Top Banner
http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/ iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless Moon has an abrupt edge. Without the proper mix of gases in air, we would perish in seconds. AIR CHEMISTRY
34

Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg

“This most excellent canopy, the air” – fades with height while the airless Moon has an abrupt edge. Without the proper mix of gases in air, we would perish in seconds.

AIR CHEMISTRY

Page 2: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Gas Formula Volume (ppm)

Nitrogen N2 780,840

Oxygen O2 209,460

Argon Ar 9,340

Carbon Dioxide CO2 383

Neon Ne 18.18

Helium He 5.24

Methane CH4 1.745

Krypton Kr 1.14

Hydrogen H2 0.55

Nitrous Oxide N2O 0.3

Xenon Xe 0.09

Ozone O3 0.04

Nitrogen Dioxide NO2 0.02

Iodine I 0.01

Gases in the Dry Atmosphere (molecules of gas per million air molecules)

Most gases in the air have fixed proportions – air is well mixed. The atmosphere’s two most variable gases are water vapor (H2O) and ozone (O3).

Ozone concentrations are very tiny but have a major impact on life. O3 is 10 more abundant in the stratosphere than in the troposphere (the layer from the ground to about 7-17 km).

Water vapor concentrations run from almost 0 in frigid air near the poles and at high altitudes to about 3% in hot air near sea level in summer and the tropics.

The dull data gives nary a hint of the wondrous content of our life-breathing (O2 rich) atmosphere.

Page 3: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Venus Transits across the Sun 08 June 2004

Other Atmospheres: The Sun

Gas Formula ppmHydrogen H 734600Helium He 248500Oxygen O 7700Carbon C 2900Iron Fe 1600Sulfur S 1200Neon Ne 1200Nitrogen Ne 900Silicon Si 700Magnesium Mg 500

We will see how truly unique and extraordinary Earth’s Atmosphere is!

The chemical composition of the Sun is like that rest of theUniverse. Earth and its atmosphere are very different.

Page 4: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Atmospheric Composition and Escape VelocityWhen rockets move fast enough they can escape to space. Escape velocity from sea level on Earth is about 11.1 km/s or 25,000 mph. Molecules or atoms can escape from the atmosphere when they have this velocity.

Most molecules move much slower than this, but the speed of molecules increases with T. Also, at any T, light molecules move faster than more massive molecules. UV radiation speeds the molecules and atoms in the upper atmosphere (the thermosphere), raising T above 1000C. This enables the fastest hydrogen atoms and molecules and helium atoms to exceed escape velocity. Over the long course of Earth History, almost

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

100 300 500 700 900 1100 1300

Temperature (Kelvin)

Mo

lecu

le V

elo

city

(m

/s)

v(H)

v(H2)

v(He)

v(O)

v(O2)

V escEscape Velocity

Above this Temperature Hydrogen atoms will escape

all the Hydrogen and Helium Earth has collect has escaped to space, and this also happened on the other planets near the Sun (Mercury, Venus, and Mars). But the giant outer planets (Jupiter, Saturn, Uranus, and Neptune) are so far from the Sun and hence so cold that even Hydrogen and Helium move too slowly to escape, so these planets were able to collect and hold their vast reservoirs of H2 and He.

Page 5: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Atmospheres of Selected Planets and MoonsGas Formula Vol (ppm) Venus Mars Jupiter Titan

Pressure rel to E 1 92.4 0.0075 >>> 1.46

Temperature C 289 462 -50 -179

Nitrogen N2 780,840 35000 27000 101 984000

Oxygen O2 209,460 1300 773

Argon Ar 9,340 70 16000 3.5

Carbon Dioxide CO2 383 965,000 953200 327

Neon Ne 18.18 7 2.5 111

Helium He 5.24 12 88725

Methane CH4 1.745 0.013 16000

Krypton Kr 1.14 0.3 0.00015

Hydrogen H2 0.55 910000

Nitrous Oxide N2O 0.3

Xenon Xe 0.09 0.08 0.0002

Ozone O3 0.04 0.03

Nitrogen Dioxide NO2 0.02

Sulfur Dioxide SO2 150

Water Vapor 20 300

Carbon Monoxide CO 17 700

Formaldehyde 0.13

*Earth*

Page 6: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Jupiter’s swirling atmosphere

No O2

Page 7: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Earth vs. Titan

No O2

Page 8: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Venus: A Cowering Inferno

No O2

Page 9: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

MarsWhere even

ice is dry

No O2

Page 10: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Mars

A thin, dusty atmosphere

with an ice cap of water ice and

dry ice (CO2).

