus domesticus. Rut t y ) - UCL Discovery

Varples, R.S. (1987). A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution. 41, 385-400.Vaterbolk, H.T. (1968). Food production in pre-historic Europe. Science, Vash, 162, 1093-1102.Vest, R.G. (1968). Pleistocene geology and biology. London; Longmans.Vest, R.G. (1977). Pleistocene geology and biology. Second Edition, London; Longmans.Vhittam, T.S., Clark, A.G., Stoneking, X., Cann, R.L., and Vilson, A.C. (1986). Allelic variation in human mitochondrial genes based on patterns of restriction site polymorphism. Proc. natl. Acad. Sci. USA. 83, 9611- 9615.Vilson, A.C., Carlson, S.S., and Vhite, T.J. (1977). Biochemical evolution. Ann. Rev. Biochem. 46, 573-639.Vilson, A.C. , Cann, R.L., Carr, S. K., George, M. Jr., Gyllensten, U.B., Helm-Bychowski, K.M. , Higuchi, R.G., Palumbi, S.R., Prager, E.M., Sage, R.D., and Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26, 375-400.Vilson, A.C. , Ochman, H., and Prager, E.M. (1987). Molecular time scale for evolution. Trends in Genetics. 3, 241-247.Vilson, A.C., Stoneking, M., Cann, R.L., Prager, E.M., Ferris, S. D. , Vrischnlk, L.A., and higuchi, R.G. (1987b). Mitochondrial clans and the age of our common mother, pp.158-164. In: Human genetics. Proceedings of the seventh International congress. Berlin. 1986. (eds), F. Vogel and K, Sperling. Springer-Verlag.Vilson, A.C., Zimmer, E.A., Prager, E.m., and Kocher, T.D. (1989). Restriction mapping in the molecular systematics of mammals: a retrospective salute. In: The Hierarchy of Life. (Eds), B, Fermholm, K, Bremer, and H, Jornvall. pp407-419, Elsevier Science, B.V. (Biomedical Division). Amsterdam.Vinking, H. (1986). Some aspects of Robertsonian karyotypic variation in European wild mice. In: M. Potter, J.H. Nadeau, and M.P. Cancro. (eds). The wild mouse in Immunology. Springer-Verlag. pp68-74.Volfe, J., Erickson, R.P., Rigby, P.V.J., and Goodfellow, P.N. (1984). Cosnid clones derived from euchromatic and heterochromatic regions of the human Y chromosome. EMBO. J. 3, 1997-2003.Volfe, J., Darling, S.M., Erickson, R.P., Craig, I.V., Buckle, U.J., Rigby, P.V.J., Villard, H.F.K., and Goodfellow, P.N. (1985). Isolation and characterisation of an alphoid centromeric repeat family from the human Y chromosome. J. Mol. Biol. 182, 477-485.

Page 518: (Hus domesticus. Rut t y ) - UCL Discovery

Wolff, R.J. (1985). Mating behaviour and female choice: their relation to social structure in wild caught house mice (Kus musculus) housed in a semi-natural enviroment. J. Zool. Lond. (A) 207, 43-51.Volstenholme, D.R., and Clary, D.A. (1985). Sequence evolution of Drosophila mitochondrial DMA. Genetics. 109, 725-744.Wright, S. (1931). Evolution in Mendelian populations. Genetics. 16, 97- 159.Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. Sixth. Int. Congress. 1, 356-366.Wright, S. (1941). On the probability of fixation of reciprocal translocation. Am. Vat. 75, 232-240.Wright, S. (1943). Isolation by distance. Genetics. 28, 114-138.Wright, S. (1946). Isolation by distance under diverse systems of mating. Genetics. 31, 39.Wright, S. (1965). The interpretation of population structure by F- statistics, with special regard to systems of mating. Evol. 19, 395-420.Wright, S. (1969). Evolution and Genetics of Populations. Vol 2. The Theory of Gene Frequencies Chicago, University of Chicago Press.Wright, S. (1978). Evolution and Genetics of Populations. Vol 4, Variability Within and Among Natural Populations. Chicago, University of Chicago Press.Vrlschnik, L.A., Higuchi, R.G. , Stoneking, M., Erlich, H.A., Arnheim,N., and Vilson, A.C. (1987). Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic. Acids. Res. 15, 529-542.Vu, C-I., and Li, V-H. (1985). Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. natl. Acad. Sci. USA. 82, 1741-45.Yalden, D. V. (1977). Small mammals and the archaeologist. Bulletin of the Peak Archaeological Society. No. 30, 18-25.Yalden, D.V. (1980). Urban small mammals. J. Zool. Lond. 191, 403-406.Yalden, D.V. (1982). Vhen did the mammal fauna of the British Isles arrive? Mamm. Rev. 12, 1-57.Yamazaki, K. , Boyse, T.A., Mike, V., Thaler, H.T., Mathieson, B.J., Abbott, J., Boyse, J. , Zayas, Z.A., and Thomas, H.T. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med. 144, 1324-1335.

Page 519: (Hus domesticus. Rut t y ) - UCL Discovery

Yamazaki, K., Beauchamp, G.K., Vysoki, C.J., Bard, J., Thomas, L, and Boyse, E.A. <1983). Recognition of H-2 types in relation to the blocking of pregnancy in mice. Science. N.Y. 221. 186-88.Yamazaki, K., Beauchamp, G.K., Matsuzaki, 0., Kupniewski, D. , Bard, J., Thomas, L, and Boyse, E.A. (1986). Influence of a genetic difference confined to mutation of H-2K on the incidence of pregnancy block in mice. Proc. natl. Acad. Sci. USA, 83, 740-1.Yonekawi, H., and Fischler Lindahl, K. (1987). Molecular evolution of mitochondrial DMA among closely related Xus species. Meeting on: Molecular biology of Mitochondria and, Chloroplasts (Abs). Cold Spring Harbor Laboratory, Cold Spring Harbor, M.Y. p205.Yonekawa, H., Moriwaki, H.K., Gotoh, 0., Hayashl, J.-I., Vatanabe, J., Miyashita, N., Petras, M. L., Tagashira, Y. (1981). Evolutionary relationships among five subspecies of Xus musculus based on restriction enzyme cleavage maps of mitochondrial DNA. Genetics 98, 801-816.Yonewaka, H., Gotoh, 0., Tagashira, Y,, Matsushima, Y., Shi, L. I., Cho, V.S. , Miyashita, N., and Moriwaki, K. (1986). A hybrid origin of Japanese mice Xus musculus molossinus. In: Current Topics in Microbiology and Immunology. (Eds), Potter, M., Nadeau, J.H., and Cancro, M.P. vol. 127, Springer-Verlag, pp. 62-78.Yonewaka, H., Moriwaki, K., Gotoh, 0., Miyashita, N., Matsushima, Y., Shi, L. I., Cho, V.S., Zhen, X-L., and Tagashira, Y. (1988). Hybrid origin of Japanese mice Xus musculus molossinus. Evidence from restriction analysis of mitochondrial DNA. Mol. Biol. Evol. 5, 63-78.Young, H., Strecker, R.L., and Emlen, J.T. Jr. (1950). Localisation of activity in two indoor populations of house mice, Xus musculus. J. Mammal. 31, 403-410.Zabeau, M., and Roberts, R.J. (1979). Molecular Genetics II: chromosome structure. Taylor, J.H et al. , (Eds). Acedemic Press. N.Y. pi.Zahn, K., and Blattner, R.F. (1985). Sequence induced DNA curvature at the bacteriophage lambda origin of replication. Nature, London. 317, 451-453.Zeviani, M., Servidei, S. , Gellera, C., Bertini, E., DiMauro, S., and DiDonato, S. (1989). An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting in the D-loop region. Nature, land. 339, 309-311.Zimmermann, K. (1949). Zur kenntnis der mitteleuropaischen Hausmause. Zool. Jahrb. (Syst), 78, 301-322.

Page 520: (Hus domesticus. Rut t y ) - UCL Discovery

APPENDIX.!:

493

Page 521: (Hus domesticus. Rut t y ) - UCL Discovery

Biochem ical Genetics, Vol. 26, Nos. 1/2, 1988 !iN D IX _2 i

An Improved Rapid Method for Mitochondrial DNA Isolation Suitable for Use in the Study of Closely Related Populations

C. S. Jones,1 H. Tegelstrom,2 D. S. Latchman,1 and R. J. Berry1Received 16 Sept. 1987— F in a l 25 Nov. 1987

INTRODUCTION

Mitochondrial D N A (m tD N A ) is a small, rapidly evolving, maternally inherited molecule which has been widely used to study genetic variation (Wilson et a l., 1985), particularly the relationships between different taxa (Avise, 1986).

For studies of populations a method for m tD N A isolation capable o f screening large sample sizes is required, which must be simple and inexpensive (in terms of chemicals, equipment, and time). Existing methods involving the use of lengthy ultracentrifuge techniques (Lansman et a l. , 1981) or rapid but expensive bench-top ultra-high-speed centrifuges (Carr and G riffith , 1987) for costly cesium chloride gradients to purify crude m tD N A fractions are thus not entirely satisfactory and the techniques involving radiolabeling o f isolated D N A (Brown, 1980) also have some disadvantages for population screening.

The phenol extraction procedure, described by Powell and Zuniga (1983), fullfills most of the above criteria, but is limited by the low sensitivity o f ethidium bromide staining to visualize the large m tD N A fragments produced by digestion with hexanucleotide restriction endonucleases. Using this method there is often difficulty in determining whether two individuals are identical or not, making necessary a higher-sensitivity detection method

C. S. Jones was supported by an SERC research studentship, and H. Tegelstrom by the Swedish Natural Science Research Council and the Erik-Philip-Sorensens Foundation.

1 Department of Biology, University College London, Gower Street, London, WC1E 6BT, U.K.2 Department of Genetics, Uppsala University, Box 7003, S-750 07 Uppsala, Sweden.

830006-2928/88/0200-0083$06.00/0 © 1988 Plenum Publishing Corporation

500

Page 522: (Hus domesticus. Rut t y ) - UCL Discovery

84 Jones, Tegelstrom, Latchman, and Berry

allowing the use o f the more frequently cutting tetranucleotide restriction endonucleases to generate many small fragments. However, this necessitates the use o f sensitive silver-staining visualization protocols (Tegelstrom, 1986), in order to detect the small amounts of such fragments present in m tD N A prepared from single individuals. Due to its sensitivity this method requires that the m tD N A be relatively free from nuclear contamination. We report how crucial modifications o f the original Powell and Zuniga extraction procedure allow the combination o f purity and sensitivity w ithout the need for ultracentrifugation. We have applied this technique w ith success to studies of closely related populations of house mice ( M u s d o m e s tic u s ) .

PROCEDURE

Previous extraction procedures for mitochondrial isolation produce crude fractions contaminated w ith nuclei and other cellular components. The in itia l homogenization steps in the isolation procedure are critica l i f the mitochon­dria l pellets are to be relatively pure. To achieve this we have replaced the hand Dounce homogenizer used by Powell and Zuniga (1983) w ith a motor-driven glass Teflon homogenizer (Lansman et a l. , 1981). Important points in this homogenization include (a) the clearance between the pestle and the tube— the optimum appears to be about 0.2 mm (i.e., not tigh t-fitting), which allows the pestle to drop slowly and easily down the tube; (b) the number o f strokes o f the pestle— generally use the m inimum strokes necessary to allow the pestle to reach the bottom o f the tube (five to eight strokes); (c) the homogenization speed— use a low speed, approximately 200 rpm (setting 3); and (d) the use, always, o f large volumes o f homogenizing buffer.

The extraction procedure is as follows.(1) Wash finely chopped tissue (0.3 g) in chilled distilled water to

remove any fa tty deposits or blood. Transfer to homogenizing tubes with at least 10 ml prechilled buffer (30 mM T ris -H C l, 1 mM ED TA, 2.5 mM CaCl2,0.25 m sucrose).

(2) Carry out the homogenization as described above.(3) Spin the homogenate at 1000g at 4°C for 15 min (Beckman

centrifuge JA20.1 rotor). Carefully pipette o ff the supernatant (avoiding the nuclear pellet) and cool on ice.

(4) Resuspend the nuclear pellet in 5 ml of fresh buffer and respin at 1300gfor 10 min. Pipette o ff this supernatant, add it to the original, and spin again at 1300g for another 10 min. Repeat the spins on the supernatant until there is no remaining nuclear pellet to be seen.

(5) Spin the final supernatant at 15,000g and 4°C for 30 min to pellet the mitochondria (Beckman centrifuge JA20.1).

(6) Discard the supernatant, resuspend the m t pellet in 2 ml STE buffer

Page 523: (Hus domesticus. Rut t y ) - UCL Discovery

Mitochondrial DNA Isolation 85^NQIX_2:

(0.05 M Tris-H C l, 0.1 M NaCl, 0.01 M EDTA,/?H 8.0), warmed to 37°C prior to use.

(7) Add a small amount of 25% sodium dodecyl sulfate (SDS) solution until the supernatant clears, indicating complete lysis of the mitochondria (25-50 fi\ for heart/kidneys, 100 /A for liver).

(8) To the lysate add 30 jul RNase A (20 mg/ml solution, DNase-free,i.e., preboiled for 10 min and cooled on ice) and incubate for 30 min at 37°C.

(9) Add 20 /d of proteinase K (20 mg/ml solution) and incubate for 30 min at 37°C.

(10) Shake the lysate with an equal volume of Tris-equilibrated phenol (Maniatis et al., 1982) and centrifuge for 30 min at 20,000# (the longer and harder the lysate is spun, the more effective this step is).

(11) Pipette off the aqueous supernatant into a clean centrifuge tube and add an equal volume of phenol-chloroform mixture (Maniatis et al., 1982), mix, then spin at 12,000# for 20 min. Repeat this step until there is no longer any white protein interphase between the lysate and the phenol.

(12) Extract the supernatant twice with an equal volume of chloroform and twice with an equal volume of ether. Shake the tube until the interphase between the ether and the supernatant is sharp (i.e., no bubbles or opaque layer).

(13) Discard the ether (top layer) and allow any residual ether to evaporate (at least 15 min).

(14) I f necessary, add distilled water to the supernatant to bring the volume up to 2 ml (this ensures the same amount of aqueous solution in each sample and lowers the salt concentration). Add 6 ml of absolute ethanol (i.e., 3x the volume of the supernatant), cover the tubes with parafilm, and mix by inversion. Store the sample at — 70°C for at least 2 hr or overnight.

(15) Remove sample from — 70°C, allow to stand until it reaches room temperature, and mix again (if any salts have precipitated they will be redissolved). Spin for 30 min at 20,000# at 4°C to precipitate the DNA.

(16) Discard the supernatant and vacuum dry the m tDNA pellet. Dissolve in 40 n\ TE buffer (0.01 M Tris-HCl, 0.5 m M EDTA) and transfer to a sterile Eppendorf tube for storage at - 20°C.

(17) Use 3 n\ of the m tDNA for restriction endonuclease digestions (using conditions recommended by the manufacturer).

(18) Separate the m tDNA fragments on 5% polyacrylamide gels (0.7 mm thick) using previously silane- and repel-silane-prepared gel plates (Tegelstrom and Wyoni, 1986). This treatment enables easy handling of the gels during the staining procedure to visualize the D N A fragments. Run the gels on a vertical electrophoresis apparatus for 3 hr (200 V; 35 mA) using 1 x TBE buffer, pH8.3 (lO x stock solution; 39 m M Tris-base, 89 m M boric acid, 2 m M EDTA).

500

Page 524: (Hus domesticus. Rut t y ) - UCL Discovery

86 Jones, Tegelstrom, Latchman, and Berry

TAQ 1 MBO

fhes" Ms5 Mn Eq ^86 C•85 ™85 1*10 t-0 En Mn C

2245

_1773 1403

,-914

-783

-597

-272

258

-2009

___ 222

-155

.120

104

2 3 4 5 7 8 9

Fig. 1. Mitochondrial D N A isolated from house mice (Mas domesticus) from the island of Eday (Orkney), from the Isle of May (F irth of Forth. Northeast Scotland), and from May after the introduction of Eday animals. Frozen tissue was used (heart/kidneys, 0.4 g) for the extraction and the m tD N A was digested with tetranucleotide restriction endonucleases TaqI (lanes 2-5) and Mbo\ (lanes 7, 8), separated on 5% polyacrylamide gels, and visualized by silver staining (Tegelstrom, 1986). Lane 1 shows a Taq 1 digestion profile, following Powell and Zuniga (1983), of a postintroduction mouse (M 85~). Lanes 6 and 9 show m tD N A isolated from an inbred laboratory mouse (C57B1 /6J) digested with Taq\ and Mbo\, respectively, to produce fragment size markers in base pairs [calculated from the published reference sequence data (Bibb et al., 1981], M0 and E0 are original preintroduction mice. M g5 and M 86 are postintroduction mice. ■ indicates the fragment differences between the two populations.

(19) Silver stain the gels as described by Tegelstrom (1986) or with a commercial silver staining k it (Bio-Rad Laboratories). This visualization method allows the detection o f small differences between closely related individuals equivalent to the more traditional method of end-labeling with ■'P-nucleotides (Brown, 1980).

