Top Banner
http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPre /www.nature.com/nphys/journal/v2/n1/images/nphys171-f2.jpg http://www.physics.gatech.edu/ultracool/Ions/7io
30

Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html .

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html

http://www.nature.com/nphys/journal/v2/n1/images/nphys171-f2.jpg

http://www.physics.gatech.edu/ultracool/Ions/7ions.jpg

Page 2: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

OutlineOutline

• A brief history

• “Trapology”

• Two types of qubits

• Entangling gates

• Scalability

Page 3: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

http://qist.lanl.gov/qcomp_map.shtmlhttp://qist.lanl.gov/qcomp_map.shtml

Page 4: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

“Ion trappers are encouraged because we can at least see a straightforward path to making a large processor, but the technical problems are extremely challenging. It might be fair to say that ion traps are currently in the lead; however, a good analogy might be that we’re leading in a marathon race, but only one metre from the start line.”

David Wineland, NIST-Boulder

Page 5: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Trapped ion qubits – a timelineTrapped ion qubits – a timeline

1975

D. J. W

inel

and

and

H. Deh

mel

t, “P

ropo

sed

1014 Δ

/ la

ser fl

uore

scen

ce spe

ctro

scop

y on

Tl+ m

ono-

ion

oscilla

tor,”

Bul

l. Am

. Phy

s.

Soc. 2

0, 6

57 (1

975)

.

95

Cirac an

d Zol

ler:

prop

osal

97 98 2000 0499 06

Win

elan

d an

d Mon

roe:

expe

rimen

t

Win

ela

nd, B

latt

: te

leport

ati

on

05

Win

ela

nd, B

latt

: 6 a

nd 8

qubit

enta

ngle

ment

03

Win

ela

nd, B

latt

: bett

er

gate

s

02

Kie

lpin

ski,

Monro

e, W

inela

nd:

QC

CD

02

Kie

lpin

ski,

Monro

e, W

inela

nd:

QC

CD

97

Page 6: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Trapology

Page 7: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

RF (Paul) ion trap

Pote

nti

al

Position

Position

endcap

endcap

ring

• Hyperbolic surfaces• Good for trapping single ions• Poor optical access

RF

Page 8: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Ray optics analogy

two lenses of equal but opposite strengthwill focus a collimated beam...

(... unless placed too far apart)

Page 9: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .
Page 10: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

dc

Linear RF Ion Trap

Pote

nti

al

Position

Position

dc

rf

dc

rf

~ few tens MHz~ few hundred volts

transverse confinement:2D rf ponderomotive potential

axial confinement:static “endcaps”

~ few tens volts

Linear trap (D. Berkeland, LANL)

++

+

+

++

+

+

Page 11: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

+U

+U

+U

+U

+U

+U

+U

+U

0

0

0

0

Linear RF Ion Trap continued...

1 mm

“Endcap” linear trap – U. Mich, UW, Oxdord...

Page 12: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

dcdc

rf rf

3-layer geometry:• allows 3D offset compensation• scalable to larger structures

dc

rf

dc

dc

rf

dcdcdc

200 m

3-layer Tee-trap(U. Michigan)

Page 13: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .
Page 14: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

dc

rf rf

Planar, or surface, traps

dcdc

Gold-on-alumina planar trap (U. Mich)

Planar trap field simulation (R. Slusher, Lucent Labs)

Page 15: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

NIST planar trapsand trap arrays

The planar traps are in fact even “more scalable” than the 3-layer traps.

The electrodes are patterned on the surface; control electronics may be integrated in the same chip.

Page 16: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Qubits

Page 17: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

“Hyperfine” and “optical” qubits:an unbiased view

Hyperfine qubits:

• Spontaneous emission negligible

• Require stable RF sources (easy!)

• Fun to work with

Optical qubits:

• Upper state decays on the timescale of seconds

• Require stable laser sources (hard!)

• Pain to work with

Page 18: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Entanglement

Page 19: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Cirac-Zoller CNOT gate

1. Ion string is prepared in the ground state of motion (n=0)

|

|

control target

2. Control ion’s spin state is mapped onto quantized motional state of the ion string

3. Target ion’s spin is flipped conditional on the motional state of the ion string4. Motion of the ion string is extinguished by applying pulse #2 with negative phase to the control ion

Cirac and Zoller, Phys. Rev. Lett. 74, 4091 (1995)

Raman beams

Page 20: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Scaling up

Page 21: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Quantum CCDKielpinski, Monroe, Wineland, Nature (2002)

Page 22: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .
Page 23: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

IntegrationU.Michigan

R. Slusher/Lucent Labs

M. Blian, C. Tigges/Sandia Labs

Page 24: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

R. Slusher/Lucent Labs

A vision

Page 25: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Motion heating is a problem...• Small traps = faster (quantum logic) gates

... but...

• Small traps = faster heating of ion’s motion

• (Quantized) motion is the quantum data bus, thus heating = decoherence!

GaAsmicrotrap

L. Deslauriers et al. PRA 70, 043408 (2004)

Page 26: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

+ = H

S1/2

P3/2

= V

|2,1 |2,2

|1,1 = ||1,0 =|

|2,2

Probabilistic entanglement of ions and photons

1. The atom is initialized in a particular ground state

2. The atom is excited with a short laser pulse to a particular excited state

3. The atom decays through multiple decay channels (we like when there’s only two)

4. The emitted photon is collected and measured

The final state of the atom is entangled with the polarization state of the photon.

This creates an entangled state

| = |H| + |V|

Page 27: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Entanglement success probability:

P = Pexcitation d detection (~ 10-3 now)

Unit excitation witha fast (ps) laser pulse

Better detectors!

g2/ ~ and >> g (“bad cavity”)

Cavity QED setup

Price we pay: this entanglement is probabilistic

Page 28: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

D

BS

DD1

D2

Remote Ion Entanglementusing entangled ion-photon pairs

2 distant ions

Coincidence only if photons are in state:

| = |H1 |V2 - |V1 |H2

This projects the ions into …

|1 |2 - |1 |2 = | -ions

The ions are now entangled!

Things to do with this four-qubit system:

• teleportation between matter and light• loophole-free Bell inequality tests• decoherence studies• quantum repeaters, computers

|i = |H| + |V|

Simon and Irvine, PRL, 91, 110405 (2003)

Page 29: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Quantum networking and quantum Quantum networking and quantum computing using ion-photon computing using ion-photon entanglemententanglement

D D D D D D D D

Quantum repeater network

Cluster state q. computing

Page 30: Http://nodens.physics.ox.ac.uk/~mcdonnell/wardPres/wardPres.html  .

Conclusions...Conclusions...

• Ion trap technology currently a leader, but you’ve heard the marathon analogy quote

• Clear path to scaling up, but technology needs to mature

• Integration of electronic controls and optics is likely the next step

• An alternative scaling through ion-photon entanglement