Top Banner
How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel University of Karlsruhe, Germany
30

How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

May 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

How Solar Cells Work

Basic theory of photovoltaic energy conversion

Peter WürfelUniversity of Karlsruhe, Germany

Page 2: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Three Messages

Sun is a heat source, solar cells must be heat engines

Important conversion stepsolar heat chemical energy of electron-hole pairslimited by thermodynamics

Conversion of chemical energy electrical energycan be 100% efficient and needs more than a pn-junction

Page 3: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Important: generation of (entropy-) Free Energy by cooling

F = E - TS

Carnot process

P

V

isothermal

isothermal adiabatic

adiabatic

1

2

3

4

isothermal

isothermal

adiabaticadiabatic

1 2

34

T

S

TA

T0

Page 4: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Solar cells are heat engines

Principle

I = T IE,in S S,in

IS,in

T I0 S,outI IS,out S,in≥

I I (1 - T /T )E,out E,in 0 S£

Page 5: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

The solar cell as a heat engine?

Questions:

What is the working medium (the gas)?

What kind of free energy is produced?

Page 6: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Conversion of solar heat into chemical energy of electrons and holes

Energy per photon ħω→ chemical energy µeh per e-h pair by thermalisation

εC εFCεF

εVεFV

εe

gdn /dh eε

dn /de eε

10 s-14 10 s-12

> meh

energy gap is necessary

Page 7: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Maximum chemical energyReduce entropy generation during thermalisation by

reducing the energy range, for which Fermi-distribution is established

ideal: isoenergetic thermalisation in narrow energy ranges is isentropic

DeC eFCeF

DeVeFV

ee

ω

dn /dh ee

dn /de ee

10 s-14 10 s-12

μeh

e

h

tandem cells

Page 8: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Tandem cells2 cells → 4 Fermi-energies for 4 energy ranges

4-level system3 Fermi-energies for connection in series

eF1

eF2

eF3

eF4

Page 9: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Recombinationrecombination

at the surface in the materialnon-radiative non-radiative

radiative

surface recombination bulk lifetimevelocity

effective lifetime

Page 10: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

RecombinationDirect optical transitions in 2-level system

drup drspont drstim

[ ]212 1 2

d ( )d ( ) ( ) 1 ( ) d( )

d( )up

jr M D f f γ ω

ω ε ε ωω

= −

e1

e2

[ ]212 2 1

d ( )d ( ) ( ) 1 ( ) d( )

d( )stim

jr M D f f γ ω

ω ε ε ωω

= −

[ ]2 012 2 1

cd ( ) ( ) ( ) 1 ( ) d( )nspontr M D D f fγω ω ε ε ω= −

( )3

23 3 3

0

( )4

nDcγ ω ω

πΩ

=

density of states for photons

2 1ε ε ω− =

⎫⎪⎪⎬⎪⎪⎭

upwards

downwards

Page 11: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Absorption coefficient

[ ]212 1 2

12

d ( ) d ( ) d ( )

( ) ( ) d ( )( ) d ( )

abs up stimr r r

M D f f jj

γ

γ

ω ω ω

ε ε ω

α ω ω

= −

= −

=

absorption coefficient [ ]212 12 1 2( ) ( ) ( )M D f fα ω ε ε= −

12 2 1( ) 0 for ( ) ( )f fα ω ε ε< >

( ) ( )12( , ) ( ,0) 1 ( ) exp ( )j x j r xγ γω ω ω α ω= − −

amplificationj xg( )

x

Page 12: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Spontaneous emissionreplace in spontaneous emission rate

[ ][ ]

1 2012

1 2

1 ( ) ( )d ( ) ( ) ( ) d

( ) ( )spont

f fcr Dn f fγ

ε εω α ω ω ω

ε ε−

=−

[ ]2 12

121 2

( )( ) ( )

M Df fα ωε ε

=−

1 21 2

1 1( ) and ( )exp 1 exp 1FV FC

f f

kT kT

ε εε ε ε ε

= =− −⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 1ε ε ω− =with and

0 d( )d ( ) ( ) ( )( )exp 1

spontFC FV

cr Dn

kT

γωω α ω ω

ω ε ε=

− −⎛ ⎞ −⎜ ⎟⎝ ⎠

Page 13: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Production of chemical energy