Page 525: (Hus domesticus. Rut t y ) - UCL Discovery

Mitochondrial DNA Isolation 87

RESULTS AND DISCUSSION

Silver staining is highly sensitive and will pick up minute details of any proteins or D N A applied to the gel (Guillemette and Lewis, 1983), as well as the desired m tDNA fragments. Using Powell and Zuniga’s (1983) extraction procedure, the digestion profiles visualized by silver are almost totally swamped by severe nuclear D N A contamination (Fig. 1, lane 1). Representa­tive results using the modified phenol extraction protocol are shown in Fig. 1, lanes 2-9. Note that the profiles are relatively free from background smearing and small fragments down to 100 base pairs can be detected, allowing the visualization of many bands using tetranucleotide restriction endonucleases and, hence, detection of small differences between closely related individuals. Large quantities of m tDNA (100 ng) can be obtained from small amounts of tissue (at least 15 digestions can be produced from only 0.3 g wet weight tissue), and eight samples can be processed in the space of 1 working day at a small fraction of the cost of more elaborate methods.

Using m tDNA prepared by the protocol described in this paper, we have studied island populations of the house mouse (Mus domesticus). One experiment involved distinguishing mice introduced into an existing popula­tion from the native animals (Berry, 1986). Preintroduction, i.e., original, mice from both populations and postintroduction animals were screened for m tDNA variation using nine tetranucleotide restriction endonucleases (allow­ing up to 0.05% divergences to be detected). Two enzyme markers, Taql and Mbol, were chosen to distinguish routinely between the two populations (Fig. 1). The fate of the introduced m tDNA types has been followed for a number of years, giving information regarding dispersal, social structure, population dynamics, and gene flow. (Jones et al., in preparation).

REFERENCES

Avise, J. C. (1986). M itochondrial DNA and evolutionary genetics of higher animals. Phil.Trans. R . Soc. Lond. B 312:325.

Berry, R. J. (1986). Genetical processes in the wild mouse populations. Past myth and present knowledge. In Potter M., N adeau, J. H., and Cancaro, M. P. (eds.), The W ild M ouse in Immunology, Springer-V erlag, New York.

Bibb, M. J., Van E tten, R. A., W right, C. T., W alberg, M. W., and Clayton, D. A. (1981).Sequence and gene organisation of mouse mitochondrial D NA. Cell 26:167.

Brown, W. M. (1980). Polymorphisms in mitochondrial D N A of hum ans as revealed by restriction endonuclease analysis. Proc. N atl. Acad. Sci. U SA 77:3605.

C arr, S. M., and Griffith, O. M. (1987). Rapid isolation of anim al m itochondrial DN A in a small fixed-angle rotor at ultrahigh speed. Biochem. Genet. 25:385.

Guillemette, J. G., and Lewis, P. N . L. (1983). Detection of subnanogram quantities of D N A and RNA on native and denaturing and agarose gels by silver staining. Electrophoresis 4:92.

Lansman, R. A., Shade, R. O., Shapira, J. F., and Avise, J. C. (1981). The use of restriction endonucleases to m easure mitochondrial D N A sequence relatedness in natural populations. III. Techniques and potential applications. J. M ol. Evol. 17:214.

Page 526: (Hus domesticus. Rut t y ) - UCL Discovery

88 Jones, Tegelstrom, Latchman, and Berry

M aniatis, T ., Fritsch, E. F., and Sambrook, J. (1982). M olecular Cloning— A Laboratory M anual, Cold Spring H arbor Laboratory, Cold Spring H arbor, N .Y .

Powell, J. R ., and Zuniga, M. C. (1983). A simplified procedure for studying m tD N A polymorphisms. Biochem. Genet. 21:1051.

Tegelstrom , H. (1986). M itochondrial D N A in natural populations: An improved routine for the screening of genetic variation based on sensitive silver staining. Electrophoresis 7:226.

Tegelstrom , H., and W yoni, P. I. (1986). S ilanization of the supporting glass plates avoiding fixation of polyacrylam ide gels to the glass cover plates. Electrophoresis 7:99.

W ilson, A. C ., Cann, R. L., C arr, S. M ., George, M ., Gyllensten, U. B., Helm-bychowski, K. M., H iguchi, R. G., Palum bi, S. R., P rager, E. M ., Sage, R. D., and Stoneking, M . (1985). M itochondrial D N A and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26:375.

Page 527: (Hus domesticus. Rut t y ) - UCL Discovery

APPENDIX_2

Page 528: (Hus domesticus. Rut t y ) - UCL Discovery

APPENDIX 2 - The Theor e t i c a l r e la t io n s h ip s between th e p ro p o r t io n o-f shared

DNA f ragm ents (F) and th e number o f n u c leot id e s u b s t i t u t io n s p e r s i t e

•for re s t r i c t io n enzymes r e cog n iz in g f o ur , f i v e , s ix b a s e -o a ir sequences .

Graph 2 was d e r ive d from Nei and L i ' s (1979) e q u a tio n C203:

F= P* / (3 - 2P) CA3

However, t h i s e qua tion i s independent o-f r (number o-f n u c le o t id e s in th e

re c o g n it io n sequence). The e xp re ss io n cannot be re fo rm u la te d in term s o-f P

( p r o b a b i l i t y o-f n u c le o t id e s u b s t i t u t io n s ) .

Yet:

P= e “ ,_x* C l]

But:

2Xt C2]

Using e qua tion [11 and C23, F can be re la te d to d , and e q u a tio n C2] can be

r e w r i t te n as:

\= d A 2 t [33

S u b s t i tu t in g fo r X in e q u a tio n C l3 g iv e s :

P= e “ r’c* * * C 4 3

Taking the n a tu ra l lo g s o-f bo th s id e s o-f th e e q u a tio n C43:

log eP = - r d \ Z C53

d = -2 log eP \ r C63

Taking the modulus (d ro p p in g th e n e g a tiv e s ig n s ) :

501

Page 529: (Hus domesticus. Rut t y ) - UCL Discovery

d - 2 lo g eP \ r [73

A p p ro x im a te ly 100 va lu es o-f P between 0.001 and 1 were taken and these

v a lu e s s u b s t itu te d in to equa tion [A3 and th e F va lu es o b ta in e d . The graph

o-f F va lu es ve rses P va lues can then be p lo t te d as in graph 1. For each

v a lu e o-f P, e q u a tion [63 was employed to c a lc u la te d , f o r a l l va lu e s o f r

<4, 5 , Sc 6 ) . F in a l ly th e F va lu es can be p lo t te d a g a in s t d v a lu e s fo r each

r ty p e as in graph 2. Table A l i s t s th e P, F, and d ( fo r r = 4 , 5 , and 6 ) ,

f o r 100 va lu e s o f P rang ing from 0.001 to 1 (re p re s e n tin g d ive rg e n ce s [r= 43

from 0 .3 - 2 .0 ) . For c lo s e ly re la te d p o p u la tio n s ano the r s e r ie s o f

c a lc u la t io n s us ing app ro x im a te ly 900 v a lu e s o f P between 0 .9690 - 0.9990

were taken and s u b s t itu te d in to e q u a tio n [A3 to produce F v a lu e s . F va lu e s

p lo t te d a g a in s t P is shown in graph 3. For each va lu e o f P e q u a tio n [63 was

employed to c a lc u la te d (graph 4 ) . Tab le B l i s t s th e P, F, and d v a lu e s .

The fo r t r a n programme w r i t te n fo r an IBM mainframe computor to c a lc u la te

th e above va lu e s i s a ls o g ive n .

502

Page 530: (Hus domesticus. Rut t y ) - UCL Discovery

u _ 0 9

UJ

h -c c

0.2

04 as 06 07 ata s

PROBABILITY OF NUCLEOTIDE SUBSTITUTIONS (? )

0.9

0.7

0 J

LL

OJ

0.2

OJSa 05 0.1 OJS 0.2 025 0JNUMBER OF NUCLEOTIDE SUBSTITUTIONS PER SITE (d ? 503

Page 531: (Hus domesticus. Rut t y ) - UCL Discovery

0 .9 8 -

0 .9 6 '

0.H-

0.92-

**■ 0 . 9

0.86

0 .8 4

0.82 — L0 .9 6 5 0 .9 9 50 .9 9 .0.9850.980 .9 7 50 .9 7

P —

1.8

0.4 !■

0.980.960 M0 . 8 6

Page 532: (Hus domesticus. Rut t y ) - UCL Discovery

/ / < de L i a . p , f > = j ones ( ci ummy) ;f= 0 # c m e s (55 , i ) ; p = 0 * o n e s (55 , i ) ; de !. t a = 0 * o n e s ( 5 5 , 3 ) ;For j = 2 : 2 , . . .

A ~ j ; A A AFor i = i : 5 5 , a * a

f ( i ) = ( ( ( ( i + 4 4 ) ) / i 00) * * 4 ) / < 3 - 2 * ( ( i +44) /1 00 ) ) ; . . .P ( i ) = C( i + 4 4 ) ) / i 0 0 ; a »*de L t a ( S, j ) = < - 2 * Log( p ( i ) ) 5 / ( j + 3 ) ; . * .

END a a aP I g t ( d e L t a < : , x ) , f , ’ YLAB*Prop aha red DNA F rag meni s F* a a a

XLAB*Nqa N u c L e o t id e S u b s t i t u t i o n / S i t e ( d e L t a ) T ITLE*G raph o f F v deL ta For r = * 1 ) ; . * a

END/ / p L o t ( p ( : , x ) , f ( : , x ) , 1YLAB*Prop Shared DNA F ra g m e n ts ( F ) * / / XLAB#F‘r oh Nuc t e t o i de Subst i t u t i on < P )» * * */ . / T ITLE*G raph o f ir a g a i n s t P ‘ ) ; . . ./ / ? L o t ( d e L t a , f ) , 1 YL AB#Pr op Sh a r e c! DNA F r a g men i s F * a a a / / XLAB*No a M uc L eo t i d e S ub s t i t u t i o n / S i t e ( d e L t a ) •*/ / TITLED Graph o f F v d e l t a For r = 4 , 5 , 6 f c ‘ ) . ; * * *t e t f ;

/ / < ci e i. t a . p , f > = j o n e s < d u m m y ?;f= 0 *o n e s • 960,1 ) ;p=0#ones (960 , i ) ; d e i. t a = 0*ones < 960, 3) ; For r = i : 3 , a » a

For 1=1 :96 0 , a a ac = ( i / 3 0 0 0 0 ) + 0 . 9 6 7 ; * a a

f ( i ) = \ c * * 4 ) / (3 - 2-x-c ) ; a . a

P ( l ) = C : A A A

d e L t a ( i , r ) = < ( - 2 # i. og ( p ( i ) >) / ( r +3) # 1 00) ; .... .END: A A A

END;r e t f j

Page 533: (Hus domesticus. Rut t y ) - UCL Discovery

APPiNDIX_2i_IABLE_Ai

?O, OOOO 0 . 0 0 0 0 A 400AA 0* 0 0 0 0 0 . 0 0 0 0 O*0000 0 * 0 0 0 0 0 * o o o o

0 * 0 0 0 0 o * o o o o

0*0001 O . 0001 0 * 0001 0*0001 0 * 0002 0 * 0 0 0 2 0 * 0 0 0 3 0 *0 0 0 4 0 * 0005 0 ... 0006 0 * 0008 0 * 0009 0 * 0011 0 * 0013 0 * 0 0 1 6 0 * 0 0 * 3 0 * 0022 0 * 0025 0 * 0029 0 * 0O34 0 * 0039 0 *0 0 4 4 0 * 0 0 5 1

0 * 0058 0 * 0065V/ * 0 O ; 1 ;0... 0083 0 *0 0 9 5 0 * 0104 0 *0116 0 * 0 1 3 0 0 *0 1 4 4 0 * 0 1 6 0 0 * 0 1 ?7 0 . 0 1 9 5 0 * 0215 0 * 0237 0...0260 0 * 0285 0 * 0313 0 * 0342 0 * 0373

P0 * 0 1 0 0

0 * 0 2 0 0

0 * 0 3 0 0

0 * 0 4 0 0

0 * 0 5 0 0

0 * 0 6 0 0

0 * 0 7 0 0

0 * 0 8 0 0

0 * 0 9 0 0

O * 1 0 0 0

0 * 1 1 0 0

0 * 1 2 0 0

0 * 1 3 0 0

0 * 1 4 0 O

0 * 1 5 0 0

O * 1 6 0 0

0 * 1 7 0 0

O * 1 3 0 0

0 * 1 9 0 0

O * 2 0 0 0

0 * 2 1 0 0

O * 2 2 0 0

0 * 2 3 0 0

0 * 2 4 0 O

0 * 2 5 0 0

0 * 2 6 0 0

0 * 2 7 0 0

0 * 2 3 0 OI.- • a y i’ >

0 * 3 O 0 0A a /! •' A A

y * * • y y

y * 3 4 0 0

0 * 7 7 5 0 0

v/ * •_= -ij y y

a a 3 7 7 0 * 0

w * 3 2 O 0

0 * 3 9 0 y

O * 7 O w 0

0 * 4 1 0 0

V * " V *_ ....

0 * 4 3 0 0

0 * 9 4 0 0

0 * 4 5 0 0

O * 4 6 0 0

0 * 4 7 0 0

O * 4 3 O O

0 * 4 9 0 0

O * I / 0 0 O

0 * 5 1 0 0

V) A L; * *) V*

82 * 3 0 2 6

1 * 9 5 6 0

1 * 7 5 3 3

1 * 6 0 9 4

1 * 4 9 7 9

1 * 4 0 6 7

1 * 3 2 9 6

1 * 2 6 2 9

1 * 2 0 4 0

1 * 1 5 1 3

1 * 1 0 3 6

1 * 0 6 0 1

1 * 0 2 0 :

0 * 9 8 3 1

0 * 9 4 8 6

O * 9 1 6 3

0 * 8 8 6 0

0 * 3 5 7 4

0 * 8 3 0 4

0 * 8 0 4 7

0 * 7 8 0 3

0 * 7 5 7 1

0 * 7 3 4 8

0 * 7 1 4 6

0 * 6 9 3 1

0 * 6 7 3 5

0 * 6 5 4 7

0 * 6 o 6 ->

0 * 6 1 8 9

O * 6 0 2 0

0. . . 5 8 5 6

9 5 6 9 7

y . 5 5 4 3

0 * 5 3 9 4

0 * 5 2 4 9

0 * 5 1 0 8

0 * 4 9 7 1

0 * 4 8 3 8

* 4 7 0 8

0 * 4 5 8 1

0 * 4 4 5 8

0 * 4 0 3 "d

0 * 4 2 2 0

0 * 4 1 0 5

0 * 3 9 9 3

4 * -) 8 8 4

0 * 3 7 7 5

0 * 3 6 7 0

0 * 3 5 6 7

0 * 3 4 6 6

0 * 3 3 6 7

y * 3 2 7 0

r - 5

s

: . 3 4 • ;

1 :> 6 4 8

1 . 4 0 2 6

1 * 2 8 7 6

1 * 1 9 8 3

1 * 1 2 5 4

1 * 0 6 3 7

1 * 0 1 0 3

O * 9 6 3 2

0 * 9 2 1 O

0 . 8 8 2 9

0 * 8 4 3 1

0 * 8 1 6 1

8 * 7 8 6 4

0 * 7 5 8 8

O * 7 3 3 0

0 * 7 0 8 8

0 * 8 3 5 9

0 * 6 6 4 3

0 * 6 4 6 d 0 * 6 2 4 3

8 * 6 0 5 7

0 * 5 8 7 9

O * 5 7 0 3

0 * 5 5 4 5

0 * 5 3 3 8

0 * 5 2 3 7

0 * 5 0 9 2

0 * 4 9 5 1

8 * 4 8 1 6

0 * 4 = 6 8 5

0 * 4 5 5 3

0 * 4 4 3 5

0 * 4 3 1 5

0 * 4 1 9 9

■J * '*■■ 3 i

0 * 3 9 7 7

O * 3 8 ? 9

0 * 5 V 6 60 * ..* ij 4-

0 * 3 5 6 O * 3 4 7 0

O * 6

0 * 3 2 8 - :

0 * 8 V 4

8 * 3 8 a

1 ; . : '

0 * 2 9 3 6

0 . 2 8 6

8 * 2 7 7 7:

