Top Banner
0 16.01.2020 - University of Stuttgart Dominic Scheider - University of Stuttgart How to construct Breather Solutions using Nonlinear Helmholtz Systems Dominic Scheider KIT – The Research University in the Helmholtz Association www.kit.edu
97

How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Jun 28, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

0 16.01.2020 - University of Stuttgart Dominic Scheider-

University of Stuttgart

How to construct Breather Solutionsusing Nonlinear Helmholtz Systems

Dominic Scheider

KIT – The Research University in the Helmholtz Association www.kit.edu

Page 2: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Outline

1 16.01.2020 - University of Stuttgart Dominic Scheider-

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

∂2tU − ∆U +m2U = U3 on R×R3

3 Breather solutions for the nonlinear Wave Equation

∂2tU − ∆U = |U |p−2U on R×RN

Page 3: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

2 16.01.2020 - University of Stuttgart Dominic Scheider-

The Sine-Gordon Breather

∂2tU − ∂2

xU + sin(U) = 0 on R×R

. Ablowitz et al. 1973:

U(t, x) = 4 arctan

(√1−ω2

ω

cos(ω(t − t0))

cosh(√1−ω2(x − x0))

).

. Kichenassamy 1991, Weinstein et al. 1994: Rigidity.

“breathing takes place only for isolated nonlinearities”

Page 4: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

2 16.01.2020 - University of Stuttgart Dominic Scheider-

The Sine-Gordon Breather

∂2tU − ∂2

xU + sin(U) = 0 on R×R

. Ablowitz et al. 1973:

U(t, x) = 4 arctan

(√1−ω2

ω

cos(ω(t − t0))

cosh(√1−ω2(x − x0))

).

. Kichenassamy 1991, Weinstein et al. 1994: Rigidity.

“breathing takes place only for isolated nonlinearities”

Page 5: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Page 6: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Page 7: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Page 8: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

3 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (1/3)

V (x)∂2tU − ∂2

xU + q(x)U = U3 on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:V (x), q(x) = (q0 − ε2)V (x) explicit periodic step potentials.

Methods:Spatial dynamics, center manifold reduction, bifurcation.

Result: For 0 < ε < ε0 existence of a solution U(t, x) withI explicit period in t, I exponential decay in x .

. Hirsch, Reichel 2019.

Page 9: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

4 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (2/3)

V (x)∂2tU − ∂2

xU + q(x)U = Γ(x)|U |p−2U on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019:

Assumptions:V (x) ∼ q(x) specific periodic delta / step / Hr potentials;2 < p < p∗(V ).

Methods:Variational approach (Nehari manifold).

Result:Existence of (possibly large) time-periodic ground state solutions.

Page 10: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

4 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (2/3)

V (x)∂2tU − ∂2

xU + q(x)U = Γ(x)|U |p−2U on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019:

Assumptions:V (x) ∼ q(x) specific periodic delta / step / Hr potentials;2 < p < p∗(V ).

Methods:Variational approach (Nehari manifold).

Result:Existence of (possibly large) time-periodic ground state solutions.

Page 11: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

5 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (3/3)

V (x)∂2tU − ∂2

xU +m2 V (x)U = f (x ,U) on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019.

Guiding principles:

U(t, x) = ∑k

eikωtuk (x) −u′′k + (m2 − k2ω2)V (x)uk = fk (x ,U).

Aim for 0 6∈ σ(− d2

dx2 + (m2 − k2ω2)V (x)). Problem: |k | → ∞ ...

Periodicity & roughness of V (x) yield uniformly open spectral gaps. “breathing takes place only for carefully designed potentials”

Page 12: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

5 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (3/3)

V (x)∂2tU − ∂2

xU +m2 V (x)U = f (x ,U) on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019.

Guiding principles:

U(t, x) = ∑k

eikωtuk (x) −u′′k + (m2 − k2ω2)V (x)uk = fk (x ,U).

