Top Banner

of 52

Hot Wire Nasa Calibration

Jun 03, 2018

Download

Documents

Teh Boon Siang
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 Hot Wire Nasa Calibration

    1/52

    NASA TM 8325419820013686 S Technical Memorandum 83 54

    Calibration Technique for aHot Wire Probe Vector nemometer

    James Scheiman Charles Marpleand David S Vann

    M R H 1982

    N \S \

  • 8/12/2019 Hot Wire Nasa Calibration

    2/52

  • 8/12/2019 Hot Wire Nasa Calibration

    3/52

    N S Technical Memorandum 83 54

    A Calibration Technique for aHot Wire Probe Vector Anemometer

    James Scheiman Charles Marpleand avid VannLangley Research enterHampton Virginia

    NJ\S \National Aeronauticsand Space AdministrationScientific and TechnicalInformation Branch98

  • 8/12/2019 Hot Wire Nasa Calibration

    4/52

  • 8/12/2019 Hot Wire Nasa Calibration

    5/52

    SUMM RY

    Cal ib ra t ion t e s t s u sin g h ot wires were conducted us ing a newly developed t e s tr ig t h a t grea t ly reduced the da ta -acqu is i t ion t ime. The t e s t s included a t h r ee -wi rerobe and a s ing le -wi re probe opera t ing a t numerous speeds and flow ang les . A com-a r i son of mea su re d and computed ve loc i ty -vec to r magni tu de and di rec t ion ind ica tes

    th e necess i ty of c ompl ete p ro be c a lib r at i on t o determine flow i n t e r f e r ence and/oropera t ing l imi ta t ion regions. Cal ib ra t ion r e su l t s ind ica te t h a t flow r a tes with3-percent accuracy and flow angles with 5 accuracy are a t t a inab le .

    INTRODUCTIONFlow s i t ua t i ons often a r i s e where the re i s a requ i rement fo r making dynamic

    measurements. When the v elo ci ty va r ie s in magnitude and di rec t ion a tf a i r ly r ap id r a t e , only a few types of sensor s can be used to make th e measure-Small sca le models are o ften used which impose s ize l imi ta t ions on the sensor

    n order to avoid the problem of flow i n t e r f e r ence by the sensor i t s e l f .Examples of th i s type dynamic environment are flow regions downstream o f a pro

    o r a he l i cop t e r r o t o r and within a t i p vor tex . The ve loc i ty vec to r near th eof the blades changes both in magnit ud e and in di rec t ion with each blade pas For some ope ra t in g cond it io n s the ve loc i ty vec to r can completely reverse

    Because of the r e l a t i ve ly rapid blade passage, the ve loc i ty sensor shoulda f a i r ly high-f requency response. Also , a l l t h r ee ve loc i ty components a re

    In order to gain a be t t e r unders tanding o f the ro ta t ing -b lade dynamic loadsnd to cor r e l a t e with ava i lab le theor ies , blade-generated acous t i c s spe c i f i ca l ly

    impu ls iv e b la de noise and measured dynamic ve loc i ty d i s t r i bu t i ons are

    A few methods are ava i lab le fo r making dynamic ve loc i ty measurem ents. These arel a se r Doppler ve loc imete r sys tem, a ho t -wi re vec to r system, and a ho t - f i lm sys tem.

    he l a s e r Doppler ve loc imete r LDV has the advantage of not in t roducing any flowin to the flow s t r eam. However, t h i s system i s very cos t ly compared with

    he hot-wire systems, and an L V system requ i res a r e l a t i ve ly long devel opment t imeo become ope ra t i ona l . For the prope l le r o r he l i cop t e r r o t o r example c i t ed , th e L V

    measures pa r t i c le motion through a smal l sens ing volume, and the cor respondingare not continuous as with a h ot-w ire o r ho t - f i lm sensor i . e . , the L V

    pa r t i c le motion over a l a rge number o f b lade passages . The ho t -wi re systemas the d is ad va nta ge o f i n t roduc ing a sensor into flow streams t ha t a re being