0 * 2 6 9 0A A 2 •

r-.b

£1 * 5 3 5 1

1 * 3 0 4 0

i * i * 6 8 9

1 * 8 7 3 0

0 * 9 9 8 6

0 * 9 3 7 8

0 * 8 8 6 4

0 * 8 4 1 9

0 * 8 0 2 6

0 * 7 6 7 5

0 * 7 3 5 8

0 * 7 0 6 3 0 * 6 8 0 1

0 * 6 5 5 4

0 * 8 3 2 4

0 * 6 1 0 9

0 * 5 9 0 7

0 * 5 7 1 6

0 * 5 5 3 6

0 . . . 5 3 6 5

0 * 5 2 0 2

0 * 5 0 4 7

0 * 4 8 9 9

0 * 4 7 5 7

0 * 4 6 2 1

0 * 4 4 9 0

O * 4 3 6 4

8 * 4 2 4 3

0 * 4 1 2 6

8 * 4 0 1 3

0 * 3 9 0 4

0 * 3 7 9 3

* 3 6 9 6 0 * 3 5 9 6

0 * 3 4 9 9

O .-. 3 4 0 6

0 * 3 3 1 4

O * 3 2 2 5

* 3 1 3 9

0 * 3 0 5 4

0 * 2 8 9 2

0 * 2 8 1 3

0 * 2 7 3 7

0 * 2 6 6 2

0 * 2 5 8 3

y . 2 5 1 7

0 * 2 4 4 7

0 * 2 3 7 8

o * 2 3 1 0

0 * 2 2 4 4

y * 2 1 8 0

5 0 6

Page 534: (Hus domesticus. Rut t y ) - UCL Discovery

r- * uv s

F - p < r c T cTO. 040? 0 .5300 0. 31 7 4 0 .2 5 4 0 0 . 2 1 1 80 * 0443 0 .5 4 0 0 0.3081 0 .2 4 6 5 0 .2 0 5 40 A 0482 0 .5 5 0 0 0 .2 9 3 9 0 .2391 0 .1 9 9 30 .0 5 2 3 0 .5 6 0 0 0 .2 8 9 9 0 .2 3 1 9 0 .1 9 3 30- 0569 0 .5700 0.2811 0 .2 2 4 3 0 .1 3 7 40 * 0615 0 .5800 0 .2 7 2 4 0 .2 1 7 9 0 .1 8 1 60 *066 6 0 .5900 0 .2 6 3 8 0.2111 0 .1 7 5 90 * 0720 0 .6 0 0 0 0 .2 5 5 4 0 .2 0 4 3 0 .1 7 0 30 .0 7 7 3 0 .6100 0.2471 0 .1 9 7 7 0 .1 6 4 90 .0 8 4 0 0 .6200 0 .2 3 9 0 0 .1 9 1 2 0 .1 5 9 30 .0 9 0 5 0 .6300 0 .2 3 1 0 0 .1 3 4 3 0 .1 5 4 00 .0 9 7 5 0 .6400 0.2231 0 .1 7 8 5 0 .1 4 8 80 .1 0 5 0 0 .6 5 0 0 0 .2 1 5 4 0 .1 7 2 3 0 .1 4 3 60 .1 1 2 9 0 .6600 0 .2 0 7 8 0 .1 6 6 2 0 .1 3 8 50 .121 4 0 .6700 0 .2 0 0 2 0 .1 6 0 2 0 .1 3 3 50.1 304 0 .6800 0 .1 9 2 8 0 .1 5 4 3 0 .1 2 8 60., 1 399 0 .6900 0 .1 3 5 5 0 .1 4 3 4 0 .1 2 3 ?0.1501 0 .7000 0 .1 7 8 3 0 .1 4 2 7 0 .1 1 8 90 . 1 6 0 'd 0., 71 00 0 .1 7 1 2 0.1 3 7 0 O.11420.1 723 0 .7200 0 .1 6 4 3 0 .1 3 1 4 0 . 10950 .1 3 4 4 0 .7300 0.1 5 i 4 0 .1 2 5 9 0 .1 0 4 90 .1 9 7 3 0 .7400 0 .1 5 0 6 0 .1 2 0 4 0 .1 0 0 40. 21 09 0 .7 5 0 0 0 .1 4 3 3 0 .1151 0 .0 9 5 90 .2 2 5 4 0 .7600 0 . i 372 0 .1 0 9 8 0 . 0 91 50 .2 4 0 3 0 .7700 0 .1 3 0 ? 0 .1 0 4 5 0 . 08710 .2 5 7 0 0 .7 8 0 0 0 .1 2 4 2 0 .0 9 9 4 0 .0 8 2 80 .2 7 4 3 3 .7900 0 .1 1 7 9 0 .0 9 4 3 0 ., 0 7 3 &0 „2926 0 .8000 0. I 1 i * 0 .0 8 9 3 0 .0 7 4 40 .3 1 1 9 y . 81 v> 0 O... 1 0 5 4 0 . 0 3 4 3 0 . y?020 .3 3 2 4 0 .8 2 0 0 0 .0 9 9 2 0 .0 7 9 4 0 .0 6 6 2y ... 354 2 0 .8300 y .0932 0 .0 7 4 5 y ,06210 . 3 7 / 2 0 .8400 0 . 0872 0 .0 6 9 7 0 . 0 5 8 i0 .401 :> y . 8500 o . 0 8 i y y ... 0650 0 .0 5 4 20 .4 2 7 4 0 .8600 0 . 0754 0 .0 6 0 3 0 .0 5 0 30 .4 5 4 7 y .8700 y . ■•) 6 9 6 8 .0 5 5 7 v;. y 46 40 . 4836 0 .8800 0 .0 6 3 9 0 . 0 5 1 i 0 . 04260.51 4 5 y . 3900 y ... 0583 0 . 0466 0 ... y 3880 . 5467 0 . 9000 0 . 0527 0 . 0421 0 . 3 3 5 •;0 .5311 v). 91 00 0 .0 4 7 2 0 . 0377 0 ... y 31 40 . 617 6 0 . 9200 0 . 0417 0 . 0334 0 / C* • i —

0 . 6 Z ' j 6 2 0 . 9300 v), 0363 0 . 0290 0 .0 2 4 20.6971 0 . 9400 0 . 0309 0 . 0248 l ■ ! ; •* : •

0 7 405 0 .9500 0 .0 2 5 6 0 . 0205 O ... y i 7 10 . { a 6 4 0 .9 6 0 0 0 . 0204 0 .0 1 6 3 0 . v i 360 . 8352 0 .9700 0 . 01 5 2 0 .0 1 2 2 :.V V.-: ’ v ;

y . 8 C 'j i 0 . 9800 0 . 0 i 0 1 0 . 0081 w . 00670 .9418 y . 9900 0 ... 0050 0 .0 0 4 0 .. ..’ 2.1 1

1 .0000 1 . 0000 0 . OOOO 0 . oooo 0 , O y #

5 0 7

Page 535: (Hus domesticus. Rut t y ) - UCL Discovery

< r < fr= h- C- S r r. (a

0 .9 6 7 0 0 .8 2 0 4 1.6761 1 .3 4 0 9 1 .1 1 7 40.9671 0 .8 2 0 6 1.6744 1 .3 3 9 5 1 . 1 i 630.9671 0 .8 2 0 7 i .6727 1.3381 1 .1151-0.9671 0 .8209 1.6709 1 .3 3 6 8 1 .11400 .9 6 7 2 0.8211 1 .6692 1 .3 3 5 4 1 .11280 .9 6 7 2 0 .8 2 1 2 1 .6675 1 .3 3 4 0 1 .1 1 1 70 .9 6 7 2 0 .8 2 1 4 1 .6658 1 .3 3 2 6 1 .11050 .9 6 7 3 0 .8 2 1 6 1.6641 1 .3 3 1 2 1 .10940 .9 6 7 3 0 .8 2 1 7 1.6623 1 .3 2 9 9 1 .1 0 8 20 .9 6 7 3 0 .8 2 1 9 1 * 6606 1 .3 2 8 5 1 .10710 .9 6 7 4 0.8221 1 .6589 1.3271 1 .1 0 5 90 .9 6 7 4 0 .8 2 2 2 1 .6572 1 .3 2 5 7 1 .10480 .9 6 7 4 0 .8 2 2 4 1 .6554 1 .3 2 4 4 1 .1 0 3 60 .9 6 7 5 0 .8 2 2 6 1 .6537 1 .3 2 3 0 1 .10250 .9 6 7 5 0 .8 2 2 7 1 .6520 1 .3 2 1 6 1 .10130 .9 6 7 5 0 .8 2 2 9 1 .6503 1 .3 2 0 2 1 .10020 .9 6 7 6 0.8231 1 .6485 1 .3 1 8 8 1 .09900 .9 6 7 6 0 .3 2 3 2 1 .6468 1 .3 1 7 5 1 .09790 .9 6 7 6 0 .8 2 3 4 1.6451 1.3161 1 .09670 .9 6 7 7 0 .3 2 3 5 i .6434 1 .3 1 4 7 1 .09560 .9 6 7 7 0 .3 2 3 7 1 .6417 1 .3 1 3 3 1 .09440 .9 6 7 7 0 .8 2 3 9 1 .6399 1 .3 1 1 9 1 .09330 .9 6 7 8 0 .8 2 4 0 1 .6382 1 .3 1 0 6 1.09210 .9 6 7 8 0 .8 2 4 2 1 .6365 1 .3 0 9 2 1 .09100 .9 6 7 8 0 .8 2 4 4 1 .6348 1 .3 0 7 8 1 .0 8 9 80 .9 6 7 9 0 .8 2 4 5 1 .6330 1 .3 0 6 4 1 .0 8 8 70 .9 6 7 9 0 .8247 1 .6313 1.3051 1 .0 8 7 60 .9 6 7 9 0 .8 2 4 9 1 .6296 i .3037 1 .08640 .9 6 8 0 0 .8 2 5 0 1 .6279 1 .3 0 2 3 1 .0 8 5 30 .9 6 8 0 0 .8252 1 .6262 1 .3 0 0 9 1.08410 .9 6 8 0 0 .8 2 5 4 1 .6244 1 .2 9 9 6 1 .0 8 3 00.9681 0 .8 2 5 5 1.6227 1 .2 9 8 2 1 .08180.9681 0 .3 2 5 7 i .6210 1 .2 9 6 8 1 .0 8 0 70.9681 0 .8 2 5 9 1 .6193 1 .2 9 5 4 1 .07950 .9 6 8 2 0 .8 2 6 0 1 .6176 1 .2 9 4 0 1 .0 7 8 40 .9 6 8 2 0 .3 2 6 2 1 .6158 1 .2 9 2 7 1 .0 7 7 20 .9682 0 .8 2 6 4 1.6141 1 .2 9 1 3 1.07610 .9 6 8 3 0 .8 2 6 5 i .6124 1 .2 8 9 9 1 .07490 .9 6 8 3 0 .8 2 6 7 1 .6107 1 .2 8 8 5 1 .0 7 3 80,9683 0 ,8 2 6 9 1 .6089 1 .2 8 7 2 1 .07260 .9 6 8 4 0 .8 2 7 0 1 .6072 1 .2 8 5 8 1 .0 7 1 50 .9684 0 .8 2 7 2 1 .6055 1 .2 8 4 4 1 .07030 .9 6 8 4 0 .8 2 7 4 1 .6038 1 .2 8 3 0 i .06920 .9685 0 .8 2 7 5 i .6021 1 .2 8 1 6 1 .06300 .9685 0 .8 2 7 7 1 ... 6003 1 .2 8 0 3 1 .06690 .9685 0 .3 2 7 9 1.5986 1 .2 7 8 9 1 .0 6 5 70 .9686 0 .8 2 8 0 1 .5969 1 .2 7 7 5 1 .06460 .9 6 8 6 0 .8 2 8 2 1.5952 1.2761 1 .06350 .9 6 8 6 0 .8 2 8 3 1 .5935 1 .2 7 4 8 1 .0 6 2 30 .9 6 8 7 0 .3 2 8 5 1 .5917 1 .2 7 3 4 1 .06120 .9 6 8 7 0 .8 2 8 7 1.5900 1 .2 7 2 0 1 .06000 .9687 0 .8 2 3 8 1 .5883 1 .2 7 0 6 1 .0589

Page 536: (Hus domesticus. Rut t y ) - UCL Discovery

r - Vo

f P cT < f < r

0 .9688 0 .8 2 9 0 1.5866 1 .2 6 9 3 1 .05770 .9688 0 .8 2 9 2 1.5849 1 .2 6 7 9 1 .0 5 6 60 .9688 0 .8 2 9 3 i .5831 1 .2 6 6 5 1 .05540 .9689 0 .8 2 9 5 1.5814 1.2651 1 .0 5 4 30 .9689 0 .8 2 9 7 1.5797 1 .2 6 3 8 1.05310 .9689 0 .8 2 9 8 1.5780 1 .2 6 2 4 1 .0 5 2 00 .9690 0 .8 3 0 0 1.5763 1 .2 6 1 0 1 .05080 .9690 0 .8 3 0 2 1.5745 1 .2 5 9 6 1 .04970 .9690 0 .8 3 0 3 i .5728 1 .2 5 8 3 1 .04850.9691 0 .8 3 0 5 1.5711 1 .2 5 6 9 1 .0 4 7 40.9691 0 .8 3 0 7 i .5694 1 .2 5 5 5 1 .04620.9691 0 .8 3 0 8 1.5677 1.2541 1.04510 .9692 0 .8 3 1 0 1.5659 1 .2 5 2 7 1 .0 4 4 00 .9692 0 .8 3 1 2 1.5642 1 .2 5 1 4 1 .0 4 2 80 .9692 0 .8 3 1 3 1.5625 1 .2 5 0 0 1 .0 4 1 70 .9693 0 .8 3 1 5 1 .5603 1 .2 4 8 6 1 .04050 .9693 0 .8 3 1 7 1.5591 i .2472 1 .03940 .9693 0 .8 3 1 8 1 .5573 1 .2 4 5 9 1 .0 3 8 20 .9694 0 .8 3 2 0 1.5556 1 .2 4 4 5 1.03710 .9 6 9 4 0 .8 3 2 2 1.5539 1.2431 1 .03590 .9694 0 .8 3 2 3 1 .5522 i .2417 i .03480 .9695 0 .8 3 2 5 1.5505 1 .2 4 0 4 1 .0 3 3 60 .9695 0 .8 3 2 7 1.5487 1 .2 3 9 0 1 .03250 .9 6 9 5 0 .8 3 2 8 1.5470 1 .2 3 7 6 1 .0 3 1 30 .9696 0 .8 3 3 0 1.5453 1 .2 3 6 2 1 .03020 .9 6 9 6 0 .8 3 3 2 1.5436 1 .2 3 4 9 1.02910 .9696 0 .8 3 3 3 1.5419 1 .2 3 3 5 1 .02790 .9697 0 .8 3 3 5 1.5401 1.2321 1 .0 2 6 80 .9697 0 .8 3 3 7 1.5384 1 .2 3 0 7 1 .02560 .9697 0 .8 3 3 8 1.5367 1 .2 2 9 4 1 .0 2 4 50 .9698 0 .8 3 4 0 1 .5350 1 .2 2 3 0 1 .02330 .9 6 9 8 0 .8 3 4 2 1.5333 1 .2 2 6 6 i .0 2 2 20 .9698 0 .8 3 4 3 1.5316 1 . ?'?52 1 .0 2 1 00 .9 6 9 9 0 .8 3 4 5 1.5298 1 .2 2 3 9 1 .0 1 9 90 .9699 0 .8 3 4 7 i .5281 1 .2 2 2 5 1 .01870 .9699 0 .8 3 4 8 1.5264 1.2211 1 .0 1 7 60 .9700 0 .8 3 5 0 1.5247 1 .2 1 9 7 1 .01650 .9700 0 .8 3 5 2 1.5230 1 .2184 1 .01530 .9700 0 .3 3 5 3 1.5212 1 .2170 1 .01420.9701 0 .8 3 5 5 1.5195 1 .2 1 5 6 1 .0 1 3 00.9701 0 .8 3 5 7 1.5173 1 .2142 1 .01190.9701 0 .8 3 5 9 1.5161 1 .2 1 2 9 1 .01070 .9702 0 .8 3 6 0 1.5144 1-22115 1 . 00960 .9702 0 .8 3 6 2 1.5127 1 .2101 1 .0 0 8 40 .9702 0 .8 3 6 4 1.5109 1 .2 0 8 7 1 .00730 .9703 0 .8 3 6 5 1.5092 1 .2 0 7 4 1.00610 .9703 0 .3 3 6 7 1.5075 1 .2 0 6 0 1 .00500 .9703 0 .8 3 6 9 1.5058 1 .2 0 4 6 1 .0 0 3 90 .9704 0.8-5 70 i .5041 i .2033 1 .00270 .9704 0 .8 3 7 2 1.5023 1 .2 0 1 9 1 .0 0 1 60 .9704 0 .8 3 7 4 1.5006 1 .2 0 0 5 1 .00040 .9705 0 .8 3 7 5 1.4989 1.1991 0 .9 9 9 30 .9705 0 .8 3 7 7 1.4972 1 .1 9 7 8 0.99810 .9705 0 .8 3 7 9 1.4955 1 .1964 0 .9 9 7 00.9706 0 .8 3 8 0 1.4938 i .1950 0 .9 9 5 3