Aim for 0 6∈ σ(− d2

dx2 + (m2 − k2ω2)V (x)). Problem: |k | → ∞ ...

Periodicity & roughness of V (x) yield uniformly open spectral gaps. “breathing takes place only for carefully designed potentials”

Page 13: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

5 16.01.2020 - University of Stuttgart Dominic Scheider-

Breathers in periodic structures (3/3)

V (x)∂2tU − ∂2

xU +m2 V (x)U = f (x ,U) on R×R

. Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

. Hirsch, Reichel 2019.

Guiding principles:

U(t, x) = ∑k

eikωtuk (x) −u′′k + (m2 − k2ω2)V (x)uk = fk (x ,U).

Aim for 0 6∈ σ(− d2

dx2 + (m2 − k2ω2)V (x)). Problem: |k | → ∞ ...

Periodicity & roughness of V (x) yield uniformly open spectral gaps. “breathing takes place only for carefully designed potentials”

Page 14: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.Here, breathing is not a rare phenomenon.

Page 15: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.Here, breathing is not a rare phenomenon.

Page 16: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.

Here, breathing is not a rare phenomenon.

Page 17: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breather solutions

6 16.01.2020 - University of Stuttgart Dominic Scheider-

Why not allow 0 in the spectra?

Then V (x) ≡ 1 is fine. Klein-Gordon equation:

∂2tU − ∆U +m2 U = f (x ,U) on R×RN

Cost: N = 1 not accessible, V (x) 6≡ const. hard, breathers decay slowly.

Gain: N > 1 accessible, V (x) ≡ const. accessible, many breathers.Here, breathing is not a rare phenomenon.

Page 18: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Outline

7 16.01.2020 - University of Stuttgart Dominic Scheider-

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

∂2tU − ∆U +m2U = U3 on R×R3

3 Breather solutions for the nonlinear Wave Equation

∂2tU − ∆U = |U |p−2U on R×RN

Page 19: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 20: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 21: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0

(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 22: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 23: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 24: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 25: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

8 16.01.2020 - University of Stuttgart Dominic Scheider-

∂2tU − ∆U +m2U = U3 on R×R3

(i) U(t, x) = ∑k eikωtuk (x) yields

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Nonlinear Helmholtz System: 0 ∈ σ(−∆− (k2ω2 −m2)) for k 6= 0(ii) Study bifurcation from any stationary U0(t, x) = w0(x).

Family of breathers Uη(t, x) = ∑k eikωtuηk (x).

Bifurcation from simple eigenvalues:Need 1-dim. kernel of linearization

−∆vk − (k2ω2 −m2) vk = 3w20 vk on R3.

Key ideas: Radial symmetry, asymptotic phase condition.

Page 26: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Page 27: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Page 28: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Page 29: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Page 30: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

9 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Page 31: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Page 32: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Page 33: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Page 34: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

10 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. Extension to

∂2tU − ∆U +m2U = Γ(x)U3 on R×R3

with Γ bounded, radial, continuously differentiable.

. Open: Other space dimensions / powers (easy?);non-constant potentials (hard!).

Aspects of the Proof

. Bifurcation from simple eigenvalues (in a nutshell),

. Linear Helmholtz equations in X (likewise),

. How to prove the Theorem.

Page 35: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 36: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 37: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 38: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 39: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

11 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 0

Implicit Function Theorem

Page 40: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

12 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Page 41: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

12 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Page 42: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

12 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.Situation: Banach space E , u0 ∈ E and f ∈ C1(E ×R,E ) with

f (u0,λ) = 0 for all λ ∈ R.

Question: Solutions of f (u,λ) = 0 with (u,λ) ≈ (u0,λ0) but u 6= u0?

dim kerDuf (u0,λ0) = 1(and more)

Crandall-Rabinowitz Theorem:Bifurcationfrom a simple eigenvalue

Page 43: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

13 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

. Reformulate as f ((uk )k ,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − (k2ω2 −m2) vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 44: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

13 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

. Reformulate as f ((uk )k ,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − (k2ω2 −m2) vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 45: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

13 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

. Reformulate as f ((uk )k ,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − (k2ω2 −m2) vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 46: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Page 47: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Page 48: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Page 49: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .

