Top Banner

of 32

HSelbergZ

Apr 06, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 HSelbergZ

    1/32

    .

    .. .

    .

    .Selberg type zeta functions for the Hilbert modular

    group of a real quadratic field

    Yasuro GON

    Faculty of MathematicsKyushu University

    April 23, 2011

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 1 / 32

  • 8/3/2019 HSelbergZ

    2/32

    Contents

    .. .1 Introduction

    .. .2 Selberg type zeta functions for the Hilbert modular group of a real quadraticfield

    .. .3 What is the differences of the Selberg trace formula ?

    .. .4 Differences of the Selberg trace formula for compact Riemann surfaces

    .. .5 Differences of the Selberg trace formula for the Hilbert modular group

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 2 / 32

  • 8/3/2019 HSelbergZ

    3/32

    Introduction (1)

    G := PSL(2,R

    ) = SL(2,R

    )/{I}H := {z C | Im z > 0}, G acts on H by g.z := az+bcz+d H

    G : co-compact torsion-free discrete subgroup

    X := \G/K is a compact Riemann surface of genus g 2

    .

    .. . . . Let is hyperbolic |tr()| > 2. the centralizer of in is infinite cyclic and is conjugate in G to

    N()1/2 0

    0 N()

    1/2 with N() > 1.

    Prim() := the set of -conjugacy classes of the primitive hyperbolic elementsin . (i.e, not a power of other hyperbolic elements)

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 3 / 32

  • 8/3/2019 HSelbergZ

    4/32

    Introduction (2)

    The Selberg zeta function for (or X) is defined by

    Z(s) :=

    pPrim()

    k=0

    1 N(p)(k+s)

    for Re(s) > 1.

    .Theorem (Selberg 1956).

    .. .

    .

    .

    ...1 Z(s) defined for Re(s) > 1 extends meromorphically overC (actually entire)...2 Z(s) has zeros at s = k (k N) of order (2g 2)(2k + 1),at s = 0 of order 2g 1 and at s = 1 of order 1 : trivial zeros...3Z(s) has zeros at s =

    1

    2 irn : nontrivial zeros

    Here, {n = 1/4 + r2n} is the eigenvalues of the Laplacian 0 = y

    2( 2

    x2 +2

    y2 )

    acting on L2(\H). The theorem is proved by using the Selberg trace formula.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 4 / 32

  • 8/3/2019 HSelbergZ

    5/32

    Introduction (3)

    .Theorem (Functional equation).

    .. .

    .

    .

    Z(1 s) = Z(s)exp

    4(g 1)

    s 120

    r tan(r) dr

    by Selberg 1956. We have also

    Z(1 s) =

    Z(s) := Z(s)

    (2(s)2(s + 1)

    )2g2.

    2(z) := exp(2(0, z)) with 2(s, z) =

    n,m0(n + m + z)

    s

    : the double function.Problem.

    .. .

    .

    .

    Generalize Selbergs Theorem for PSL(2,R) Theorem for PSL(2,R)2. Construct Selberg type zeta functions for PSL(2,R)2. Study analytic properties of the above Selberg type zeta functions for PSL(2,R)2.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 5 / 32

  • 8/3/2019 HSelbergZ

    6/32

    Selberg type zeta functions for the

    Hilbert modular group of a realquadratic field

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 6 / 32

  • 8/3/2019 HSelbergZ

    7/32

    Notation

    K/Q : a real quadratic field with class number one

    : the generator of Gal(K/Q)a := (a) for a K

    OK : the ring of integers of K

    := a b

    c d for = a bc d PSL(2, OK)

    K := {(, ) | PSL(2, OK)} : the Hilbert modular group

    K PSL(2,R)2 : an irreducible discrete subgroup

    K acts on H2 (product of two upper half planes) by linear fractional

    transformationK have only one cusp (, ) (K-inequivalent parabolic fixed point)

    XK := K\H2 : the Hilbert modular surface

    Let (, ) K be hyperbolic-elliptic, i.e, |tr()| > 2 and |tr()| < 2

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 7 / 32

  • 8/3/2019 HSelbergZ

    8/32

    the centralizer of hyperbolic-elliptic (, ) in K is infinite cyclic. Fix m 4 : even integer.Definition (Selberg type zeta function for K).

    .. .

    .