5 0 9

Page 537: (Hus domesticus. Rut t y ) - UCL Discovery

< f < r c T

p F r> h- S' r s. t

0 .9 7 0 6 0*8382 1*4920 1 * 1936 0*99470*9706 0*8384 1*4903 1*1923 0 *99 3 50*9707 0*8335 1*4886 1*190? 0 *99 2 40 *9707 0*8387 1*486? 1 * 1895 0 *99 1 30 *9707 0*8389 1*4852 1*1881 0*99010 *9708 0*8390 1*4835 1*1868 0 *98 9 00 *9708 0*8392 i *4817 1*1854 0*98780 *9708 0*8394 1*4800 1*1840 0*98670 *9709 0*8395 1*4783 1*1826 0 *98 5 50 *9709 0*8397 1*4766 1 *1813 0 *9 8 4 40 *9709 0*8399 1*474? 1*1799 0*98320 *9710 0*8400 1*4732 1*1785 0*98210 *9710 0*8402 1*4714 1*1772 0*98100 *9710 0*8404 1*4697 1*1758 0*97980*9711 0*8406 1*4680 1*1744 0*97870*9711 0*8407 1 * 4663 1 * 1730 0 *97 7 50*9711 0*8409 1 * 4646 1 *1717 0*97640*9712 0 * S411 1*4629 1*1703 0*97 5 20 *9712 0*8412 1*4611 1 *168? 0*97410*9712 0*8414 1*4594 1*1675 0*97300*9713 0*8416 1*4577 1*1662 0*97180*9713 0*8417 1*4560 i *1648 0 *9 7 0 70*9713 0*8419 1*4543 1*1634 0 *96 9 50 *9714 0*8421 1*4526 1*1621 0 *9 6 8 40*9714 0*8422 1*4508 1 * 1607 0 *9 6 7 20 *9714 0*8424 1*4491 1*1593 0*96610*9715 0*8426 1*4474 1 *1579 0*96 4 90*9715 0*8427 1*4457 1*1566 0 *9 6 3 80*9715 0*842? 1*4440 1*1552 0*96 2 70*9716 0*8431 1*4423 1*1538 0 *9 6 1 50*9716 0*8433 1*4406 1 *1524 0*96040*9716 0*8434 1*4388 1 *151 1 0 *95 9 20*9717 0*8436 1*4371 1*1497 0*95810*9717 0*8438 1*4354 1 * 1483 0*95 6 ?0*9717 0*843? 1*4337 1*1470 0 *95 580*9718 0*8441 1*4320 i * 1456 0 *9 5 4 70*9718 0*8443 1*4303 1*1442 0 *9 5 3 50*9718 0*8444 1*4285 1*1428 0 * 9 5 2 40*9719 0*8446 i *4268 1 *1415 0 *95 1 20*971? 0*8448 1*4251 1*1401 0*95010*971? 0*8449 1*4234 1*1387 0 *94 8 ?0*9720 0*8451 1*4217 1*1374 0 *9 4 7 80 .9 7 2 0 0*8453 1 *4200 1 * i 360 0 *94 6 60*9720 0*8455 1*4183 1 * 1346 0 *94 5 50*9721 0*8456 1*4165 1 * 1332 0*94 4 40*9721 0*8458 i *4148 1 *131? 0*94320*9721 0*8460 1*4131 1*1305 0*94210*9722 0*8461 1*4114 1*1291 0 *9 4 0 ?0*9722 0*8463 1*4097 1 * 1277 0 .9 3 9 80*9722 0*8465 1*4080 i *1264 0 *9 3 8 60*9723 0*8466 1*4063 1*1250 0*93 7 50 .9 7 2 3 0*8468 i *4045 1 * 1236 0 * 9 3 6 40*9723 0*8470 1*4028 1*1223 0*93 5 20*9724 0*8471 1*4011 1 * 120? 0*93410 .9 7 2 4 0*8473 1*3994 1*1195 0*93 2 ?

5 1 0

Page 538: (Hus domesticus. Rut t y ) - UCL Discovery

p F < rr - M-

fr - r s - <o

0 .9 7 2 4 0 .8 4 7 5 i .3977 1 .1182 0 .9 3 1 30 x 9725 0 .8 4 7 7 1.3960 1 .1168 0 .9 3 0 60 .9 7 2 5 0 .8 4 7 8 1.3943 1 .1154 0 .9 2 9 50 .9 7 2 5 0 .8 4 8 0 1.3925 1 . 1 1 40 0 .9 2 8 40 .9 7 2 6 0 .8 4 8 2 1.3908 1 .1127 0 .9 2 7 20 .9 7 2 6 0 .84S3 1.3891 1 .1113 0.92610 .9 7 2 6 0 .8 4 8 5 1.3874 1 .1099 0 .9 2 4 90 .9 7 2 7 0 .8 4 8 7 1.3857 1 . i 086 0 .9 2 3 80 .9 7 2 7 0 .8488 1 .3340 1 .1072 0 .9 2 2 70 .9 7 2 7 0 .8 4 9 0 1 .3823 1 .1058 0 .9 2 1 50 .9 7 2 8 0 .8 4 9 2 1 .3806 1 .1044 0 .9 2 0 40 .9 7 2 8 0 .8 4 9 4 1 .3788 1.1031 0 .9 1 9 20 .9 7 2 8 0 .8 4 9 5 1.3771 1 .1017 0.91810 .9 7 2 9 0 .8 4 9 7 1 .3754 1 .1003 0 .9 1 6 90 .9 7 2 9 0 .8 4 9 9 1 .3737 1 .0 9 9 0 0 .9 1 5 80 .9 7 2 9 0 .8 5 0 0 1 .3720 1 .0976 0 .9 1 4 70 .9 7 3 0 0 .8 5 0 2 1 .3703 1 .0 9 6 2 0 .9 1 3 50 .9 7 3 0 0 .8 5 0 4 1 .3686 1 .0948 0 .9 1 2 40 .9 7 3 0 0 .8 5 0 5 1 .3668 1 .0935 0 .9 1 1 20.9731 0 .8 5 0 7 1.3651 1.0921 0.91010.9731 0 .8 5 0 9 1 .3634 1 .0907 0 .9 0 8 90 .9731 0.3511 1 .3617 1 .0394 0 .9 0 7 80 .9 7 3 2 0 .8 5 1 2 1 .3600 1 .0830 0 .9 0 6 70 .9 7 3 2 0 .8 5 1 4 1 .3583 1 .0 8 6 6 0 .9 0 5 50 .9 7 3 2 0 .8 5 1 6 1 .3566 1 .0853 0 .9 0 4 40 .9 7 3 3 0 .8 5 1 7 1 .3549 1 .0839 0 .9 0 3 20 .9 7 3 3 0 .8 5 1 9 1.3531 1 .0825 0.90210 .9 7 3 3 0.8521 1.3514 1.0811 0 .9 0 1 00 .9 7 3 4 0 .8 5 2 3 1 .3497 1 .0 7 9 8 0 .8 9 9 80 .9 7 3 4 0 .8 5 2 4 1 .3480 1 .0784 0 .8 9 8 70 .9 7 3 4 0 .8 5 2 6 1.3463 1 .077O 0 .8 9 7 50 .9 7 3 5 0 .8 5 2 8 1 .3446 1 .0757 0 .8 9 6 40 .9 7 3 5 0 .8 5 2 9 1.3429 1 .0743 0 .8 9 5 20 .9 7 3 5 0.8531 1 .3412 1 .0729 0.89410 .9 7 3 6 0 .8 5 3 3 1 .3394 1 .0716 0 .3 9 3 00 .9 7 3 6 0 .8 5 3 4 1.3377 1 .0702 0 .8 9 1 80 .9 7 3 6 0 .8536 1.3360 1 .0688 0 .8 9 0 70 .9 7 3 7 0 .8 5 3 8 1 .3343 1 .0675 0 .8S950 .9 7 3 7 0 .8 5 4 0 1.3326 1.0661 0 .8 8 8 40 .9 7 3 7 0.8541 1 .3309 1 .0647 0 .8 8 7 30 .9 7 3 8 0 .8 5 4 3 1 .3292 1 .0633 0.88610 .9 7 3 8 0 .8 5 4 5 1.3275 1 .0620 0 .8 8 5 00 .9 7 3 8 0 .8 5 4 6 1.3258 1 .0 6 0 6 0 .8 8 3 80 .9 7 3 9 0 .8 5 4 8 1 .3240 1 .0592 0 .8 8 2 70 .9 7 3 9 0 .8 5 5 0 1 .3223 1 .0579 0 .3 8 1 60 .9 7 3 9 0 .8 5 5 2 1 .3206 1 .0565 0 .8 8 0 40 .9 7 4 0 0 .8 5 5 3 1 .3189 1.0551 0 .8 7 9 30 .9 7 4 0 0 .8 5 5 5 1 .3172 1 .0538 0.87810 .9 7 4 0 0 .8 5 5 7 1 .3155 1 .0524 0 .8 7 7 00.9741 0 .8 5 5 8 1 .3138 1 .0510 0 .8 7 5 90.9741 0 .3 5 6 0 1.3121 1 .0497 0 .8 7 4 70.9741 0 . 8 5 6 2 1.3104 1 .0483 0 .8 7 3 60 .9 7 4 2 0 .8 5 6 4 1 .3086 1 .0469 0 .8 7 2 40 .9 7 4 2 0 .8 5 6 5 1.3069 1 .0455 0 .8 7 1 30 . 9 7 4 2 0 . 8 5 6 7 1 .3052 1 .0442 0.8701

5 1 1

Page 539: (Hus domesticus. Rut t y ) - UCL Discovery

0 .9 7 4 3 0 .8 5 6 ?0 .9 7 4 3 0 .8 5 7 00 .9 7 4 3 0 .8 5 7 20 .9 7 4 4 0 .8 5 7 40 .9 7 4 4 0 .8 5 7 60 .9 7 4 4 0 .8 5 7 70 .9 7 4 5 0 .8 5 7 90 .9 7 4 5 0.85810 .9 7 4 5 0 .8 5 8 20 .9 7 4 6 0 .8 5 8 40 .9 7 4 6 0 .8 5 8 60 .9 7 4 6 0 .8 5 8 80 .9 7 4 7 0 .8 5 8 90 .9 7 4 7 0 .85910 .9 7 4 7 0 .8 5 9 30 .9 7 4 8 0 .8 5 9 40 .9 7 4 8 0 .8 5 9 60 .9 7 4 8 0 .8 5 9 80 .9 7 4 9 0 .8 6 0 00 .9 7 4 9 0 .36010 .9 7 4 9 0 .8 6 0 30 .9 7 5 0 0 .8 6 0 50 .9 7 5 0 0 .8 6 0 70 .9 7 5 0 0 .8 6 0 80.9751 0 .8 6 1 00.9751 0 .8 6 1 20.9751 0 .8 6 1 30 .9 7 5 2 0 .8 6 1 50 .9 7 5 2 0 .8 6 1 70 .9 7 5 2 0 .8 6 1 90 .9 7 5 3 0 .8 6 2 00 .9 7 5 3 0 .8 6 2 20 .9 7 5 3 0 .8 6 2 40 .9 7 5 4 0 .8 6 2 60 .9 7 5 4 0 .8 6 2 70 .9 7 5 4 0 .8 6 2 90 .9 7 5 5 0 .86310 .9 7 5 5 0 .8 6 3 20 .9 7 5 5 0 .8 6 3 40 .9 7 5 6 0 .8 6 3 60 .9 7 5 6 0 .8 6 3 80 .9 7 5 6 0 .8 6 3 90 .9 7 5 7 0 .86410 .9757 0 .8 6 4 30 .9 7 5 7 0 .8 6 4 50 .9 7 5 8 0 .8 6 4 60 .9 7 5 8 0 .8 6 4 80 .9 7 5 8 0 .8 6 5 00 .9 7 5 ? 0 .86510 .975? 0 .8 6 5 30 .9 7 5 9 0 .8 6 5 50 .9 7 6 0 0 .8 6 5 70 .9760 0 .8 6 5 80 .9 7 6 0 0 .8 6 6 00.9761 0 .8 6 6 2

o fr * fT r *■ 1*

1 .0 4 2 3 0 .8 6 9 01 .0 4 1 4 0 .8 6 7 91 .0401 0 .8 6 6 71 .0 3 8 7 0 .8 6 5 61 .0 3 7 3 0 .8 6 4 41 .0 3 6 0 0 .8 6 3 31 .0 3 4 6 0 .8 6 2 21 .0 3 3 2 0 .8 6 1 0i .0 3 1 9 0 .8 5 9 ?1 .0 3 0 5 0 .8 5 8 71.0291 0 .3 5 7 61 .0 2 7 8 0 .3 5 6 51 .0 2 6 4 0 .8 5 5 31 .0 2 5 0 0 .8 5 4 21 .0 2 3 7 0 .8 5 3 01 .0 2 2 3 0 .8 5 1 ?1 .0 2 0 9 0 .8 5 0 81 .0 1 9 6 0 . 8 49 61 .0 1 8 2 0 .8 4 8 51 .0 1 6 8 0 .8 4 7 31 .0 1 5 4 0 .8 4 6 2i .0141 0.84511 .0 1 2 7 0 .8 4 3 ?1 .0 1 1 3 0 .8 4 2 81 .0 1 0 0 0 .8 4 1 61 .0 0 8 6 0 .8 4 0 51 .0 0 7 2 0 .8 3 9 41 .0 0 5 9 0 .8 3 8 21 .0 0 4 5 0 .83711 .0031 0 .8 3 6 01 .0 0 1 8 0 .8 3 4 81 .0 0 0 4 0 .8 3 3 70 . 9 9 9 0 0... 83250 . 9 9 7 7 0 .8 3 1 40 .9 9 6 3 0 . 83030 .9 9 4 9 0.82910 .9 9 3 6 0 .8 2 8 00 . 9 9 2 2 0 .8 2 6 80 .9 9 0 8 0 .8 2 5 70 .9 8 9 5 0 .8 2 4 60 .9881 0 .8 2 3 40 . 9 8 6 7 0 .8 2 2 30 .9 8 5 4 0.82110 . 9 8 4 0 0 .8 2 0 00 .9 8 2 6 0 .8 1 8 90 .9 8 1 3 0 .8 1 7 70 . 9 7 9 9 0 .8 1 6 60 . 9 7 8 5 0 .8 1 5 40 .9 7 7 2 0 .8 1 4 30 .9 7 5 8 0 .8 1 3 20 . 9 7 4 4 0 .8 1 2 00 .9731 0 .3 1 0 ?0 .9 7 1 7 0 .8 0 9 80 .9 7 0 3 0 .8 0 8 60 .9 6 9 0 0 .8 0 7 5

r* Hr303530183001298429672950293229152898288128642347283028132796277927612744272727102693267626592642262526082591257325562539952925052488247124542437242024032385236823512334231 723002283226622499 9 " ? 9

22152198218121632 1 4 6

212921 12

512

Page 540: (Hus domesticus. Rut t y ) - UCL Discovery

0.9761 0 * 36640.9761 0 .86650 .9 7 6 2 0 .8 6 6 70 .9 7 6 2 0 .8 6 6 90 .9 7 6 2 0.86710 .9 7 6 3 0 .8 6 7 20 .9 7 6 3 0 .8 6 7 40 .9 7 6 3 0 .8 6 7 60 .9 7 6 4 0 .8 6 7 70 .9 7 6 4 0 .8 6 7 90 .9 7 6 4 0 .86810 .9 7 6 5 0 .8 6 8 30 .9 7 6 5 0 .8 6 8 40 .9 7 6 5 0 .8 6 8 60 .9 7 6 6 0 .3 6 8 80 .9 7 6 6 0 .8 6 9 00 .9 7 6 6 0.86910 .9 7 6 7 0 .8 6 9 30 .9 7 6 7 0 .8 6 9 50 .9 7 6 7 0 .8 6 9 70 .9 7 6 8 0 .8 6 9 80 .9 7 6 8 0 .8 7 0 00 .9 7 6 8 0 .8 7 0 20 .9 7 6 9 0 .8 7 0 40 .9 7 6 9 0 .8 7 0 50 .9 7 6 9 0 .8 7 0 70 .9 7 7 0 0 .8 7 0 90 .9 7 7 0 0.87110 .9 7 7 0 0 .8 7 1 20.9771 0 .8 7 1 40.9771 0 .8 7 1 60.9771 0 .8 7 1 80 .9 7 7 2 0 .8 7 1 90 .9 7 7 2 0.87210 .9 7 7 2 0 .8 7 2 30 .9 7 i7 0*87250 .9 7 7 3 0 .8 7 2 60 .9 7 7 3 0 .8 7 2 80 .9 7 7 4 0 .8 7 3 00 .9 7 7 4 0 .8 7 3 20 .9 7 7 4 0 .8 7 3 30 .9 7 7 5 0 .8 7 3 50 .9 7 7 5 0 .8 7 3 70 .9 7 7 5 0 .8 7 3 90 .9 7 7 6 0 .8 7 4 00 .9 7 7 6 0 .8 7 4 20 .9 7 7 6 0 .8 7 4 40 .9 7 7 7 0 .3 7 4 60 .9 7 7 7 0 .8 7 4 70 .9 7 7 7 0 .8 7 4 90 .9 7 7 8 0.87510 .9 7 7 8 0 .8 7 5 30 .9 7 7 8 0 .8 7 5 40 .9 7 7 9 0 .3 7 5 60 .9 7 7 9 0 .8 7 5 8