Sometimes the surface of Mars is obscured by dust storms.

But once upon a time…

Page 11: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Mars had Rivers!

Page 12: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

CO2 : H2O : O2 : Photosynthesis : LifeThe miracle, life-breathing gas O2 is a highly corrosive molecule that readily combines with other molecules or atoms (i.e. oxidizes them). This means that O2 will quickly disappear from the atmosphere and oceans unless some active process keeps producing it. On Earth that process is PHOTOSYNTHESIS, which uses the energy of sunshine to convert water and carbon dioxide to glucose and oxygen following the reaction,

OHOOHCOHCOSunlight

plantsgreen22612622 66126

This reaction needs 2,816,000 Joules of sunshine to make 180 g (1 mole) of glucose or 3397 kilocalories per pound. Average solar irradiance on Earth = 342 W m-2 = 29,550,000 Joules m-2/day. But photosynthesis is very inefficient. Its maximum theoretical efficiency is 25% but since it cannot use all waves of sunlight, such as Infrared (IR), and does not work at high or low T, its efficiency is only 3%. Even then, only a small fraction (< 10%) of each plant is edible such as the seeds of wheat, and some seeds must be saved to plant for the next year. This means that plants convert less than 105 J m-2/day to food. So, since we need to eat about 2000 Kcal or almost 107 J per day, we need an absolute minimum of 100 m2 and probably more like 1000 to 3000 m2 of ground to grow the food each person needs. This sets a limit on world population because Earth only has an area of 1.451014 m2 of which perhaps half is fit for agriculture. Using 2000 m2 as the minimum area per person yields an absolute maximum sustainable world population of 40 billion!

Page 13: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

The Corrupted Air: Atmospheric PollutionAir pollution occurs when abnormally large concentrations of aerosol particles or reactive gases accumulate in the atmosphere. By this definition, air pollution is as old as the atmosphere. Long before we appeared on the scene to take dominion over the Earth, nature provided enough pollution to turn the skies over the Blue Ridge Mountains hazy and sometimes redden or blacken the skies with more dramatic events such as huge volcanic eruptions or forest fires.

We now add greatly to atmospheric pollution. The main sources are burning of wood and fossil fuels (coal, oil, and gas), agriculture, and construction. The chemical industry contributes a range of toxic substances to the atmosphere including lead and the freons that have reduced ozone worldwide and are responsible for the Ozone Hole over Antarctica.

Recognition of the damage we have caused our atmosphere (and ourselves) has led to several effective regulations and restrictions on national and even global scales. The severity of automotive smog and acid rain (due mainly to sulfur released when burning coal) has been considerably reduced over the past 30 years in the United States and the banning of freons has begun to replenish the lost Ozone. But the growth of the world’s population and economy mean that places like China, India, and Africa are becoming major polluters and that on the global scale, pollution is still increasing.

Page 14: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Olga’s Gallery: http://www.abcgallery.com/W/whistler/whistler72.html

James Abbott McNeill Whistler. London Bridge. 1885. Freer Gallery of Art, Washington, DC, USA.

London and Air Pollution

As the forests around London were cut down, coal was increasingly used as a dirty substitute fuel. As early as 1285, laws that restricted the burning of coal in London were passed and ignored. By 1661, London’s air pollution problem had become so serious that John Evelyn was commissioned to conduct a study. His report sounds surprisingly modern.

“While these smokestacks are belching smoke from their sooty jaws London resembles rather the face of Mt. Etna or the suburbs of hell than an assembly of rational creatures.This acrimonious soot carries away multitudes by languishing and deep consumptions, as the bills of mortality do weekly inform us.”