Summary: Multitude of (weakly) localized solutions.

Page 50: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

14 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):Limiting Absorption Principle,

u1 = <[limε→0

(−∆− µ− iε)−1f

]=

cos(| · |√µ)

4π| · | ∗ f .

. General solution of (H): u = u1 + u2

with any Herglotz wave −∆u2 − µu2 = 0, e.g. u2 =sin(|·|√µ)

4π|·| ∗ f .Summary: Multitude of (weakly) localized solutions.

Page 51: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Page 52: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Page 53: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Page 54: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

15 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = f (r) on R3, µ > 0 (H)

. “Helmholtz” case: 0 ∈ σ(−∆− µ)

. Particular solution of (H):

−(ru1)′′ − µ(ru1) = rf (r), u1(0) = 1, u′1(0) = 0.

. General solution of (H):

u = u1 + c ·sin(| · |√µ)

4π| · |often=

cos(| · |√µ)

4π| · | ∗ f + c̃ ·sin(| · |√µ)

4π| · | ∗ f , c , c̃ ∈ R.

Radial symmetry 1-dim. solution spaces.

Page 55: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

16 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

µ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Page 56: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

16 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

µ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Page 57: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

16 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) has a unique normalized solution in X . It satisfies

u(r) =sin(r√

µ + τ∞)

r+O

(1r2

)for some unique τ∞ ∈ [0,π).

Page 58: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

17 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

−∆u − µu = g(r) · u on R3, µ > 0 (H∗)

. Asymptotically, if g is localized:

−(ru)′′ − µ(ru) ≈ 0 u(r) ≈ $∞sin(r√

µ + τ∞)

r

. Lemma:(H∗) together with an asymptotic phase condition (far field condition)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

has a nontrivial solution in X iff τ = τ∞. (Unique up to constant multiple.)

Page 59: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 60: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 61: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 62: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

18 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/3: Linear Helmholtz equations.

− ∆u − µu = g(r) · u on R3, µ > 0 (H∗)

u(r) ∼sin(r√

µ + τ)

r+O

(1r2

)(Aτ)

. Lemma:(H∗) together with the asymptotic phase condition (Aτ) has a nontrivialsolution in X iff τ = τ∞. (Unique up to constant multiple.)

. Remark: For τ 6= 0 and u ∈ X ,

(H∗), (Aτ) ⇔ u =sin(| · |√µ + τ)

4π| · | sin(τ) ∗ [g u] =: Ψτµ ∗ [g u].

Radial symmetry ⊕ “good” phase cond. 1-dim. solution spaces.Radial symmetry ⊕ “bad” phase cond. 0-dim. solution spaces.

Page 63: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

19 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Page 64: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

19 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

∂2tU − ∆U +m2U = U3 on R×R3

yields via U(t, x) = ∑k eikωtuk (x) the infinite system

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3.

Page 65: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

20 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − (k2ω2 −m2) uk = ∑l+m+n=k

ul um un on R3

Page 66: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

21 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − (k2ω2 −m2) uk = (u ∗ u ∗ u)k on R3

where u = (uk )k ∈ `1(Z,X ).

Page 67: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

22 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − µk uk = (u ∗ u ∗ u)k on R3

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2.

. Reformulate as f (u,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − µk vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 68: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

22 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

−∆uk − µk uk = (u ∗ u ∗ u)k on R3

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2.

. Reformulate as f (u,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

−∆vk − µk vk = 3w20 (x) vk on R3.

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 69: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

23 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. Introduce a bifurcation parameter λ.

. Ensure 1-dim. kernel of linearized problem

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 (k 6= 0 !).

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 70: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

24 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. Ensure 1-dim. kernel of linearized problem

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 (k 6= 0 !).