0 .9 6 7 6 0 .8 0 6 30 .9 6 6 2 0 .8 0 5 20 .9 6 4 9 0.80410 .9 6 3 5 0 .8 0 2 90.9621 0 .8 0 1 80 .9 6 0 8 0 .8 0 0 70 .9 5 9 4 0 .7 9 9 50 .9 5 8 0 0 .7 9 8 40 .9 5 6 7 0 .7 9 7 20 .9 5 5 3 0.79610 .9 5 4 0 0 .7 9 5 00 .9 5 2 6 0 .7 9 3 80 .9 5 1 2 0 .7 9 2 70 .9 4 9 9 0 .7 9 1 50 .9 4 8 5 0 .7 9 0 40.9471 0 .7 8 9 30 .9 4 5 8 0.78810 .9 4 4 4 0 .7 8 7 00 .9 4 3 0 0 .7 8 5 90 .9 4 1 7 0 .7 8 4 70 .9 4 0 3 0 .7 8 3 60 .9 3 8 9 0 .7 8 2 40 .9 3 7 6 0 .7 8 1 30 .9 3 6 2 0 .7 8 0 20 .9 3 4 8 0 .7 7 9 00 .9 3 3 5 0 .7 7 7 90.9321 0 .7 7 6 80 .9 3 0 7 0 .7 7 5 60 .9 2 9 4 0 .7 7 4 50 .9 2 8 0 0 .7 7 3 30 .9 2 6 7 0 .7 7 2 20 .9 2 5 3 0.77110 .9 2 3 9 0 .7 6 9 90 .9 2 2 6 0 .7 6 8 80 .9 2 1 2 0 . 7 6 f70 .9 1 9 8 0 .7 6 6 50 .9 1 8 5 0 .7 6 5 40.9171 0 .7 6 4 30 .9 1 5 7 0.76310 .9 1 4 4 0 .7 6 2 00 .9 1 3 0 0 .7 6 0 80 . 9 1 16 0 .7 5 9 70 . 9 ? 03 0 .7 5 8 60 .9 0 8 9 0 .7 5 7 40 .9 0 7 6 0 .7 5 6 30 .9 0 6 2 0 .7 5 5 20 .9 0 4 8 0 .7 5 4 00 .9 0 3 5 0 .7 5 2 90 .9021 0 .7 5 1 70 .9 0 0 7 0 .7 5 0 60 .8 9 9 4 0 .7 4 9 50 .8 9 8 0 0 .7 4 8 30 .8 9 6 6 0 .7 4 7 20 .8 9 5 3 0.74610 .8 9 3 9 0 .7 4 4 9

2 0 9 5

2 0 7 8

2 0 6 1

20442 0 2 7

2 0 1 0

1 9 9 3

1 9 7 6

1 9 5 9

1 9 4 1

1 9 2 4

1 9 0 7

1 8 9 0

1 8 7 3

1 8 5 6

1 8 3 9

1 8 2 2

1 8 0 5

1 7 8 8

1 7 7 1

1 7 5 4

1 7 3 7

1 7 2 0

1 7 0 3

1 6 8 5

1 6 6 8

1 6 5 1

16341 6 1 7

1 6 0 0

1 5 8 3

1 5 6 6

1 5 4 9

1 5 3 9

1 5 1 5

i 4 9 8

1 4 8 1

1 4 6 4

1 4 4 7

1 4 3 0

1 4 1 3

1 3 9 6

i 3 7 8

1 3 6 1

1 3 4 4

1 3 2 7

1 3 1 0

1 2 9 3

1 2 7 6

1 2 5 9

1 2 4 2

1 2 2 5

1 2 0 8

1 i V I

1 1 7 4

Page 541: (Hus domesticus. Rut t y ) - UCL Discovery

p0*9779 0 * 9780 0 *97 8 0 0*9780 0*9781 0*9781 0*9781 0*9782 0*9782 0*9782 0*9783 0*9783 0*9783 0*9784 0*9784 0*9784 0*9785 0*9785 0*9785 0*9786 0*9786 0*9786 0*9787 0*9787 0*9787 0*9788 0*9788 0*9788 0*8789 0*9789 0*9789 0*9790 0*9790 0 ,9 7 9 0 0*9791 0*9791 0*9791 0*9792 0*9792 0*9792 0*9793 0*9793 0 , 9 7 9 3

0*9794 0*9794 0*9794 0*9795 0*9795 0*9795 0*9796 0*9796 0*9796 0*9797 0*9797 0*9797

f

0*8760 0*3761 0*8763 0*8765 0*8767 0*8768 0*8770 0*8772 0*8774 0*8775 0*8777 0*8779 0*8781 0*8782 0*8784 0*8786 0*3788 0*3789 0*8791 0*8793 0*8795 0 .8796 0*8798 0*8300 0*8802 0*8803 0*8805 0*8807 0 .S80? 0*8811 0*8812 0*8314 0*8816 0*8818 0 .8 8 1 9 0*8821 0*8823 0*8825 0*8826 0*8828 0*8330 0*8832 0 ,8 8 3 3 0*8835 0 * 8837 0 * 8 8 3 9

0*8841 0*8342 0*3344 0 * 8 8 4 6

0*3848 0*8849 0*8851 0*8853 0*8855

< rr - n -

* 1 1 5 7

* 11 40* 1 1 23 *1106 *1089* 1072 *1055 *1038 *1021 *1004 *0986 *0969 *0952 *0935 *0918 *0901 *0884 *0867 *0850* 0 8 3 3 *0816 *0799 *0782 *0765 *0748 *0731 *0714 *0697* 0680 *0663 *0646 *0629 *0612 *0595 *0578 *0561 *0544 *0527 *0510 *0493 *0476 *0459 *0442 *0425 *0408 *0391 * 0374 *0357 *0340 *0322 *0305 *0288 *0271 *0254

1*0237

*r0*89 2 6 0 *8912 0 * 8898 0*8885 0*8871 0 *8857 0 *88 4 4 0*8830 0*88 1 6 0*8303 0 *8789 0*8776 0*87 6 2 0*87 4 3 0 *8735 0*8721 0 *8707 0*8694 0 * 8680 0*3667 0 *8653 0*8639 0*8626 0 .8 6 1 2 0*85 9 8 0*8585 0*8571 0*8558 0*85 4 4 0 *8530 0 *8 5 1 7 0 *8503 0 *84 8 9 0*8476 0 *84 6 2 0 *8449 0 *8435 0*8421 0 *84 0 8 0*8394 0*8381 0 *8367 0*8353 0 *33 4 0 0 * 8 3 2 6

0*83 1 2 0 *8299 0 * 8235 0 *82 7 2 0 *8253 0 * 8 2 4 4

0*8231 0 *8217 0 .8 2 0 4 0 *81 9 0

s

r =. U

0 * 7 4 3 8

0*7427 0 * 7 4 1 5

0*7404 0 *7392 0*7381 0 *73 7 0 0*7358 0*7347 0 *73 3 6 0 *73 2 4 0 *73 1 3 0 *7302 0*7290 0 *7279 0 *7268 0 *72 5 6 0 *72 4 5 0 *72 3 3 0 * 7222 0*7211 0*7199 0 *71 3 8 0 *71 7 7 0 *71 6 5 0*7154 0*7143 0*7131 0 *71 2 0 0*7109 0*7097 0*7086 0 *70 7 5 0 * 7063 0 *7052 0*7040 0 *7029 0*70 1 8 0*7006 0 *6995 0 *69 8 4 0 *6972 0*6961 0 *69 5 0 0 * 6938 0*6927 0 * 6 91 6 0 *6904 0 * 6893 0*68 8 2 0 * 6370 0 * 6859 0 * 6 8 4 8

0*6836 0 *6825

5 1 4

Page 542: (Hus domesticus. Rut t y ) - UCL Discovery

p P< f

c fi rr v S" C =- (o

0 ,9 7 9 8 0*8857 1*0220 0*81 7 6 0*68140 * 9798 0 .8858 1*0203 0*8163 0*68020*9798 0*8860 1*0186 0 *81 4 9 0*67910 *9799 0*8862 1*0169 0 *81 3 6 0*67800*9799 0*8864 i *0152 0 *8 1 2 2 0*67680*9799 0*8865 i *0135 0*8108 0*67570*9800 0*3867 1*0118 0 *80 9 5 0*67460*9800 0*8869 1*0101 0*8081 0*67340*9800 0*8871 1*0084 0 * 8 0 6 7 0*67230.9801 0*8872 i *0067 0*8054 0*67120*9801 0*8874 1*0050 0 *8 0 4 0 0*67000*9801 0*8376 1*0033 0*80 2 7 0*66890*9802 0*8878 1*0016 0 *8 0 1 3 0*66780*9802 0*8880 0*9999 0*79 9 9 0 *66660*98 0 2 0*88S1 0*9982 0 * 79S6 0*66550*98 0 3 0 .8 8 3 3 0*9965 0 *79 7 2 0*66440»9803 0*8885 0*9948 0 *7 9 5 9 0*66320*9803 0*8887 0*9931 0 *79 4 5 0*66210*9304 0*8888 0*9914 0*7931 0*66100*9304 0 .8 8 9 0 0*9897 0*79 1 8 0*65980*9804 0*8892 0 * 9880 0 *79 0 4 0*65870*9805 0*8894 0 * 9863 0*7891 0*65760*9805 0*8896 0*9846 0 *78 7 7 0*65640 * 98w5 0*8897 0*9829 0 *7 8 6 3 0 .65530*9806 0*8899 0*9812 0 *7 8 5 0 0 .65420*9806 0*8901 0*9795 0 *78 3 6 0*65300*9806 0*3903 0*9778 0 *7 8 2 3 0*65190*9807 0*8904 0*9761 0 *78 0 9 0*65080*9807 0*8906 0*9744 0 *77 9 5 0*64960*9807 0*8908 0*9727 0 *77 8 2 0*64850 *9808 0*8910 0*9710 0 *7 7 6 8 0*64740*9808 0*8912 0*9693 0 * 7 7 5 5 0*64620 *9808 0*8913 0*9676 0*7741 0*64510 * 9809 0*8915 0*9659 0*77 2 7 0*64400*9809 0*8917 0*9642 0*7 7 1 4 0*64280*9309 0*8919 0*9625 0 * 7 7 0 0 0*64170*9810 0*8921 0*9608 0 * 7 6 8 7 0 * 6 4 0 60*9810 0*3922 0*9591 0 * 7 6 7 3 0*63940*9810 0*8924 0*9574 0 *7 6 6 0 0*63830*9811 0*8926 0*9557 0 * 7 6 4 6 0*63720*9811 0*8928 0*9540 0*7 6 3 2 0 * 63600 * 9 8 1 i 0*8929 0*9523 0 *7 6 1 9 0*63490*9812 0*8931 0*9.506 0 *76 0 5 0* 63380*9812 0*8933 0*9489 0 * 7 5 9 2 0 * 63260*9812 0*8935 0*9472 0 *7 5 7 8 0*63150*9813 0*8937 0*9456 0 * 7 5 6 4 0*63040*9813 0*8938 0*9439 0*7551 0 6 2 9 20*9813 0*8940 0*9422 0 *7 5 3 7 0*62810*9814 0*8942 0*9405 0 *75 2 4 0 * 6 2 7 0

0*9814 0*8944 0*9388 0 *7 5 1 0 0*62580*9814 0*8946 0*9371 0 * 7 4 9 6 0*62470*9815 0*8947 0*9354 0 * 7 4 8 3 0 * 6 2 3 6

0*9815 0*8949 0*9337 0 *7 4 6 9 0*62240*9815 0*8951 0*9320 0 *7 4 5 6 0*62130*9816 0*8953 0.-.9303 0 *7 4 4 2 0*6202

Page 543: (Hus domesticus. Rut t y ) - UCL Discovery

fO a 9816 0 .9 8 1 6 0 .9 8 1 7 0 .9 8 1 7 0 .9 8 1 7 0 .9 8 1 8 0 .9 8 1 8 0 .9 8 1 8 0 .9 8 1 9 0 .9 8 1 9 0 .9 8 1 9 0 .9 8 2 0 0 .9 8 2 0 0 .9 8 2 0 0.9821 0 .9821 0.9821 0 .9 8 2 2 0 .9 8 2 2 0 .9 8 2 2 0 .9 8 2 3 0 .9 8 2 3 0 .9 8 2 3 0 .9 8 2 4 0 .9 8 2 4 0 .9 8 2 4 0 .9 8 2 5 0 .9 8 2 5 0 .9 8 2 5 0 .9 8 2 6 0 .9 8 2 6 0 .9 8 2 6 0 .9 8 2 7 0 .9 8 2 7 0 .9 8 2 7 0 .9 8 2 8 0 .9 8 2 8 0 .9 8 2 8 0 .9 8 2 9 0 .9 8 2 9 0 .9 8 2 9 0 .9 8 3 0 0 .9 8 3 0 0 .9 8 3 0 0.9831 0.9831 0.9831 0 .9 8 3 2 0 .9 8 3 2 0 .9 8 3 2 0 .9 8 3 3 0 .9 8 3 3 0 .9 8 3 3 0 .9 3 3 4 0 .9 8 3 4

f

0 .8 9 5 5 0 .8 9 5 6 0 .8 9 5 8 0 .3 9 6 0 0 .8 9 6 2 0 .8 9 6 4 0 .3965 0 .8 9 6 7 0 .8969 0.8971 0 .8 9 7 2 0 .8974 0 .8 9 7 6 0 .8 9 7 8 0 .8 9 8 0 0.8981 0 .8983 0 .8 9 8 5 0 .8987 0 .8 9 8 9 0 .8 9 9 0 0 .8 9 9 2 0 .8994 0 .8 9 9 6 0 .8 9 9 8 0 .8 9 9 9 0.9001 0 .9 0 0 3 0 .9005 0 .9007 0 .9008 0 .9010 0 .9012 0 .9014 0 .9016 0 .9017 0 .9019 0.9021 0 .9023 0 .9025 0 .9027 0 .9 0 2 8 0 .9 0 3 0 0 .9032 0 .9034 O.9036 0 .9 0 3 7 0 .9 0 3 9 0.9041 0 .9 0 4 3 0 .9045 0 .9046 0 .9 0 4 8 0 .9 0 5 0 0 .9 0 5 2

< r

^ ur0 . 9 2 3 6

0 . 9 2 6 9

0 .9252 0 .9235 0 .9218 0.9201 0 .9184 0 .9167 0 .9150 0 .9133 0 .9116 0 .9099 0 .9082 0 .9065 0 .9048 0.9031 0 .9014 0 .8997 0 .8980 0 .8963 0 .8946 0 .8929 0 .8912 0 .8895 0 .8878 0.3861 0 .8844 0 .8827 0.8811 0 .8794 0 .8777 0 .8760 0 .3743 0 .3726 0 .8709 0 .8692 0 .8675 0 .8658 0.8641 0 .8624 0 .8607 0 .8590 0 .8573 0 .8556 0 .8539 0 .8522 0 .8505 0 .8488 0.8471 0 .8 4 5 4 0 .8437 0.8421 0 .8404 0 .8387 0 . 8 3 7 0

c f

r - <r0 .7 4 2 9 0 .7 4 1 5 0 .7401 0 .7 3 8 8 0 .7 3 7 4 0.7361 0 .7 3 4 7 0 .7 3 3 3 0 .7 3 2 0 0 .7 3 0 6 0 .7 2 9 3 0 .7 2 7 9 0 .7 2 6 6 0 .7 2 5 2 0 .7 2 3 8 0 .7 2 2 5 0.7211 0 .7 1 9 8 0 .7 1 8 4 0 .7171 0 .7 1 5 7 0 .7 1 4 3 0 .7 1 3 0 0 .71 16 0 .7 1 0 3 0 .7 0 8 9 0 .7 0 7 6 0 .7 0 6 2 0 .7 0 4 8 0 .7 0 3 5 0 .7021 0 .7 0 0 8 0 .6 9 9 4 0 .6981 0 .6 9 6 7 0 .6 9 5 3 0 .6 9 4 0 0 .6 9 2 6 0 .6 9 1 3 0 .6 8 9 9 0 .6886 0 .6 8 7 2 0 .6 8 5 8 0 .6 8 4 5 0 .6831 0 .6 8 1 8 0 .6 8 0 4 0 .6791 0 .6 7 7 7 0 .6 7 6 4 0 .6 7 5 0 0 .6 7 3 6 0 .6 7 2 3 0 .6 7 0 9 0 .6 6 9 6

<r0 .6 1 9 0 0 . 6 1 7 9

0 . 6 1 6 8

0 .6 1 5 7 0 .6 1 4 5 0 .6 1 3 4 0 .6 1 2 3 0 .6111 0 .6 1 0 0 0 .6 0 8 9 0 .6 0 7 7 0 .6 0 6 6 0 .6 0 5 5 0 .6 0 4 3 0 .6 0 3 2 0 .6021 0 .6 0 0 9 0 .5 9 9 8 0 .5 9 8 7 0 .5 9 7 5 0 .5 9 6 4 0 .5 9 5 3 0 .5 9 4 2 0 .5 9 3 0 0 .5 9 1 9 0 .5 9 0 8 0 .5 8 9 6 0 .5 8 8 5 0 .5 8 7 4 0 .5 8 6 2 0 .5851 0 .5 8 4 0 0 .5 8 2 8 0 .5 8 1 7 0 .5 8 0 6 0 .5 7 9 5 0 .5 7 8 3 0 .5 7 7 2 0 .5761 0 .5 7 4 9 0 .5 7 3 8 0 .5 7 2 7 0 .5 7 1 5 0 .5 7 0 4 0 .5 6 9 3 0 .5681 0 . 5 6 7 0

0 .5 6 5 9 0 .5 6 4 8 0 . 5 6 3 6

0 .5 6 2 5 0 .5 6 1 4 0 .5 6 0 2 0 . 5 5 9 1

0 .5 5 8 0

5 1 6

Page 544: (Hus domesticus. Rut t y ) - UCL Discovery

p0*9834 0*9835 0*9335 0*9835 0*9336 0*9836 0*9336 0*9837 0*9837 0*9837 0*9838 0*9838 0*9838 0*9839 0*983? 0*983? 0*9840 0*9840 0*9840 0 * 9 8 4 1

0*9841 0 * 9 3 4 1

0*9842 0 * 9 8 4 2

0*9842 0 * 9 8 4 3

0*9843 0 * 9 8 4 3

0*9344 0 * 9 8 4 4

0 * 9 3 4 4

0 * 9 8 4 5

0 * 9 8 4 5

0 * 9 0 4 5

0*9346 0 * 9 3 4 6

0 * 9 8 4 6

0 * 9 3 4 7

0 * 9 8 4 ?