    .ZK(s; m) :=

    (p,p)

    k=0

    1 ei(m2) N(p)(k+s)

    for Re(s) 0

    Here, (p,p) run through the set of primitive hyperbolic-elliptic K-conjugacyclasses of K , and (p,p

    ) is conjugate in PSL(2,R)2 to

    (p,p)

    N(p)1/2 00 N(p)1/2

    ,

    cos sin sin cos

    .

    N(p) > 1, (0, ) and / Q. N such that K(1) N, (K(s) :Dedekind zeta function of K)

    and

    1

    j N

    (1 j N) {1, 2, . . . , N} : the orders of primitive ellipticelements in K.Problem... .

    .

    ....1 Analytic properties of ZK(s; m)...2 Functional equation of ZK(s; m)

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 8 / 32

  • 8/3/2019 HSelbergZ

    9/32

    Analytic properties ofZK(s;m)

    .Theorem 1... .

    ..

    For an even integer m 4, ZK(s; m) a priori defined for Re(s) 0 has ameromorphic extension over the complex plane C.

    .Theorem 2.

    .. .

    .

    .

    ZK(s, m) has the following essential zeros and poles ats = 12 ij j = 0, 1, 2, : zeros

    s = 12 ik k = 0, 1, 2, : poles

    Here,

    {14 + 2j |j = 0, 1, 2, } = Spec(

    (1)0 |Ker((2)m )

    )

    {14 + 2k | k = 0, 1, 2, } = Spec(

    (1)0 |Ker((2)m2)

    )

    are the sets of eigenvalues of the Laplacian (1)0 acting on Hilbert-Maass forms

    of weight (0, m) or (0, m 2) and (2)m ,

    (2)m2 are Maass operators.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 9 / 32

  • 8/3/2019 HSelbergZ

    10/32

    Functional equation ofZK(s;m)

    ZK(s, m) has another series of zeros and poles coming from the idenity, elliptic,type 2 hyperbolic conjugacy classes of K and scattering terms..Theorem 3.

    .. .

    .

    .ZK(s, m) satisfies the following functional equation

    ZK(s; m) = ZK(1 s; m).

    Here the completed zeta function ZK(s, m) is given by

    ZK(s; m) := ZK(s; m)

    Zid(s) Zell(s)Zsct/hyp2(s)

    with

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 10 / 32

  • 8/3/2019 HSelbergZ

    11/32

    Gamma and local factors

    .Gamma and local factors ofZK(s;m)

    .

    .. .

    .

    .

    Zid(s) :=

    2(s)2(s + 1)2K(1)

    Zell(s) :=

    N

    j=1

    j1

    l=0

    ( s+lj)j1l(m,j)

    j

    Zsct/hyp2(s) := (s m2 1)(s

    m2 2)

    1

    {1, 2, . . . , N} : the orders of primitive elliptic elements in K l(m, j) {0, 1, , 2j 2}

    (s) := (1 2s)1 : the fundamental unit of KThe zeros and poles of Zid(s), Zell(s) and Zsct/hyp2(s) are easily calculated. All zeros and poles of ZK(s; m) are determined ! These analytic properties and functional equation of ZK(s; m) are obtained bythe differences of the Selberg trace formula for Hilbert modular groups.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 11 / 32

  • 8/3/2019 HSelbergZ

    12/32

    What is the differences of the

    Selberg trace formula ?(short sketch)

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 12 / 32

  • 8/3/2019 HSelbergZ

    13/32

    Maass forms of weight m (m 2Z0)

    SL(2,R) : discrete subgroup, m := y2(

    2

    x2 +2

    y2 ) + im yx.

    .

    . .

    .

    .

    L2(\H ; m) :=

    f: H C, C

    f(z) = cz + d|cz + d|

    mf(z)

    m f(z) = f(z) ||f||2 =

    \H

    f(z)f(z)dxdy

    y2< .

    .STF for L2(\H ; m), h: test function, G: Fourier trans. ofh... .

    .

    .

    Spec(m)

    h() =

    []Conj()

    G().

    By considering the differences of the above STF, we have... .

    ..

    m(min) h(min) =[]S

    G(). S Conj().

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 13 / 32

  • 8/3/2019 HSelbergZ

    14/32

    Hilbert Maass forms of weight (m1,m2) (mj 2Z0)

    SL(2,R)2 : discrete subgroup, mj := y2j (

    2

    x2j

    + 2

    y2j

    ) + imj yjxj

    .