The pollution problem really worsened as the Industrial Revolution got underway. Painters in the 19th century responded to the almost continuous pall over London, showing what Londoners had to live and breathe in.

Sometimes, weather combined with the normal output of pollutants to produce disastrous pollution outbreaks. The worst occurred from December 5-9, 1952, when high pressure combined with clear skies and calm conditions. After the air cooled at night, soot-laden fog (smog) formed. This reflected sunlight, cooling the air, which trapped the pollution and making people burn even more coal in their stoves. Visibility fell to a few meters. People inhaled the sulfuric acid laden soot making it painful for everyone to breathe. All in all, some 4000 people died. This led to England’s Clean Air Act of 1956 that restricted coal burning.

Page 15: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

ph of Acid Rain - Some Regulations Actually Work

Page 16: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

The Corrupted Air: Aerosols

Aerosols are solid or liquid particles suspended in the atmosphere. Many are natural but humans add many particles. In some regions and weather conditions, concentrations rise to intolerably high levels and produce thick haze or smog. Particle concentrations vary from 100 per cubic cm (cm-3) over calm oceans far from land to more than 10000 cm-3 over polluted cities.

In this photo taken over the Ganges River Valley of Bangladesh, India, and Nepal, thick, light gray haze (from human and natural activity) blurs the land below. The snow-covered Himalaya Mountains protrude above the haze, prevent its dispersal aloft, and block its northward progress.

Page 17: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Impacts of Air Pollutants

Condensation Nuclei Salt particles that derive mainly from bursting bubbles in the ocean (like fizz in a glass of soda) serve as nuclei that facilitate the formation and growth of cloud droplets and raindrops.

Freezing Nuclei Clay particles that derive from windblown soils (and farming) serve as nuclei that facilitate the formation and growth of ice crystals and snowflakes.

Climate All aerosols absorb and scatter light. In general, aerosols act to cool the climate because they reflect sunlight. An example can be seen in the previous slide.

Health Acid rain burns the eyes and scars the lungs while many aerosols may cause or aggravate emphysema and asthma. Also, many viruses and bacteria are airborne.

Architecture Many structures (particularly limestone) are harmed by acid rain. Much of the degredation of the Science Building at CCNY is due to disintegration of the cement due to acid rain.

Visibility and Atmospheric Optics Pollutants generally reduce visibility and make the sky brighter and less blue particularly near the sun. They can make sunrises and sunsets brighter.

Ozone and Ultraviolet Radiation Freons decrease Stratospheric O3 and increase

UV reaching the ground while nitrogen oxide exhausts increase O3 near the ground.

Page 18: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

A sandstorm approaching Al Asad, Iraq, just before nightfall on April 27 2005.

Page 19: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Dust (mineral aerosols)diameter size: 2-300 µmmain material: sand, silt, clayincludes essential trace metals such as Feconsists of insoluble and soluble fractions

Mineral Dust

Page 20: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Diameter (micrometers top, nanometers bottom)

109 nm = 106 m = 103 mm = 102 cm = 1 m

1 103 106

Size Range of the Various Types of Aerosols

Page 21: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Aitken mode – 0.01-0.1 m

Accumulation mode – 0.1-1 m

Coarse mode - >1 m

nucleation mode <0.01 um

http://www.esf.edu/chemistry/dibble/presentations/IX_Aerosol.ppt#260,7,The Aerosol Modes

http://www.esf.edu/chemistry/dibble/fch511.htm

Aerosol Modes

103 m = 106 nm

Page 22: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Increased burning of fossil fuels and forests have loaded the atmosphere with CO2. And the rate of increase of CO2 itself continues to increase as global economies expand.

The general increase is due to Human activity. The wiggles show the annual cycle, which is due to growth and decay of the North Hemisphere

forests. When forests grow in spring and summer, they inhale CO2, removing it from the atmosphere. When the leaves

decay in fall and winter, the forests essentially exhale CO2, restoring it to the atmosphere

Page 23: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Fires from BP Oil Rig Catastrophe and Subsequent Oil Spill April, 2010 This major catastrophe is only a drop in the bucket of the carbon humans burn each year

And, if you still have any doubt about the human impact on CO2 and other greenhouse gases, look at the next slide.