2

3 3 2

( )( ) ( )( )4 exp 1FC FV

dj a dc

kT

γωω ω ω

ω ε επΩ

=− −⎡ ⎤ −⎢ ⎥⎣ ⎦

djg,abs

djg,emit

djeh = djg,abs – djg,emit

only radiative recombination, monochromatic

generalized Planck law

Sun: T = TS εFC – εFV = 0Semiconductor: T = T0 εFC – εFV ≠ 0

eFC – eFV = meh

absorptance ( ) ( ){ }( ) 1 ( ) 1 exp ( )a R dω ω α ω= − − −

djeh = dgeh – dreh

Page 14: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Characteristic for production of chemical energyby monochromatic lightdjeh(meh) = djg,abs – djg,emit(meh)

djg,abs

djeh

djg,emitdjg

wmeh,mp

mehmeh,ocmeh,sc

h =

Page 15: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Production of chemical energy frommonochromatic radiation

0 1 2 3 4 50

102030405060708090

100

ef

ficie

ncy

/ %

photon energy / eV

maximum concentration

no concentration

Infinite tandem: η = 86% max. concentration

Page 16: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Production of chemical energyin wide band semiconductor with total solar spectrum(Shockley-Queisser)

0 1 2 30

0.1

0.2

0.3

0.4

η

εG / eV

max. concentration

no concentration

AM0 spectrum

Page 17: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Optimal materials

full absorption above energy threshold (in a thin film)

minimum recombination for given difference of Fermi-energies:

radiative recombination

good materials for solar cells should be luminescingadvantage for organic materials?

difference of the Fermi-energies (chemical energy per eh-pair) is obtained from luminescence intensity

Page 18: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Chemical energy → electrical energy

Charge current

-ej

eFV

eFC

eV

eC

ee

0 xjQ

G R µehjQ = - e (G - R)

Page 19: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Separation of electrons and holes withsemi-permeable membranes← H2 , O2 →

Voltage: eV = eF,right - eF,left = μeh

O2

O2

O2

O2 O2

O2

O2

O2

O2

O2

H2

H2 H2

H2 H2H2

H2

H2

H2

← e , h →

ee

eF,C eF,V

eV

eC

x

-ej0

absorbern-type p-type

eF,lefteF,rightµeh

Page 20: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Transport properties, drift current

acceleration ii

i

z e Eam∗=

,mobility C ii

i

eb

mτ∗=

drift current

Page 21: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Diffusion currentdiffusion current

Einstein relation

chemical potential of particles i,0 ln ii i

i

nkTN

μ μ⎛ ⎞

= + ⎜ ⎟⎝ ⎠

Fick‘s law of diffusion

Page 22: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

total charge current

i i iz eη μ ϕ= +

for electrons (zi = -1) and holes (zi = +1)

electrochemical potential

e e FC

h h FV

ee

η μ ϕ εη μ ϕ ε

= − == + = −

field and diffusion currents do not exist

Page 23: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Dye Solar Cell

Problem: e and h bound in exciton

e

h

Page 24: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Problems with excitons in organicsemiconductors

�e

�exciton

�exciton

�C

�V

electron bound to free hole hole bound to free electron

lumo

homo

large exciton binding energy

Page 25: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

1 2

0

exciton dissociation

Page 26: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Requirements for solar cell structures

+-

Le

n+

p+

absorbern+

p+

Sufficient condition:Le, Lh >> ta >> 1/a

rules out low mobility absorbers

ta

Necessary condition:Le, Lh >> distance betweenmembranes

1/α

Conditions for optical and electrical properties of absorberssplitting of Fermi-energies selective transport

ta >> 1/a

bulk heterojunction

Page 27: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Advantage of nano-structures in conventional solar cells

distance between membranes on nm-scale

absorbers can have poor transport properties

Problem: large interface area may increaserecombination

Page 28: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

luminescence as a tool to proveenergy conversion efficiencyspectral intensity of luminescence

( )( ) ( )

2

3 3 2

0

2

, 3 3 2

0

( )( )4

exp 1

spectral emission of photons through surface of homogeneous system( )( )

4 ( )exp 1

(

emissioneh

FC FV

emissionemit

FC FV

dR x dc x x

kT

dj a dc

kT

a

γ

ωα ω ωπ ω ε ε

ωω ωπ ω ε ε

Ω=

⎛ ⎞− −⎡ ⎤⎣ ⎦ −⎜ ⎟⎜ ⎟⎝ ⎠

Ω=

⎛ ⎞− −−⎜ ⎟

⎝ ⎠

[ ] ( )) 1 ( ) 1 exp ( ) eR Lω ω α ω= − −⎡ ⎤⎣ ⎦

Page 29: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Luminescence as a characterization tool

16000

14000

12000

10000

8000

6000

4000

2000

16000

14000

12000

10000

8000

6000

4000

2000

l < 1000 nmElectroluminescence

counts per pixel

Page 30: How Solar Cells Work - OrgaNextGenerationorganext.org/userfiles/talks-conference/peter_w-rfel.pdf · How Solar Cells Work Basic theory of photovoltaic energy conversion Peter Würfel

Physics of Solar Cells