. Verify remaining conditions of the CR Bifurcation Theorem(transversality).

Page 71: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

25 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. X Recall Lemma: Choose τs “good” and all other τk “bad” s.t.

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 ⇒ vk ≡ 0 holds iff k 6= s.

For k = 0, this is a result in the literature.. Verify remaining conditions of the CR Bifurcation Theorem

(transversality).

Page 72: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

26 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. X Recall Lemma: Choose τs “good” and all other τk “bad” s.t.

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 ⇒ vk ≡ 0 holds iff k 6= s.

For k = 0, this is a result in the literature.. X Transversality condition: Direct computation using asymptotics.

Page 73: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

27 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 3/3.

uk −Ψτkµk∗ [(u ∗ u ∗ u)k ] = 0 (k 6= 0 !)

where u = (uk )k ∈ `1(Z,X ) and µk = k2ω2 −m2

with asymptotic conditions given by τk .

. X Reformulate as f (u,λ) = 0.

. X Replace τs by τs + λ: “Invisible” bifurcation parameter.

. X Recall Lemma: Choose τs “good” and all other τk “bad” s.t.

vk − 3Ψτkµk∗ [w2

0 vk ] = 0 ⇒ vk ≡ 0 holds iff k 6= s.

For k = 0, this is a result in the literature.. X Transversality condition: Direct computation using asymptotics.. X Regularity of breathers: Scaling property of convolution with Ψτk

µk.

Page 74: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Klein-Gordon Equation

28 16.01.2020 - University of Stuttgart Dominic Scheider-

Let X := {u ∈ Crad(R3,R) | sup(1+ |x |)|u(x)| < ∞}.

Let w0 ∈ X with −∆w0 +m2w0 = w30 on R3; choose ω > m and s ∈N.

Theorem 1 [S. 2019]There exist an interval I ⊆ R, 0 ∈ I and a family (Uη)η∈I ⊆ C2

per(R,X )

of real-valued, classical breather solutions Uη(t, x) = ∑k eikωtuηk (x) of

the Klein-Gordon equation

∂2tU − ∆U +m2U = U3 on R×R3

which is a continuous curve in C (R,X ) with

. U0(t, x) = w0(x),

. Uη is 2πω -periodic in time with ∞ many nonzero modes (η 6= 0),

. ddη

∣∣η=0u

ηk 6= 0 iff k = s (excitation of s-th mode).

Page 75: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Outline

29 16.01.2020 - University of Stuttgart Dominic Scheider-

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

∂2tU − ∆U +m2U = U3 on R×R3

3 Breather solutions for the nonlinear Wave Equation

∂2tU − ∆U = |U |p−2U on R×RN

Page 76: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

30 16.01.2020 - University of Stuttgart Dominic Scheider-

This is work in progress.

Theorem 2 [sketch]Let Γ ∈ S(RN ), Γ > 0 and N ≥ 2, 2 < p < 2(N + 1)/(N − 1). Thenthe nonlinear wave equation

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

has a nontrivial dual ground state U : R×RN → R, which is 2π-periodic(π-antiperiodic) in time.

Page 77: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Page 78: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Page 79: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Page 80: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

31 16.01.2020 - University of Stuttgart Dominic Scheider-

Remarks

. “Large” breathers via variational methods: dual ground states.

. Drawbacks: Need localized coefficient Γ(x) in the nonlinearity.N = 3, p = 4 not accessible (endpoint case).

. To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

. A formal solution map for

∂2tU − ∆U = F on [0, 2π]×RN ,

. Dual variational techniques.

Page 81: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Page 82: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Page 83: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Page 84: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Page 85: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x)

with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Page 86: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

32 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 1/2: Formal solution map.

∂2tU − ∆U = F on [0, 2π]×RN

with U(t, x) = ∑k eiktuk (x) and F (t, x) = ∑k eikt fk (x), this leads to

(−∆− k2)uk = fk on RN .