    .. .

    .

    .

    L2(\H2 ; (m1, m2)) :=

    f: H2 C, C

    f is weight (m1, m2) w.r.t m1 f =

    (1)f m2 f = (2)f ||f||2 < .

    .STF for L2(\H ; (m1,m2)), h: test function... .

    .

    .

    ((1),(2))Spec(m1 ,m2 )

    h((1), (2)) =

    []Conj()

    G().

    By considering the differences of the above STF, we have... .

    ..

    ((1),

    (2)min)Spec(m1 ,m2 )

    h((1), (2)min) =

    []S

    G(). S Conj().

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 14 / 32

  • 8/3/2019 HSelbergZ

    15/32

    Differences of the Selberg trace

    formula for compactRiemann surfaces

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 15 / 32

  • 8/3/2019 HSelbergZ

    16/32

    Notation

    First of all, we recall the differences of the Selberg trace formula for compactRiemann surfaces.

    G := SL(2,R) =

    g =

    a bc d

    det g = 1.

    G = N AK : the Iwasawa decomposition, M := the centralizer of A in K

    N (R, +), A R>0, K = SO(2), M = {I2}

    G/K H := {z C | Im z > 0} : the upper half plane

    G acts on H by g.z := az+bcz+d H

    G : discrete subgroup

    .

    .. .

    .

    .

    ...1 is hyperbolic |tr()| > 2 Fix() = {, 1} R {}...2 is elliptic |tr()| < 2 Fix() = {, }, H...3 is parabolic |tr()| = 2 Fix() = {} R {}Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 16 / 32

    G di b

  • 8/3/2019 HSelbergZ

    17/32

    G : co-compact discrete subgroup

    \H is compact. has no parabolic ellements..Assumption on ... .

    .

    . G : co-compact discrete subgroup X := \G/K is a compact Riemann surface

    is hyperbolic is conjugate in G to

    N()1/2 00 N()1/2

    with N() > 1.

    is elliptic is conjugate in G to

    cos sin sin cos

    SO(2)

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 17 / 32

    S lb f l f Ri f

  • 8/3/2019 HSelbergZ

    18/32

    Selberg trace formula for compact Riemann surfaces

    Fix m 2Z0 : weight

    j(z) :=cz+d

    |cz+d| for m := y

    2( 2

    x2 +2

    y2 ) + im yx : the Laplacian acting on

    .

    .. .

    .

    .

    L2(\H ; m) :=

    f: H C, C f(z) = j(z)mf(z)

    m f(z) = f(z) ||f||2 =

    \H

    f(z)f(z)dxdy

    y2< .

    Let {n

    = 1/4 + r2n

    } is the eigenvalues of the Laplacian m

    acting onL2(\H ; m) enumerated as 0 1 2 n

    h(r) = h(r): test function, analytic on | Im(r)| < max{m12 ,12} +

    ( > 0) and |h(r)| A[1 + |r|]2

    g(u) := 12

    h(r)eiru dr

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 18 / 32

  • 8/3/2019 HSelbergZ

    19/32

    .Selberg trace formula for L2(\H ; m) ( : co-compact, m 2Z0).

    .. .

    .

    .

    n=0 h(r

    n) =

    vol(\H)

    4

    rh(r) tanh(r) dr

    +

    m/21k=0

    (m 1 2k) h( i(m 1 2k)

    2

    )

    +

    hyp

    log N(0)

    N()1/2 N()1/2 g(log N())

    +Rell

    1

    R sin R

    14

    cosh(( 2)r)

    cosh rh(r) dr

    +

    m/21k=0

    iei(m12k)2

    h(

    i(m 1 2k)2

    )

    hyp (resp. ell) : hyperbolic (resp. elliptic) -conjugacy classes mR : the order of the elliptic element R, 0 < R <

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 19 / 32

    M t

  • 8/3/2019 HSelbergZ

    20/32

    Maass operators

    .Definition (Maass operators (m 2Z)).

    .. .

    .

    .

    Km := iy

    x+ y

    y+

    m

    2: L2(\H ; m) L2(\H ; m + 2)

    m := iy

    x y

    y+

    m

    2: L2(\H ; m) L2(\H ; m 2)

    m+2Km = Kmm and m2m = mm Let L2(\H ; , m) be a eigen-subspace with the eigenvalue .