0 * 9 8 4 7

0 * 9 8 4 8

0 * 9 8 4 8

0 * 9 8 4 8

0 * 9 8 4 ?

0 * 9 8 4 9

0 * 9 3 4 9

0 * 9 8 5 0

0 * 9 8 5 0

0 * 9 8 5 0

0 * 9 8 5 1

0 * 9 8 5 1

0 * 9 8 5 1

0 * 9 8 5 2

0 * 9 8 5 2f\ v 9

F0 * 9054 0*9055 0*9057 0*905? 0*9061 0*9063 0*9065 0*9066 0*9068 0*9070 0*9072 0*9074 0*9075 0*9077 0 * ?07? 0*9081 0*9083 0*9084 0*9086 0*9088 0*9090 0 *9092 0*9094 0*9095 0*9097 0*9099 0*9101 0*9103 0*9105 0*9106 0*9108 0 *9110 0*9112 0*9114 0*9115 0*9117 0*91 1? 0*9121 0*9123 0*9125 0 * 9i 26 0*9128 0*9130 0*9132 0*9134 0*9136 0*9137 0*913? 0*9141 0*9143 0*9145 0*9147 0*9148 0*9150 0*9152

0 * 8 3 5 3

0*8336 0*831? 0*8302 0*8285 0*8268 0*8251 0 *8234 0*8217 0*3200 0*8183 0*8166 0 *814? 0*8132 0*8116 0 *8099 0*8082 0*8065 0 *8048 0 * 8 0 3 1

0 * 8 0 1 4

0 *7997 0*7930 0*7963 0 *7946 0*792? 0 *7912 0 *7895 0 * 7 8 7 3

0*7861 0 * 7 8 4 5

0 * 7 8 2 8

0 * 7 3 1 1

0 * 7 7 9 4

0 * 7 7 7 7

0 * 7 7 6 0

0 * 7 7 4 3

0 * 7 7 2 6

0*770? 0 * 7 6 9 2

0 *7675 0 * 7 6 5 8

0 * 7 6 4 1

0 * 7 6 2 5

0 * 7 6 0 8

0 * 7 5 9 1

0 * 7 5 7 4

0 * 7 5 5 7

0 * 7 5 4 0

0 * 7 5 2 3

0 * 7 5 0 6

0 * 7 4 8 9

0 * 7 4 7 2

0 * 7 4 5 5

0 * 7 4 3 8

/

s T

0 *66 8 2 0 *66 6 9 0 *66 5 5 0*6641 0 *6628 0 *6614 0*6601 0 *65 8 7 0 *65 7 4 0 *65 6 0 0 *65 4 7 0 *6533 0 *6520 0 *65 0 6 0 *6492 0 *64 7 ? 0 *64 6 5 0 *64 5 2 0 *6438 0 *6425 0*6411 0 *63 9 8 0*6384 0 *6370 0 *6357 0 *63 4 3 0 *63 3 0 0 *63 1 6 0 *63 0 3 0*6289 0 *6276 0*6262 0*624? 0*6235 0*6221 0 *62 0 8 0 *6194 0*6181 0 *6167 0*6154 0 *61 4 0 0 *6127 0*61 13- 0 *6100 0 *6086 0 *60 7 3 0 *60 5 ? 0 *60 4 5 0 *6032 0 *6 0 1 8 0 *60 0 5 0*5991 0 *59 7 8 0 *59 6 4 0*5951

c T

b

0*5568 0*5557 0 *5546 0 *5535 0*5523 0*5512 0*5501 0 *5489 0*5478 0 *5467 0*5456 0 *5444 0*5433 0 *54 2 2 0 *5410 0*539? 0*5388 0*5376 0*5365 0 *5354 0 *5343 0*5331 0*5320 0 *530? 0 *5297 0 *5286 0 .5 2 7 5 0 *5264 0*5252 0*5241 0*5230 0*5218 0*5207 0 *5196 0*5185 0 *5173 0*5162 0*5151 0*513? 0 *5128 0*5117 0 *5106 0 ,5 0 9 4 0 *5083 0*5072 0*5060 0 *504? 0 * 5 0 3 8

0*5027 0 *5015 0 * 5 0 0 4

0 * 4 9 9 3

0 * 4 9 8 1

0*4970 0*495?

5 1 7

Page 545: (Hus domesticus. Rut t y ) - UCL Discovery

-

? P

0 .9 3 5 3 0 .91540 .9 3 5 3 0 .91560 .9 8 5 3 0 .91570 .9 3 5 4 0 .91590 .9 8 5 4 0.91610 .9 8 5 4 0 .9 1 6 30 .9 8 5 5 0 .91650 .9 8 5 5 0 .91670 .9 3 5 5 0 .91680 .9 8 5 6 0 .91700 .9 8 5 6 0 .91720 .9 8 5 6 0 .91740 .9 3 5 7 0 .91760 .9 8 5 7 0 .91780 .9 3 5 7 0 .91800 .9 8 5 8 0.91310 .9 8 5 3 0 .91830 .9 8 5 8 0 .91850 .9 3 5 9 0 .91870 .9 8 5 9 0 .91890 .9 3 5 9 0.91910 .9 8 6 0 0 .9 1 9 20 .9 8 6 0 0 .91940 .9 8 6 0 0 .91960.9861 0 .9 1 9 80 .9861 0 .92000 .9361 0 .92020 .9 8 6 2 0 .9 2 0 30 .9 8 6 2 0 .92050 .9 8 6 2 0 .9 2 0 70 .9 8 6 3 0 .92090 .9 8 6 3 0.92110 .9 8 6 3 0 .92130 .9 8 6 4 0 .92140 .9 8 6 4 0 .92160 .9 8 6 4 0 .92180 .9 8 6 5 0 .92200 .9 8 6 5 f. \ q 2 ? 20 .9 3 6 5 0 .92240 .9 8 6 6 0 .92260 .9 3 6 6 0 .92270 .9 8 6 6 0 .92290 a9867 0.92310 . 9 8 6 ( 0 .92330 .9 8 6 7 0 .92350 .9 3 6 8 0 .9 2 3 70 .9 8 6 8 0 .92380 .9 8 6 8 0 .9 2 4 00 .9 8 6 9 0 .92420 .9 8 6 9 0 .9 2 4 40 .9 8 6 9 0 .92460 . 9 8 7 0 0 .92480 .9 8 7 0 0 .92500 .9 8 7 0 0.92510.9871 0 .9253

<T <fr > 4 - r _ ^ r ■=. b

0.7421 0 .5 9 3 7 0 .4 9 4 80 .7 4 0 5 0 .5924 0 .4 9 3 60 .7 3 8 8 0 .5 9 1 0 0 .4 9 2 50.7371 0 .5 8 9 7 0 .4 9 1 40 .7 3 5 4 0 .5883 0 .4 9 0 30 .7 3 3 7 0 .5 8 7 0 0.48910 .7 3 2 0 0 .5 8 5 6 0 .4 8 8 00 .7 3 0 3 0 .5 8 4 2 0 .4 8 6 90 .7 2 3 6 0 .5 3 2 9 0 .4 8 5 70 .7 2 6 9 0 .5 8 1 5 0 .4 8 4 60 .7 2 5 2 0 .5 8 0 2 0 .4 8 3 50 .7 2 3 5 0 .5 7 8 8 0 .4 8 2 40 .7 2 1 9 0 .5 7 7 5 0 .4 8 1 20 .7 2 0 2 0.5761 0 .48010 .7 1 8 5 0 .5 7 4 8 0 .4 7 9 00 .7 1 6 8 0 .5 7 3 4 0 .4 7 7 90.7151 0.5721 0 .4 7 6 70 .7 1 3 4 0 .5 7 0 7 0 .4 7 5 60 .7 1 1 7 0 .5 6 9 4 0 .4 7 4 50 .7 1 0 0 0 .5 6 8 0 0 .4 7 3 30 .7 0 8 3 0 .5 6 6 7 0 .4 7 2 20 .7 0 6 6 0 .5 6 5 3 0.47110 .7 0 4 9 0 .5 6 4 0 0 .4 7 0 00 .7 0 3 3 0 .5 6 2 6 0 .4 6 8 80 .7 0 1 6 0 .5 6 1 3 0 .4 6 7 70 .6 9 9 9 0 .5 5 9 9 0 .4 6 6 60 .6 9 8 2 0 .5 5 8 5 0 .4 6 5 50 .6 9 6 5 0 .5 5 7 2 0 .4 6 4 30 .6 9 4 8 0 .5 5 5 8 0 .4 6 3 20.6931 0 .5 5 4 5 0.46210 .6 9 1 4 0.5531 0 .4 6 1 00 .6 8 9 7 0 .5 5 1 8 0 .4 5 9 80 .6 3 3 0 0 .5 5 0 4 0 .4 5 8 70 .6 8 6 4 0.5491 0 .4 5 7 60 .6 8 4 7 0 .5 4 7 7 0 .4 5 6 40 .6 8 3 0 0 .5 4 6 4 0 .4 5 5 30 .6 8 1 3 0 .5 4 5 0 0 .4 5 4 20 .6 7 9 6 0 .5 4 3 7 0 .45310 .6 7 7 9 0 .5 4 2 3 0 .4 5 1 90 .6 7 6 2 0 .5 4 1 0 0 .4 5 0 80 .6 7 4 5 0 .5 3 9 6 0 .4 4 9 70 .6 7 2 8 0 .5 3 8 3 0 .4 4 8 60 .6 7 1 2 0 .5 3 6 9 0 .4 4 7 40 .6 6 9 5 0 .5 3 5 6 0 .4 4 6 30 .6 6 7 8 0 .5 3 4 2 0 .4 4 5 20... 6661 0 .5 3 2 9 0.44410 .6 6 4 4 0 .5 3 1 5 0 .4 4 2 90 .6 6 2 7 0 .5 3 0 2 0 .4 4 1 80 .6 6 1 0 0 .5 2 8 8 0 .4 4 0 70 .6 5 9 3 0 .5 2 7 5 0 .4 3 9 60 .6 5 7 6 0.5261 0 .4 3 3 4Q.6560 0 .5 2 4 8 0 .4 3 7 30 .6 5 4 3 0 .5 2 3 4 0 .4 3 6 20 .6 5 2 6 0.5221 0 .4 3 5 00 .6 5 0 9 0 .5 2 0 7 0 .4 3 3 9

5 1 8

Page 546: (Hus domesticus. Rut t y ) - UCL Discovery

p

0 .9871 0 .9871 0 .9 8 7 2 0 .9 8 7 2 0 .9 8 7 2 0 .9 8 7 3 0 .9 8 7 3 0 .9 8 7 3 0 .9 8 7 4 0 .9 8 7 4 0 .9 8 7 4 0 .9 8 7 5 0 .9 8 7 5 0 .9 8 7 5 0 .9 8 7 6 0 .9 8 7 6 0 .9 8 7 6 0 .9 8 7 7 0 .9 8 7 7 0 .9 8 7 7 0 .9 8 7 8 0 .9 8 7 8 0 .9 8 7 8 0 .9 8 7 9 0 .9 8 7 9 0 .9 8 7 9 0 .9 8 3 0 0 .9 8 8 0 0 .9 8 8 0 0.9881 0.9881 0.9881 0 .9 8 8 2 0 . 9 8 8 2

0 .9 8 8 2 0 .9 8 8 3 0 .9 8 8 3 0 .9 8 8 3 0 .9 8 8 4 0 .9 8 8 4 0 .9 8 8 4 0 .9 8 8 5 0 . 9 8 8 5

0 . 9 8 8 5

0 .9 8 8 6 0 .9 8 8 6 0 .9 8 8 6 0 .9 8 8 7 0 .9 8 8 7 0 .9 8 8 7 0 .9 8 8 8 0 .9 8 8 8 0 .9 8 8 8 0 .9 8 8 9 0 .9 8 8 9

F0 .9255 0 .9257 0 .9259 0.9261 0 .9263 0 .9264 0 .9266 0 .9268 0 .9270 0 .9272 0 .9274 0 .9276 0 .9277 0 .9279 0.9281 0 .9283 0 .9285 0 .9287 0 .9239 0 .9290 0 .9292 0 .9294 0 .9296 0 .9298 0 .9300 0 .9302 0 .9303 0 .9305 0 .9307 0 .9309 0.9311 0 .9313 0 .9315 0 .9316 0 .9318 0 .9320 0 .9322 0 .9324 0 .9326 0 .9328 0 .932? 0.9331 0 .9333 0 .9335 0 .9337 0 .9339 0.9341 0 .9343 0 .9344 0 . 9 3 4 6

0 .9348 0 .9350 0 .9352 0 .9354 0 .9356

S

0 .6 4 9 2 0 .6 4 7 5 0 .6 4 5 8 0 .6441 0 .6 4 2 4 0 .6 4 0 8 0.6391 0 .6 3 7 4 0 .6 3 5 7 0 .6 3 4 0 0 .6 3 2 3 0 .6 3 0 6 0 .6 2 8 9 0 .6 2 7 3 0 .6 2 5 6 0 .6 2 3 9 0 .6 2 2 2 0 .6 2 0 5 0 .6 1 8 8 0.6171 0 .6 1 5 4 0 .6 1 3 8 0.6121 0 .6 1 0 4 0 .6 0 8 7 0 .6 0 7 0 0 .6 0 5 3 0 .6 0 3 6 0 .6 0 1 9 0 .6 0 0 3 0 .5 9 8 6 0 .5 9 6 9 0 .5 9 5 2 0 .5 9 3 5 0 .5 9 1 8 0.5901 0 .5 8 8 4 0 .5 8 6 8 0.5851 0 .5 8 3 4 0 .5 8 1 7 0 .5 8 0 0 0 .5 7 8 3 0 .5 7 6 6 0 .5 7 5 0 0 .5 7 3 3 0 .5 7 1 6 0 .5 6 9 9 0 .5 6 8 2 0 . 5 6 6 5

0 . 5 6 4 0

0 .5 6 3 2 0 .5 6 1 5 0 . 5 5 9 8

0.5581

< r

0 .5 1 9 4 0 .5 1 8 0 0 .5 1 6 7 0 .5 1 5 3 0 .5 1 4 0 0 .5 1 2 6 0 .5 1 1 3 0 .5 0 9 9 0 .5 0 8 6 0 .5 0 7 2 0 .5 0 5 9 0 .5O45 0 .5 0 3 2 0 .5 0 1 8 0 .5 0 0 5 0 .4991 0 .4 9 7 8 0 .4 9 6 4 0 .4951 0 .4 9 3 7 0 .4 9 2 4 0 .4 9 1 0 0 .4 8 9 7 0 .4 8 8 3 0 .4 8 7 0 0 .4 8 5 6 0 .4 8 4 3 0 .4 8 2 9 0 .4 8 1 6 0 .4 8 0 2 0 .4 7 8 9 0 .4 7 7 5 0 .4 7 6 2 0 .4 7 4 8 0 .4 7 3 5 0 .4721 0 .4 7 0 8 0 .4 6 9 4 0 .4681 0 .4 6 6 7 0 .4 6 5 4 0 .4 6 4 0 0 .4 6 2 7 0 .4 6 1 3 0 .4 6 0 0 0 .4 5 8 6 0 .4 5 7 3 0 .4 5 5 9 0 .4 5 4 6 0 .4 5 3 2 0 .4 5 1 9 0 .4 5 0 5 0 .4 4 9 2 0 .4 4 7 3 0 .4 4 6 5

cTC *- to

0 .4 3 2 80 .4 3 1 70 .4 3 0 50 .4 2 9 40 .4 2 8 30 .4 2 7 20 .4 2 6 00 .4 2 4 90 .4 2 3 80 .4 2 2 70 .4 2 1 50 .4 2 0 40 .4 1 9 30 .4 1 8 20 .4 1 7 00 .4 1 5 90 .4 1 4 80 .4 1 3 70 .4 1 2 50 .4 1 1 40 .4 1 0 30 .4 0 9 20 .4 0 8 00 .4 0 6 90 .4 0 5 8O.40470 .4 0 3 50 .4 0 2 40 .4 0 1 30 .4 0 0 20 .3 9 9 00 .3 9 7 90 .3 9 6 80 .3 9 5 70 .3 9 4 50 .39340 .3 9 2 30 .3 9 1 20.39010 .3 8 8 90 .3 8 7 80 . 3 8 6