Page 24: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Max CO2 content over past Million years

Page 25: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Reservoir Storage (1012 kg)

Atmosphere 800

Plants 700

Soil 2000

Oceans 40000

Limestone 60,000,000

Organic Sediments 10,000,000

Coal, Oil, Gas 5000

Methane Hydrates 10000

Reservoirs Flux (1012 kg yr-1)

AtmosphereBiosphere 113.5

Biosphere+Fuel↔Atmosphere 10

Atmosphere↔Ocean 5

Burial to Sediments 0.28

Weathering 0.13

Volcanism 0.22

1 Trillion = 1012 = 1,000,000,000,000

Where Carbon is and Where it Goes:

The Carbon CycleThe carbon cycle is illustrated by the figure in the next slide

The natural part of the Carbon Cycle is much larger than the human part. That has allowed doubters to deny our impact on increasing CO2. But we have caused an imbalance and it is always the extra 5 or 10% of calories that fattens us.

Page 26: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.
Page 27: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

http://www.atm.ch.cam.ac.uk/tour/index.html

1 DOBSON UNIT (DU) = 0.01 mm

Earth’s Ozone (O3) ShieldOzone is another minor gas of the atmosphere that has a major impact

on life and climate, and that humans have had a major impact on.

Page 28: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

O2 + h O + O

O2 + O O3

O3 + h O2 + OO3 + h O2 + O

0.2 m 0.3 m 0.3 m

z = 50 km

z = 25 km

O3 Production and Destruction

UV of Sunlight Enters Atmosphere

Around 50 km above sea level, Short Wave High Frequency UV splits O2 O + O

O drifts down to 25 km. It then collides with O2 to form O3.

Longer UV splits O3 and is extinguished. This saves our DNA.

O3 Production and Destruction

Page 29: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

O3, Atmospheric Thickness and

Penetration of UV Radiation

As the number and size of obstacles and the length of the path of light increase, less light is able to penetrate.

At great heights there is so little O2 that little O3 is produced. O3 production and absorption of UV are maximum in the stratosphere, 25 km above the surface. Little UV penetrates to the ground, safeguarding life. But early in Earth History, there was less O2, hence less O3, so lethal UV reached the ground.

E217LAB_22_O3_MODEL_SOL.xls

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.2 0.4 0.6 0.8 1Relative Rates

Hei

gh

t (m

)

S ituation for the Y oung E arth: An O xygen P oor Atmos phere

P enetrating S olar UV

Oz one P roduc tion R ate

Situation for Earth Now: An Oxygen Rich

Atmosphere

Low Sun•Long Path•Little UV

High Sun•Short Path•Much UV

Because the atmosphere is so thin, the lower the Sun in the sky the longer the path and the less light penetrates to the ground.

Page 30: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

Destructive Efficiency

UV ENERGY

Page 31: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.
Page 32: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

For years we released bad freons (CCl2F2) into the atmosphere. They disintegrate and free chlorine (Cl) when they reach the stratosphere. The Cl destroys life-saving O3 creating the Ozone Hole every September over Antarctica. Because we finally stopped releasing the bad freons, the Ozone Hole will slowly fill over the next 50 years and finally disappear.

Now, humans are changing the Air.

Page 33: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

The Ozone Hole showing O3 vs Height over the South Pole

The blue area shows the O3 concentration vs height over the South Pole. Once the Sun rises in September almost all O3 between 15 and 20 km is destroyed because clouds form in the stratosphere where T < -80C. As T warms later in October the clouds evaporate and the Ozone hole gradually refills.

Click to see O3 disappear.

Page 34: Http://spaceflight.nasa.gov/gallery/images/station/crew-2/hires/iss002e9767.jpg “This most excellent canopy, the air” – fades with height while the airless.

http://antwrp.gsfc.nasa.gov/apod/archivepix.html

If we tamper too much with the atmosphere, it may be good-night for us all!