    .Proposition.

    .. .

    .

    .

    m[L2(\H ; , m)] = L2(\H ; , m 2) whenever = m

    2

    (1 m

    2

    )

    Km[L2(\H ; , m)] = L2(\H ; , m + 2) whenever = m2 (1 +

    m2 )

    m[L2(\H ; , m)] = 0 when = m2 (1

    m2 )

    Km[L2(\H ; , m)] = 0 when = m2 (1 +

    m2 )

    {j(m)} = {m

    2 (1 m

    2 )}d

    k=1 {j(m2) | j(m2) =m

    2 (1 m

    2 )}Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 20 / 32

  • 8/3/2019 HSelbergZ

    21/32

    m2 (1 m2 ) =

    14 +

    ( i(m1)22

    )2Let m 2 be an even integer..Differnce of STF for L2(\H ; m) L2(\H ; m 2).

    .. .

    .

    .

    d(m) 2,m

    h( i(m 1)

    2

    )=

    vol(\H)

    4(m 1) h

    ( i(m 1)2

    )

    + Rell

    iei(m1)

    2R sin R

    h(i(m 1)

    2)

    d(m) 2,m : the multiplicity of the eigenvalue =m2 (1

    m2 ) of m on

    L2(\H ; m)

    .Dimension formula for the holomorphic modular forms of weight m... .

    .

    .d(m) = 2,m +

    vol(\H)

    4(m 1) +

    Rell

    iei(m1)

    2R sin R

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 21 / 32

  • 8/3/2019 HSelbergZ

    22/32

    Differences of the Selberg trace

    formula for the Hilbert modulargroup

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 22 / 32

    Preliminaries

  • 8/3/2019 HSelbergZ

    23/32

    Preliminaries

    G := PSL(2,R)2 = SL(2,R)/{I}2

    G acts on H2 by (g1, g2).(z1, z2) := (a1z1+b1c1z1+d1

    , a2z2+b2c2z2+d2 ) H2

    G : irreducible discrete subgroup i.e, not comensurable with any directproduct 1 2 of two discrete subgroups of PSL(2,R)

    .Classification of the elements of irreducible .

    .. .

    .

    .

    ...1 = (I, I) is the identity...2 = (1, 2) is hyperbolic |tr(1)| > 2 and |tr(2)| > 2...3 = (1, 2) is elliptic |tr(1)| < 2 and |tr(2)| < 2

    ...4 = (1, 2) is hyperbolic-elliptic |tr(1)| > 2 and |tr(2)| < 2...5 = (1, 2) is elliptic-hyperbolic |tr(1)| < 2 and |tr(2)| > 2...6 = (1, 2) is parabolic |tr(1)| = |tr(2)| = 2 There are no other types in . (parabolic-elliptic etc.) (Cf. Shimizu 63)

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 23 / 32

    Hilbert modular group of a real quadratic field

  • 8/3/2019 HSelbergZ

    24/32

    Hilbert modular group of a real quadratic field

    K : real quadratic field of the class number 1

    D : the discriminiant of K

    OK K : the ring of integers

    : the fundamental unit

    a = (a), is the nontrivial element of Gal(K/Q)

    N(a) := aa

    .Hilbert modular group.

    .. .

    .

    .K := (,

    ) = a b

    c d

    , a b

    c d a b

    c d

    PSL(2, OK)

    .

    K is an irreducible discrete subgroup of G = PSL(2,R)2 with the only one

    cusp := (, ).

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 24 / 32

    Selberg trace formula for Hilbert modular surfaces

  • 8/3/2019 HSelbergZ

    25/32

    Selberg trace formula for Hilbert modular surfaces

    Fix (m1, m2) (2Z0)2 : weight

    j(zj) :=czj+d

    |czj+d| for PSL(2,R) (j = 1, 2)

    (j)mj := y

    2j (

    2

    x2j

    + 2

    y2j

    ) + imj yjxj

    (j = 1, 2)

    .

    .. .

    .

    .