Restriction to odd k ∈ Z yields a nonlinear Helmholtz system. Idea:

uk = Ψk2 ∗ fk ,

U(t, x) = ∑k odd

eikt(Ψk2 ∗ fk )(x) with fk (x) =∫ 2π

0F (t, x)e−ikt dt

2π.

Page 87: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Page 88: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Page 89: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Page 90: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Page 91: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

33 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

∂2tU − ∆U = Γ(x)|U |p−2U on [0, 2π]×RN

. Substitution V := Γ(x)1/p′ |U |p−2U yields

(∂2t − ∆)

[Γ(x)−1/p |V |p′−2V

]= Γ(x)1/pV on [0, 2π]×RN .

. Then, formally, solve

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

where LΓ[V ](t, x) = ∑k odd

eiktΓ(x)1/p(Ψk2 ∗ [Γ1/pvk ])(x).

. LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) is symmetric, compact.

Page 92: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,. hence J has a nontrivial ground state V0 ∈ Lp

′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Page 93: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,. hence J has a nontrivial ground state V0 ∈ Lp

′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Page 94: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,

. hence J has a nontrivial ground state V0 ∈ Lp′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Page 95: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

Breathers for the Wave Equation

34 16.01.2020 - University of Stuttgart Dominic Scheider-

Aspects of the Proof 2/2: Dual variational techniques.

|V |p′−2V = LΓ[V ] on [0, 2π]×RN

with LΓ : Lp′([0, 2π]×RN )→ Lp([0, 2π]×RN ) symmetric and compact.

. Introduce J : Lp′([0, 2π]×RN )→ R via

J(V ) :=1p′

∫|V |p′ d(t, x)− 1

2

∫V LΓ[V ] d(t, x).

Following Evéquoz and Weth (2015, stationary case),. J has the mountain pass geometry,. J satisfies the Palais-Smale condition,. hence J has a nontrivial ground state V0 ∈ Lp

′([0, 2π]×RN ).

“Dual” ground state U0 = Γ(x)−1/p |V0|p′−2V0.

Page 96: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

35 16.01.2020 - University of Stuttgart Dominic Scheider-

Thank you for your attention!

C. Blank, M. Chirilus-Bruckner, V. Lescarret and G. Schneider, BreatherSolutions in Periodic Media, Comm. Math. Phys. 3 (2011), pp. 815–841.A. Hirsch and W. Reichel, Real-valued, time-periodic localized weaksolutions for a semilinear wave equation with periodic potentials,Nonlinearity 32 (2019), no. 4, pp. 1408–1439.R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions fornonlinear Helmholtz equations, ZAMP 6 (2017), article 121.G. Evéquoz and T. Weth, Dual variational methods and nonvanishing forthe nonlinear Helmholtz equation Adv. in Math. 280 (2015), pp. 690–728.

The bifurcation result for the KG equation is part of my PhD thesis(KITopen, 2019).

Page 97: How to construct Breather Solutions using Nonlinear ...scheider/media/scheider... · Breather solutions 2 16.01.2020-UniversityofStuttgart DominicScheider-The Sine-Gordon Breather

35 16.01.2020 - University of Stuttgart Dominic Scheider-

Thank you for your attention!

C. Blank, M. Chirilus-Bruckner, V. Lescarret and G. Schneider, BreatherSolutions in Periodic Media, Comm. Math. Phys. 3 (2011), pp. 815–841.A. Hirsch and W. Reichel, Real-valued, time-periodic localized weaksolutions for a semilinear wave equation with periodic potentials,Nonlinearity 32 (2019), no. 4, pp. 1408–1439.R. Mandel, E. Montefusco and B. Pellacci, Oscillating solutions fornonlinear Helmholtz equations, ZAMP 6 (2017), article 121.G. Evéquoz and T. Weth, Dual variational methods and nonvanishing forthe nonlinear Helmholtz equation Adv. in Math. 280 (2015), pp. 690–728.

The bifurcation result for the KG equation is part of my PhD thesis(KITopen, 2019).