0 .3 8 5 60 .3 8 4 40 .3 3 3 30 .3 8 2 20.38110 .3 7 9 90 .3 7 8 80 .3 7 7 70 .3 7 6 60 * 3 7 5 4

0 .3 7 4 30 .3 7 3 20.3721

5 1

Page 547: (Hus domesticus. Rut t y ) - UCL Discovery

p

0 ,988? 0 ,9 8 9 0 0 ,9890 0 ,9890 0.9891 0,9891 0,9891 0 ,9 8 9 2 0 ,9892 0 ,9892 0 ,9893 0 ,9 8 9 3 0 ,9893 0 ,9894 0 ,9894 0 ,9894 0 .9895 0 ,9895 0 ,9895 0 ,9896 0 .9896 0 ,9896 0 .9897 0 ,9897 0 .9897 0 .9898 0 .9893 0 .9898 0 .989? 0 .9899 0 .989? 0 .9900 0 ,9900 0 ,9900 0.9901 0.9901 0.9901 0 ,9902 0 .9902 0 .9902 0 .9903 0 .9903 0 .9903 0 ,9904 0 .9904 0 ,9904 0 ,9905 0 .9905 0 .9905 0 .9906 0 , 9 9 0 6

0 .9906 0 ,9907 0 .990 7 0 ,9907

F0 .9 3 5 8 0 ,9 3 5 9 0.9361 0 ,9 3 6 3 0 .9 3 6 5 0 .9 3 6 7 0 .9 3 6 9 0 .9371 0 .9 3 7 3 0 .9 3 7 4 0 .9 3 7 6 0 .9 3 7 8 0 .9 3 8 0 0 .9 3 8 2 0 .9 3 8 4 0 .9 3 8 6 0 .9 3 8 8 0 .9 3 8 9 0.9391 0 ,9 3 9 3 0 .9 3 9 5 0 ,9 3 9 7 0 .9 3 9 ? 0.9401 0 .9 4 0 3 0 ,9 4 0 4 0 .9 4 0 6 0 . 9 4 0 8

0 .9 4 1 0 0 . 9 4 1 2

0 . 9 4 1 4

0 . 9 4 1 6

0 . 9 4 1 6

0 , 9 4 1 V 0 . 9 4 2 1

0 , 9 4 2 3

0 . 9 4 2 5

0 . 9 4 2 7

0 .942? 0 , 9 4 3 1

0 . 9 4 3 3

0 . 9 4 3 5

0 , 9 4 3 6

0 , 9 4 3 8

0 , 9 4 4 0

0 , 9 4 4 2

0 , 9 4 4 4

0 . 9 4 4 6

0 , 9 4 4 8

0 . 9 4 5 0

0 . 9 4 5 2

0 . 9 4 5 3

0 .9455 0 , 9 4 5 7

0 ,945?

C c ' i )0 .5564 0 ,5547 0 .5 5 3 0 0 .5 5 1 4 0 .5 4 9 7 0 .5 4 8 0 0 .5 4 6 3 0 .5 4 4 6 0 .5 4 2 ? 0 .5 4 1 3 0 .5 3 9 6 0 ,5 3 7 ? 0 .5 3 6 2 0 .5 3 4 5 0 .5 3 2 8 0.5311 0 .5295 0 .5 2 7 8 0.5261 0 ,5 2 4 4 0 .5227 0 ,5 2 1 0 0 .5 1 9 4 0 ,5 1 7 7 0 .5 1 6 0 0 .5 1 4 3 0 .5 1 2 6 0 .5 1 0 9 0 .5 0 9 3 0 ,5 0 7 6 0 .5 0 5 ? 0 .5 0 4 2 0 .5 0 2 5 0 .5 0 0 8 0.4991 0 ,4 9 7 5 0 .4 9 5 8 0.4941 0 .4 9 2 4 0 .4 9 0 7 0.4891 0 ,4 8 7 4 0 .4 8 5 7 0 ,4 8 4 0 0 .4 8 2 3 0 , 4 8 0 6

0 ,4 7 9 0 0 .4 7 7 3 0 ,4 7 5 6 0 .4 7 3 ? 0 ,4 7 2 2 0 ,4 7 0 5 0 ,4 6 8 ? 0 ,4 6 7 2 0 ,4 6 5 5

<rc r '-sr)

0 .4451 0 .4 4 3 8 0 .4 4 2 4 0 .44110 .4 3 9 7 0 .4 3 8 4 0 .4 3 7 0 0 .4 3 5 7 0 .4 3 4 3 0 .4 3 3 0 0 .4 3 1 7 0 .4 3 0 3 0 .4 2 9 0 0 .4 2 7 6 0 .4 2 6 3 0 .4 2 4 ? 0 .4 2 3 6 0 .4 2 2 2 0 .4 2 0 ? 0 ,4 1 9 5 0 .4 1 8 2 0 .4 1 6 8 0 .4 1 5 5 0,4141 0 .4 1 2 8 0 .4 1 1 4 0.4101 0 .4 0 8 7 0 .4 0 7 4 0 .4061 0 ,4 0 4 7 0 .4 0 3 4 0 .4 0 2 0 0 .4 0 0 7 0 . 3 9 9 3

0 . 3 9 8 0

0 .3 9 6 6 0 .3 9 5 3 0 .3 9 3 ? 0 . 3 9 2 6

0 . 3 9 1 2

0 , 3 8 9 ?

0 . 3 8 8 5

0 . 3 8 7 2

0 . 3 8 5 9

0 . 3 8 4 5

0 , 3 8 3 2

0 . 3 8 1 8

0 , 8 8 0 5

0.3791 0 . 3 7 7 8

0 . 3 7 6 4

0 . 3 7 5 1

0 . 3 7 3 7

0 . 3 7 2 4

c T

( > = 0

0 . 3 7 0 ?

0 .3 6 9 8 0 .3687 0 .3 6 7 6 0 .3665 0 .3 6 5 3 0 .3642 0.3631 0 .3620 0 .3 6 0 8 0 .3597 0 .3586 0 .3575 0 .3 5 6 3 0 .3552 0.3541 0 .3530 0 .3 5 1 9 0 .3507 0 .3 4 9 6 0 .3485 0 .3 4 7 4 0 .3462 0.3451 0 .3440 0 .3 4 2 9 0 .3417 0 .3 4 0 6 0 .3395 0 .3384 0 .3373 0.3361 0 .3350 0 .3 3 3 9 0 .3323 0 .3 3 1 6 0 .3305 0 .3 2 9 4 0 .3283 0 .3 2 7 2 0 .3260 0 .324? 0 .3238 0 .3227 0 .3215 0 ,3204 0 ,3193 0 .3182 0.3171 0 .3159 0 ,3148 0 .3137 0 ,3126 0 .3115 0 .3 1 0 3

520

Page 548: (Hus domesticus. Rut t y ) - UCL Discovery

p0 .9 9 0 8 0*9908 0 .9 9 0 8 0 .9 9 0 9 0 .9 9 0 9 0 .9 9 0 ? 0 .9 9 1 0 0 .9 9 1 0 0 .9 9 1 0 0 .9911 0 .9911 0 .9911 0 .9 9 1 2 0 .9 9 1 2 0 .9 9 1 2 0 .9 9 1 3 0 .9 9 1 3 0 .9 9 1 3 0 .9 9 1 4 0 .9 9 1 4 0 .9 9 1 4 0 .9 9 1 5 0 .9 9 1 5 0 .9 9 1 5 0 .9 9 1 6 0 .9 9 1 6 0 .9 9 1 6 0 .9 9 1 7 0 .9 9 1 7 0 .9 9 1 7 0 .9 9 1 8 0 .9 9 1 8 0 .9 9 1 8 0 .9 9 1 9 0 .9 9 1 9 0 .9 9 1 9 0 .9 9 2 0 0 .9 9 2 0 0 .9 9 2 0 0.9921 0.9921 0.9921 0 .9 9 2 2 0 .9 9 2 2 0 .9 9 2 2 0 .9 9 2 3 0 .9 9 2 3 0 .9 9 2 3 0 .9 9 2 4 0 .9 9 2 4 0 .9 9 2 4 0 .9 9 2 5 0 .9 9 2 5 0 .9 9 2 5 0 .9 9 2 6

F0 . 9 4 6 1

0 . 9 4 6 3

0 .9465 0 .9467 0 .946? 0.9471 0 .9472 0 .9474 0 .9476 0 .9478 0 .9480 0 .9482 0 .9484 0 .9486 0 .9488 0 .9489 0.9491 0 .9493 0 .9495 0 .9497 0 .949? 0.9501 0 .9503 0 .9505 0 .9507 0 .9508 0 .9510 0 .9512 0 .9514 0 .9516 0 .9518 0 . 9 5 2 0

0 .9522 0 .9524 0 ... 9 5 2 6

0.9528 0 .9529 0.9531 0 .9533 0 .9535 0 .9537 0 .9539 0 . . 9 5 4 1

0 ... 9 5 4 3

0 ... 9 5 4 5

0 .9547 0 . 9 5 4 8

0 .9550 0 .9552 0 - 9 5 5 4

0 , . 9 5 5 6

0 . 9 5 5 8

0 . 9 5 6 0

0 .9562 0 . 9 5 6 4

fr - ^

0 .4 6 3 8 0 .4621 0 .4 6 0 4 0 .4 5 8 8 0.4571 0 .4 5 5 4 0 .4 5 3 7 0 .4 5 2 0 0 .4 5 0 4 0 .4 4 8 7 0 *44 7 0 0 .4 4 5 3 0 .4 4 3 6 0 .4 4 1 9 0 .4 4 0 3 0*4386 0 .4 3 6 9 0 .4 3 5 2 0 *43 3 5 0 .4 3 1 9 0 .4 3 0 2 0 .4 2 8 5 0 *42 6 8 0 .4251 0 .4 2 3 5 0 .4 2 1 8 0*4201 0 .4 1 8 4 0 *4167 0 .4151 0 .4 1 3 4 0 .4 1 1 7 0 *41 0 0 0 .4 0 8 3 0 .4 0 6 6 0 .4 0 5 0 0*40 3 3 0 .4 0 1 6 0 .3 9 9 9 0 .3 9 8 2 0 .3 9 6 6 0 .3 9 4 9 0 .3 9 3 2 0 .5 9 1 5 0 *38 9 8 0 .3882 0 *3865 0 .3 8 4 8 0.3831 0 .3 8 1 5 0 *37 9 8 0 .3781 0 .3 7 6 4 0 .3 7 4 7 0 .3731

0 .3 7 1 00 .3 6 9 70*36840 .36700 . 3 6 5 7

0 .3 6 4 30 .3 6 3 00 .3 6 1 60 .3 6 0 30 .3 5 8 90*35760 .3 5 6 20 .3 5 4 ?0 .3 5 3 60*35220 .3 5 0 ?0*34950 .3 4 8 20 .3 4 6 80 .3 4 5 50.34410 .3 4 2 80 .3 4 1 50.34010 .3 3 8 80*33740.33610 .3 3 4 70 .3 3 3 40 .3 3 2 00 .3 5 0 70 .3 2 9 40 .3 2 8 00 .3 2 6 70 .3 2 5 30 .3 2 4 00*32260.321.30 .3 1 9 ?0 * 31 8 60 .3 1 7 30 .3 1 5 90 . 3 1 4 6

0 .3 1 3 20 .3 1 1 90 .3 1 0 50 .3 0 9 20 .3 0 7 80 .3 0 6 50 .3 0 5 20 .3 0 3 80 .3 0 2 50.30110 .2 9 9 80 . 2 9 8 4

sr - p -

0 .3 0 9 2 0 .3081 0 .3 0 7 0 0 .3 0 5 8 0 *30 4 7 0 .3 0 3 6 0 .3 0 2 5 0 .3 0 1 4 0 *3002 0 .2991 0 .2 9 8 0 0 .2 9 6 9 0 .2 9 5 8 0 .2 9 4 6 0 *2935 0 .2 9 2 4 0 *2913 0 .2901 0 .2 8 9 0 0 .2 8 7 9 0 .2 8 6 8 0 .2 8 5 7 0 .2 8 4 5 0 .2 8 3 4 0 .2 8 2 3 0*28 1 2 0 .2801 0*2789 0 *2778 0 .2 7 6 7 0 .2 7 5 6 0 .2 7 4 5 0 .2 7 3 3 0 .2 7 2 2 0 . 2 7 1 1 0 .2 7 0 0 0 *2689 0 .2 6 7 7 0 .2 6 6 6 0 .2 6 5 5 0 .2 6 4 4 0 .2 6 3 3 0 .2621 0 .2 6 1 0 0 .2 5 9 ? 0 .2 5 8 8 0 .2 5 7 7 0 .2 5 6 5 0*2554 0 .2 5 4 3 0 .2 5 3 2 0.2521 0 .2 5 0 ? 0 *2498 0 .2 4 8 7

5 2 1

Page 549: (Hus domesticus. Rut t y ) - UCL Discovery

p

0 ,9 9 2 6 0 ,9 9 2 6 0 ,9 9 2 7 0 ,9 9 2 7 0 ,9 9 2 7 0 ,9 9 2 8 0 ,9 9 2 8 0 ,9 9 2 8 0 ,9 9 2 9 0 ,9 9 2 9 0 ,9 9 2 9 0 ,9 9 3 0 0 ,9 9 3 0 0 ,9 9 3 0 0 ,9931 0 ,9931 0 ,9931 0 ,9 9 3 2 0 ,9 9 3 2 0 ,9 9 3 2 0 ,9 9 3 3 0 ,9 9 3 3 0 ,9 9 3 3 0 ,9 9 3 4 0 ,9 9 3 4 0 ,9 9 3 4 0 ,9 9 3 5 0 ,9 9 3 5 0 ,9 9 3 5 0 ,9 9 3 6 0 ,9 9 3 6 0 ,9 9 3 6 0 ,9 9 3 7 0 ,9 9 3 7 0 ,9 9 3 7 0 ,9 9 3 8 0 ,9 9 3 8 0 ,9 9 3 8 0 ,9 9 3 9 0 ,9 9 3 9 0 ,9 9 3 9 0 ,9 9 4 0 0 ,9 9 4 0 0 ,9 9 4 0 0,9941 0,9941 0,9941 0 ,9 9 4 2 0 ,9 9 4 2 0 ,9 9 4 2 0 ,9 9 4 3 0 ,9 9 4 3 0 ,9943 0 ,9944 0 ,9 9 4 4

F0 ,9566 0 ,9568 0 ,9570 0,9571 0 ,9573 0 ,9575 0 ,9577 0 ,9579 0,9581 0 ,9583 0 .9585 0 ,9587 0 ,9589 0,9591 0 ,9593 0 ,9594 0 ,9596 0 ,9598 0 ,9600 0 ,9602 0 ,9604 0 ,9606 0 .9608 0 ,9610 0 ,9612 0 ,9614 0 . 9 6 1 6

0 .9617 0 ,9619 0,9621 0 , 9 6 2 3

0 ,9625 0 , 9 6 2 7

0 , 9 6 2 9

0 , 9 6 3 1

0 , 9 6 3 3

0 , 9 6 3 2

0 , 9 6 3 7

0 , 9 6 3 9

0.9641 0 , 9 6 4 3

0 . 9 6 4 4

0 , 9 6 4 6

0 , 9 6 4 8

0 , 9 6 5 0

0 , 9 6 5 2

0 . 9 6 5 4

0 . 9 6 5 6

0 . 9 6 5 8

0 . 9 6 6 0

0 , 9 6 6 2

0 , 9 6 6 4

0 , 9 6 6 6

0 , 9 6 6 8

0 . 9 6 7 0

0 .3 7 1 4 0 .3 6 9 7 0 .3 6 8 0 0 .3 6 6 3 0 .3 6 4 7 0 ,3 6 3 0 0 .3 6 1 3 0 .3 5 9 6 0 ,3 5 7 9 0 .3 5 6 3 0 .3 5 4 6 0 .3 5 2 9 0 .3 5 1 2 0 .3 4 9 6 0 .3 4 7 9 0 .3 4 6 2 0 ,3 4 4 5 0 .3 4 2 8 0 ,3 4 1 2 0 .3 3 9 5 0 .3 3 7 8 0.3361 0 .3 3 4 4 0 .3 3 2 8 0.3311 0 .3 2 9 4 0 .3 2 7 7 0 .3261 0 .3 2 4 4 0 .3 2 2 7 0 .3 2 1 0 0 .3 1 9 4 0 ,3 1 7 7 G,3160 0 .3 1 4 3 0 .3 1 2 6 0 . 3 1 10 0 .3 0 9 3 0 .3 0 7 6 0 .3 0 5 9 0 ,3 0 4 3 0 .3 0 2 6 0 ,3 0 0 ? 0 .2 9 9 2 0 ,2 9 7 6 0 .2 9 5 9 0 ,2 9 4 2 0 .2 9 2 5 0 ,2 9 0 8 0 .2 8 9 2 0 .2S75 0 .2 8 5 8 0 .2841 0 .2 8 2 5 0 .2 8 0 8

c T

r * . <

0.2971 0 .2 9 5 8 0 .2 9 4 4 0.2931 0 ,2 9 1 7 0 .2 9 0 4 0 ,2 8 9 0 0 .2 8 7 7 0 ,2 3 6 4 0 .2 8 5 0 0 .2 8 3 7 0 .2 3 2 3 0 ,2 8 1 0 0 .2 7 9 6 0 ,2 7 8 3 0 .2 7 7 0 0 ,2 7 5 6 0 .2 7 4 3 0 .2 7 2 9 0 .2 7 1 6 0 .2 7 0 2 0 ,2 6 8 9 0 , 2 6 7 6