    L2(K\H2 ; (m1, m2)) :=

    f: H2 C, C

    f((, )(z1, z2)) = j(z1)m1j(z2)

    m2f(z1, z2) (, ) K

    (1)m1 f(z1, z2) = (1)f(z1, z2),

    (2)m2 f(z1, z2) =

    (2)f(z1, z2)

    ((1), (2)) R2

    ||f||2 =K\H2

    f(z)f(z) d(z) < .

    d(z) = dx1dy1y21

    dx2dy2y22

    for z = (z1, z2) H2

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 25 / 32 .

    P iti

  • 8/3/2019 HSelbergZ

    26/32

    Proposition.

    .. .

    .

    .

    We have a direct sum decomposition:

    L2(K\H2 ; (m1, m2)) = L

    2dis(K\H

    2 ; (m1, m2)) L2con(K\H

    2 ; (m1, m2))

    and there is an ortonormal basis {j}j=0 of L

    2dis(K\H

    2 ; (m1, m2)).

    Let ((1)j ,

    (2)j ) R

    2 such that

    (1)

    m1j =

    (1)

    j j and (2)

    m2j =

    (2)

    j j

    Let Spec(m1, m2) :={

    (r(1)j , r

    (2)j )

    }j=0

    R2. (discrete subset)

    Here, we write (l)j =

    14 + (r

    (l)j )

    2. (l = 1, 2)Now we can say about the Selberg trace formula:

    h(r1, r2) = h(r1, r2): test function (satisfying certain analytic conditions)g(u1, u2) :=

    142

    h(r1, r2)ei(r1u1+r2u2) dr1dr2

    is type 1 hyperbolic is hyperbolic and whose all fixed points are not fixedby parabolic elements. is type 2 hyperbolic is hyperbolic and not type 1 hyperbolic.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 26 / 32

    .2( \ 2 ( ))

  • 8/3/2019 HSelbergZ

    27/32

    Selberg trace formula for L2(K\H2 ; (m1,m2))

    ((m1,m2) (2Z0)2) : Zograf 82, Efrat 87 for (m1,m2) = (0, 0).

    .. .

    .

    .

    j=0

    h(r(1)j , r(2)j ) (Contribution from Eisenstein series)

    =vol(K\H

    2)

    162

    R2

    2

    u1u2g(u1, u2)

    sinh(u1/2) sinh(u2/2)e

    m12 u1e

    m22 u2 du1du2

    +

    hyp1

    vol(\G) g(log N(), log N())(N()1/2 N()1/2)(N()1/2 N()1/2)

    +Rell

    E(m1, m2; R) +

    hyp-ell

    HE(m1, m2; ) +

    ell-hyp

    EH(m1, m2; )

    + P(m1, m2) +

    hyp2

    H2(m1, m2; )

    Hereafter, we assume that h(r1, r2) = h1(r1) h2(r2).

    (2)m := iy2

    x2

    y2y2

    + m2 : L2(K\H

    2 ; (0, m)) L2(K\H2 ; (0, m 2))

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 27 / 32

    Let {14 + 2j}j=0 := Spec(

    (1)0 |Ker((2)m )

    ) and recall that

  • 8/3/2019 HSelbergZ

    28/32

    ( m )

    Ker((2)m ) = L2

    (K\H

    2 ;(

    , m2 (1 m2 ))

    , (0, m))

    i.e. 2 =m2 (1

    m2 )-eigenspace.

    Differences of STF for L2(K\H2 ; (0,m)) L2(K\H

    2 ; (0,m 2)).

    .. .

    .

    .

    j=0

    h1(j) h2(i(m1)

    2 ) m,2 h1(i2 )h2(

    i2)

    = (m 1)h2(i(m1)

    2 )vol(K\H

    2)

    162

    r1h1(r1) tanh(r1) dr1

    +

    R(1,2)ell

    ie(m1)2

    8R sin 1 sin 2h2(

    i(m1)2 )

    cosh(( 21)r1)

    cosh r1h1(r1) dr1

    + (,)hyp-ell

    log N(0)

    N()1/2

    N()1/2

    g1(log N())iei(m1)

    2sin

    h2(i(m1)

    2 )

    log g1(0) h2(i(m1)

    2 ) 2log h2(i(m1)

    2 )

    k=1

    g1(2k log )k(m1)

    We write the above formula as L(m) L(m 2) for m 2.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 28 / 32

  • 8/3/2019 HSelbergZ

    29/32

    Next we consider (for m 4) :(L(m) L(m 2)

    )h2(

    i(m1)2 )

    1 (

    L(m 2) L(m 4))

    h2(i(m3)

    2 )1

    .Theorem (Double differences of STF for L

    2

    (K\H2

    ; (0,m))).

    .. .

    .

    .

    Let m 2N and m 4. We have

    j=0

    h1(j) k=0

    h1(k) + m,4h1(i2

    ) =vol(K\H

    2)

    82

    rh1(r) tanh(r) dr

    R(1,2)ell

    ei(m2)2

    4R sin 1

    cosh(( 21)r)

    cosh rh1(r) dr

    (,)hyp-ell

    log N(0)

    N()1/2 N()1/2g1(log N()) e

    i(m2)

    2log k=1

    g1(2k log ) (k(m1) k(m3)).

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 29 / 32

    Test function h(r1, r2) = h1(r1)h2(r2)

  • 8/3/2019 HSelbergZ

    30/32

    Test function h(r1, r2) h1(r1)h2(r2)

    Here, {j}, {k} are given by.

    .. .

    .

    .

    {14 + 2j}j=0 = Spec((1)0 |Ker((2)m )) with

    (2)m : L2

    (K\H

    2 ; (0, m))

    L2(

    K\H2 ; (0, m 2)

    ). Note that

    Ker((2)m ) = L2

    (K\H

    2 ;(

    , m2 (1 m2 ))

    , (0, m))

    i.e. 2 =m2 (1

    m2 )-eigenspace

    {14 + 2k}k=0 = Spec(

    (1)0 |Ker((2)m2)

    ) with

    (2)m2 : L2(

    K\H2 ; (0, m 2))

    L2(

    K\H2 ; (0, m 4))

    . Note that

    Ker((2)m2) = L

    2(

    K\H2 ;(

    , m22 (2 m2 ))

    , (0, m))

    i.e.2 =

    m22 (2

    m2 )-eigenspace

    Let us consider the following test function h(r1, r2) = h1(r1)h2(r2) :

    h1(r) = 1r2 + (s 12)

    2 1

    r2 + 2 g1(u) = 1

    2s 1e(s

    12 )|u| 1

    2e |u|

    (or(

    12s1

    dds

    )nh1(r) for n 0 )

    h2(r) such that h2(i(m1)

    2 ) = 0 and h2(i(m3)

    2 ) = 0We consider DD-STF for the above h(r1, r2)

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 30 / 32

    Analytic continuation of ZK(s;m)

  • 8/3/2019 HSelbergZ

    31/32

    Analytic continuation ofZK(s;m)

    .DD-STF for the above test function h1 and h2.

    .. .

    .

    .

    j=0

    [ 12j + (s

    12

    )2

    1

    2j + 2

    ]

    k=0

    [ 12k + (s

    12

    )2

    1

    2k + 2

    ]

    = K(1)

    k=0

    [ 1s + k

    1

    + 12 + k]

    +1

    2s 1

    ZK(s)

    ZK(s)

    1

    2

    ZK(12 + )

    ZK(12

    + )+

    2s 1

    Zell(s)

    Zell(s)

    2

    Zell(12 + )

    Zell(12

    + )

    +

    2s 1

    d

    dslog(1

    (2s+m4))

    (1 (2s+m2))

    2(s 1

    2

    ) in the left. vol(K\H

    2)82 = K(1) N.

    Analytic continuation and functional equation of dds log ZK(s; m). Analytic continuation and functional equation of ZK(s; m).

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 31 / 32

    Remark

  • 8/3/2019 HSelbergZ

    32/32

    We remark that the scattering and type 2 hyperbolic components of ZK(s; m)

    are local Selberg zeta functions for PSL(2,Z) :.

    .. .

    .

    .Zsct/hyp2(s) = (s +

    m2 1)(s +

    m2 2)

    1

    with (s) = (1 2s)1

    : the fundamental unit of KLet = PSL(2,Z). The Selberg (Ruelle) zeta function for is given by

    (s) := pPrim()

    (1 N(p)s

    )1

    (s) = K

    (1 (K)2s)h(K),

    where, K run through all real quadratic fields over Q and (K) and h(K) arethe fundamental unit and the class number of K.

    Yasuro GON (Kyushu Univ.) Selberg type zeta functions April 23, 2011 32 / 32