0 ,2 6 6 2 0 ,2 6 4 ? 0 .2 6 3 5 0 ,2 6 2 2 0 .2 6 0 8 0 . 2 5 9 5

0 .2 5 8 2 0 , 2 5 6 8

0 , 2 5 5 5

0 , 2 5 4 1

0 , 2 5 2 8

0 , 2 5 1 5

0 , 2 5 0 1

0 , 2 4 8 8

0 , 2 4 7 4

0 , 2 4 6 1

0 , 2 4 4 7

0 , 2 * 3 4

0 , 2 4 2 1

0 , 2407 0 , 2 3 9 4

0 . 2 3 8 0

0 , 2 3 6 7

0 , 2 3 5 4

0 , 2 3 4 0

0 , 2 3 2 7

0 , 2 3 1 3

0 , 2 3 0 0

0 , 2 2 8 7

0 , 2 2 7 3

0 , 2 2 6 0

0 . 2 2 4 6

cTfe>

0 .2 4 7 6 0 .2 4 6 5 0 .2 4 5 3 0 .2 4 4 2 0.2431 0 .2 4 2 0 0 ,2 4 0 ? 0 .2 3 9 7 0 .2 3 8 6 0 .2 3 7 5 0 .2 3 6 4 0 .2 3 5 3 0 .2 3 4 2 0 .2 3 3 0 0 .2 3 1 9 0 .2 3 0 8 0 .2 2 9 7 0 .2 2 8 6 0 ,2 2 7 4 0 .2 2 6 3 0 .2 2 5 2 0 .2241 0 .2 2 3 0 0 .2 2 1 8 0 ,2 2 0 7 0 .2 1 9 6 0 .2 1 8 5 0 .2 1 7 4 0 ,2 1 6 3 0 .2151 0 .2 1 4 0 0 . 2 1 2 ?

0 .2 1 1 8 0 .2 1 0 7 0 .2 0 9 5 0 .2 0 8 4 0 .2 0 7 3 0 .2 0 6 2 0,2051 0 .2 0 4 0 0 ,2 0 2 8 0 .2 0 1 7 0 ,2 0 0 6 0 .1 9 9 5 0 ,1 9 3 4 0 .1 9 7 2 0 .1961 0 .1 9 5 0 0 ,1 9 3 ? 0 .1928 0 ,1 9 1 7 0 .1 9 0 5 0 ,1 8 9 4 0 .1 8 8 3 0 .1 8 7 2

5 2 2

Page 550: (Hus domesticus. Rut t y ) - UCL Discovery

p r< T cT f

1 r r ^

y ,? ? 4 4 0 .9672 0.2791 0 ,2233 0 18610 ,9945 0 .9673 0 .2 7 7 4 0 .2 2 1 9 0 1 8500 ,9945 0 .9675 0 .2 7 5 8 0 .2 2 0 6 0 1 8380 ,9945 0 .9677 0.2741 0 .2 1 9 3 0 1 8270 ,9946 y ,9 6 7 9 0 ,2 7 2 4 0 ,2 1 7 9 0 18160 ,9946 y,9681 O.2707 0 .2 1 6 6 0 1 8050 ,9946 0 .9683 0,2691 0 .2 1 5 2 0 1 7940 ,9947 0 .9685 0 .2 6 7 4 0 .2 1 3 9 0 17830 ,9947 0 ,9687 0 .2 6 5 7 0 .2 1 2 6 0 17710 ,9947 0 .9689 0 .2 6 4 0 0 .2 1 1 2 0 17600 ,9948 0,9691 0 .2 6 2 4 0 .2 0 9 9 0 17490 ,9948 0 .9693 O.2607 0 .2 0 8 5 0 17380 ,9948 0 .9695 0.259O 0 .2 0 7 2 0 17270 ,9949 0 .9697 0 .2 5 7 3 O.2059 0 17160 ,9 9 4 9 0 .9699 0 .2 5 5 7 0 .2 0 4 5 0 1 7040 ,9949 O.9701 0.254O 0.2O32 0 1 6930 ,9950 0 .9703 0 .2 5 2 3 0 .2 0 1 8 0 16820 ,9950 0.97O4 0 .2 5 0 6 O.2005 0 16710 ,9950 0 .9706 0 ,2 4 9 0 0 .1 9 9 2 0 1 6600,9951 0 .9708 0 .2 4 7 3 0 .1 9 7 8 0 16490,9951 O.9710 0 .2 4 5 6 0 ,1 9 6 5 0 16370,9951 0 .9712 0 .2 4 3 9 0.1951 0 16260 ,9952 0 .9714 0 .2 4 2 3 0 .1 9 3 8 0 16150 ,9 9 5 2 0 .9716 0.24O6 0 .1 9 2 5 0 1 6040 ,9952 0 .9713 0 ,2 3 8 9 0.1911 0 15930 ,9953 0.972O 0 .2 3 7 2 0 .1 8 9 8 0 15820 ,9 9 5 3 0 .9722 0 .2 3 5 6 0 .1 8 8 4 0 1 5700 ,9 9 5 3 0 .9724 0 .2 3 3 9 0.1871 0 15590 .9 9 5 4 0 .9726 0 .2 3 2 2 0 .1 8 5 8 0 15480 .9 9 5 4 0 .9728 0 ,2 3 0 5 0 .1 8 4 4 0 1 5370 ,9954 0.973O 0 .2 2 8 9 0 ,1831 0 1 5260 .9955 0 .9732 0 .2 2 7 2 0 .1 8 1 7 0 15150 ,9955 0 .9734 0 .2 2 5 5 O, 1 804 0 15030 .9955 0 .9736 0 .2 2 3 8 0.1791 0 14920 .9 9 5 6 0 .9738 •j 0 ,1777 0 14810 .9956 0 .9739 0 .2 2 0 5 0 .1 7 6 4 0 14700 ,9 9 5 6 0.9741 0 ,2 1 3 8 0.175O 0 14590 .9957 0 .9743 0.2171 0 ,1737 0 14480 .9 9 5 7 0 .9745 0 ,2 1 5 5 0 ,1 7 2 4 O 14360 .9957 0 .9747 0 .2 1 3 8 O.1710 0 1 4250 .9958 0 ,9 7 4 9 0.2121 0 ,1 6 9 7 () 14140 .9958 0.9751 O.2104 0 ,1684 0 1 4030 ,9958 0 .9753 0.2O88 0 - 1670 0 1 3920 .9959 0 .9755 0,2071 0 ,1657 0 1 3810 ,9959 0 ,9757 O.2054 0 ,1643 0 1 3690 ,8959 0 .9 7 5 9 0.2O37 0 .1630 0 1 3580 .9960 0.9761 0.2021 0 ,1 6 1 7 0 1 3470 ,9960 0 ,9763 O.2004 0 ,1 6 0 3 0 13360 ,9960 0 ,9765 0 ,1 9 8 7 0 .1590 0 1 3250.9961 0 .9767 0.1971 0 ,1 5 7 6 0 1 31 40.9961 0 ,9769 O,1954 O,1563 0 1 3030.9961 0.9771 O,1937 O,1550 0 12910 .9962 0 .9 7 7 3 O.1920 0 ,1536 O 1 2800 .9962 0 .9775 0.19O4 0 ,1523 0 1 2690 .9962 0 .9 7 7 7 0 ,1887 0 ,1 5 1 0 0 1 258

5 2 3

Page 551: (Hus domesticus. Rut t y ) - UCL Discovery

p P< r f c fr r

H - r l*0 ,9 9 6 3 0 ,9 7 7 8 0 , 870 0 , i 496 0 ,12470 ,9 9 6 3 0 ,9 7 8 0 0 . 853 0 .1 4 8 3 0 .12360*9963 0 ,9 7 8 2 0. 837 0 .1 4 6 9 0 .12240 ,9 9 6 4 0 ,9 7 8 4 0. 820 0 .1 4 5 6 0 .12130 ,9 9 6 4 0 ,9 7 8 6 0. 803 0 .1 4 4 3 0 ,12020 ,9 9 6 4 0 ,9 7 8 8 0. 787 0 .1 4 2 9 0.11910 ,9 9 6 5 0 ,9 7 9 0 0. 770 0 .1 4 1 6 0 ,1 1 8 00 ,9 9 6 5 0 ,9 7 9 2 0. 753 0 .1 4 0 2 0 .11690 ,9 9 6 5 0 ,9 7 9 4 0, 736 0 ,1 3 8 9 0 .1 1 5 80 ,9 9 6 6 0 ,9 7 9 6 0 . 720 0 .1 3 7 6 0 .11460 ,9 9 6 6 0 ,9 7 9 8 0. 703 0 ,1 3 6 2 0 .1 1 3 50 ,9 9 6 6 0 ,9 8 0 0 0. 636 0 .1 3 4 9 0 .11240 ,9 9 6 7 0 ,9 8 0 2 0. 669 0 .1 3 3 6 0 ,1 1 1 30 ,9 9 6 7 0 ,9 8 0 4 0 . 653 0 .1 3 2 2 0 .1 1 0 20 ,9 9 6 7 0 ,9 8 0 6 0, 636 0 ,1 3 0 9 0,10910 ,9 9 6 8 0 ,9 8 0 8 0. 619 0 .1 2 9 5 0 .1 0 8 00 ,9 9 6 8 0 ,9 8 1 0 0. 603 0 .1 2 8 2 0 .1 0 6 80 ,9 9 6 8 0 ,9 8 1 2 0 . 586 0 .1 2 6 9 0 .1 0 5 70 ,9 9 6 9 0 ,9 8 1 4 0. 569 0 .1 2 5 5 0 ,1 0 4 60 ,9 9 6 9 0 ,9 8 1 6 0. 552 0 .1 2 4 2 0 .1 0 3 50 ,9 9 6 9 0 ,9 8 1 8 0. 536 0 ,1 2 2 9 0 ,1 0 2 40 ,9 9 7 0 0 ,9 8 2 0 0. 519 0 .1 2 1 5 0.1 0130*9970 0 ,9 8 2 2 0, 502 0 ,1 2 0 2 0 . 1 0020 ,9 9 7 0 0 ,9 3 2 4 0 . 436 0 .1 1 8 8 0 ,0 9 9 00,9971 0 ,9 8 2 6 0. 469 0 .1 1 7 5 0 ,0 9 7 90,9971 0 .9 8 2 8 0 . 452 0 .1 1 6 2 0 .0 9 6 80,9971 0 ,9 8 2 9 0 . 435 0 .1 1 4 8 0 .0 9 5 70 ,9 9 7 2 0.9831 0 . 419 0 .1 1 3 5 0 .09460 ,9 9 7 2 0 ,9 8 3 3 0 . 402 0 .1 1 2 2 0 .0 9 3 50 ,9 9 7 2 0 .9 8 3 5 0 . 335 0 .1 1 0 8 0 .09240 ,9 9 7 3 0 ,9 8 3 7 0. 369 0 .1 0 9 5 0 .0 9 1 20 ,9 9 7 3 0 .9 8 3 9 0 . 352 0.1081 0.09010 ,9 9 7 3 0,9841 0. 335 0 ,1 0 6 8 0 ,0 8 9 00 ,9 9 7 4 0 .9 3 4 3 0. 318 0 .1 0 5 5 0 .0 8 7 90 ,9 9 7 4 0 .9 8 4 5 0, 3 0 2 0,1041 0 .0 8 6 80 ,9 9 7 4 0 .9847 0. 285 0 .1 0 2 8 0 .0 8 5 70 ,9 9 7 5 0 .9 8 4 9 0. 268 0 .1 0 1 5 0 ,0 8 4 60 ,9 9 7 5 0,9851 0, 2'c-' 9 0.1001 0 .08340 ,9 9 7 5 0 .9 8 5 3 0. 235 0 .0 9 8 8 0 ,0 8 2 30 ,9 9 7 6 0 .9 8 5 5 0. 218 0 .0 9 7 5 0 .0 8 1 20 ,9 9 7 6 0 .9 8 5 7 0. 201 0,0961 0,08010 ,9 9 7 6 0 .9859 0. 185 0 .0 9 4 8 0 .0 7 9 00 ,9 9 7 7 0,9861 0. 1 68 0 ,0 9 3 4 0 . 077g0 ,9 9 7 7 0 .9 8 6 3 0, 151 0.0921 0 .0 7 6 80 ,9 9 7 7 0 ,9 8 6 5 0 , 1 35 0 ,0 9 0 8 0 ,0 7 5 60 ,9 9 7 8 0 .9 8 6 7 e. 118 0 .0 8 9 4 0 ,0 7 4 50 ,9 9 7 8 0 ,9 8 6 9 0. 101 0,0881 0 ,0 7 3 40 ,9 9 7 8 0.9871 0. 085 0 ,0 8 6 8 0 ,0 7 2 30 ,9 9 7 9 0 ,9 8 7 3 0, 068 0 .0 8 5 4 0 ,0 7 1 20 ,9 9 7 9 0 .9 8 7 5 0 , 051 0.0841 0,07010 ,9 9 7 9 0 .9 8 7 7 0. 034 0 ,0 8 2 8 0 ,0 6 9 00 ,9 9 8 0 0 .9 8 7 9 0 , 018 0 .0 8 1 4 0 . 06 770 ,9 9 8 0 0,9881 0 , 001 0,0801 0 ,0 6 6 70 ,9980 0 .9 8 8 3 0 , 0984 0 .0 7 8 7 0 .0 6 5 60,9981 0 ,9 8 8 5 0, 0968 0 ,0 7 7 4 0 ,0 6 4 5

524

Page 552: (Hus domesticus. Rut t y ) - UCL Discovery

?0.9981 ©.9981 0 .9982 0 .9982 0 .9982 0 .9983 0 .9983 0 .9983 0 .9984 0 .9984 0 .9934 0 .9985 0 .9985 0 .9985 0 .9986 0 .9986 0 .9986 0 .9987 0 .9987 0 .9987 0 .9988 0 .9988 0 .9988 0 .9989 0 .9989 0.99 89 0.99 90 0.99 90

f0 .98370 .98890.98910 .98930 .98950 .98970 .93990 .99000 .99020 .99040 .99060 .99030 .99100 .99120 .99140 .99160 .99180 .99200 .99220 .99240 .99260 .99280 .99300 .99320 .99340 .99360 .99380 .9940

< f

S. M-

0.0951 0 .0934 0 .0913 0.0901 0 .0884 0 .0867 0.0351 0 .0334 0 .0317 0.0801 0 .0784 0 .0767 0.0751 0 .0734 0 .0717 0 .0700 0 . 0 6 8 4

0 .0667 0 .0650 0 .0634 0 .0617 0 .0600 0 .0584 0 .0567 0 .0550 0 .0534 0 .0517 0 .0500

< r

r-, <sr

0 .0761 0 .0 7 4 7 0 .0 7 3 4 0 .0721 0 .0 7 0 7 0 .0 6 9 4 0 .0681 0 .0 6 6 7 0 .0 6 5 4 0 .0641 0 .0 6 2 7 0 .0 6 1 4 0 .0 6 0 0 0 .0 5 8 7 0 .0 5 7 4 0 .0 5 6 0 0 .0 5 4 7 0 .0 5 3 4 0 .0 5 2 0 0 .0 5 0 7 0 .0 4 9 4 0 .0 4 8 0 0 .0 4 6 7 0 .0 4 5 4 0 .0 4 4 0 0 .0 4 2 7 0 .0 4 1 4 0 .0 4 0 0

<Tr =u

0 .0 6 3 4 0 .0 6 2 3 0 .0 6 1 2 0 .0601 0 .0 5 8 9 0 .0 5 7 8 0 .0 5 6 7 0 .0 5 5 6 0 .0 5 4 5 0 .0 5 3 4 0 .0 5 2 3 0 .0 5 1 2 0 .0 5 0 0 0 .0 4 8 9 0 .0 4 7 8 0 .0 4 6 7 0 .0 4 5 6 0 .0 4 4 5 0 .0 4 3 4 0 .0 4 2 2 0 .0411 0 .0 4 0 0 0 .0 3 8 9 0 .0 3 7 8 0 .0 3 6 7 0 .0 3 5 6 0 .0 3 4 5 0 .0 3 3 4

5 2 5