    and thus c rea t ing a flow in te r fe rence which may d is tu rb the flow beingeasured. In add i t ion , flow dis turbances can occur because of th e h ot-w ire prongs

    wire suppor t s . The requi red t hr ee v el oc it y components necess i t a t e th ree ho t wires ,nd the cor responding sensor volume i s l a r ge r than the sensor volume fo r an L Vystem. The sensor volume can be impor tan t because the sensor de tec t s the averagee loc i ty within t h a t volume. Thus, i the ve loc i ty g ra d ie n ts w ith in the volume a retoo g re at , e rro rs are in t roduced. Advantages of th e h ot-w ire system are t h a t it i s

    r e l a t i ve ly cheap to purchase, r equ i r es very littl development t ime , and has a f a i r lygh -f re quen cy r es pon se . A ho t - f i lm system has advantages and disadvantages s im i l a r

    o a hot-wire sys tem, and it i s much l es s vulnerable to damage.

  • 8/12/2019 Hot Wire Nasa Calibration

    6/52

    When us ing a ho t -wi re sys tem, t he q ue st io ns of accuracy and f low-anglel im i t a t i on s immedia te ly come to mind. The user of a t h r ee -ho t -wi re system of tenprov ides very littl ca l i b r a t i on i n fo rma t ion e . g . , r e f s . 1 to 3 ) . There a re severa lreasons fo r t h i s lack of ca l i b r a t i on da t a . A complete-probe ca l i b r a t i on invo lvest e s t i ng a t numerous ve loc i t i e s and d i r e c t i on s ; t hu s , a complete ca l i b r a t i on i s veryd i f f i c u l t to ob ta in . Fur the r , th e p hy sic al endurance of th e t h r ee -ho t -wi re systemcan become a se r i ou s l im i t a t i on i th e ca l i b r a t i on becomes too ex tens ive and r equ i r esa l a rge amount o f opera t ing t e s t t ime . Because of the se problems , th e h ot-w ire probeuse r in many cases cannot o r does not ca l i b r a t e the probe . In ste ad , th e user r e l i e son ana ly t i c a l da ta - r educ t ion equa t ions , and in some cases uses pub l i shed sensor sen s i t i v i t i e s . Such an approach neg lec t s probe o r ho t -wi re suppor t - p rong flow i n t e r f e r ence and any es t imate of accuracy fo r dete rmining ve loc i ty magnitude o r d i r ec t i on .Also , s l i gh t d i f f e r ences between probes because o f fab r ica t ion t o l e r ances areneg l ec t ed . The impor tance o f some of these e f f ec t s can be found, fo r example, inr e f e r ences 4 to When th e flow i s near ly pa r a l l e l to th e lo ng itu din al a xis of oneof th e ho t wi res , o r when ho t -wi re suppor t - p rong in te r fe rence i s encoun te r ed , systemi naccurac ies should be an t i c ip a t ed . Therefo re , t he re a re flow angles where th emeasured r e su l t s should be ques t ioned even though th e measurements may be r epea t ab l e . Some at tempts have been made to es t imate accuracy and probe opera t ingl im i t a t i ons .

    The sub j ec t of t h i s paper i s a l imi ted ca l i b r a t i on and a d i scuss ion of someopera t ing problems when using h ot wires to make mean ve loc i ty -vec to r measurements.Recommended procedures were used to reduce th e da ta , and th e r e su l t i ng computedve loc i ty magnitudes and d i rec t ions a re compared with th e cor responding measuredva lues . A spec i a l ca l i b r a t i on r ig was deve loped and used to sh or te n th e da ta a cqu i s i t i on t ime . This r educ t ion was achieved by t ak ing advantage of the r ap idresponse t ime of th e ho t wire and by making use of e l e c t ron i c d ata r ed uc ti ont echn iques . This ca l i b r a t i on r ig i s descr ibed he re in . Two t h r ee -wi re probes andone o ne -w ir e p ro be were t e s t ed . The ho t-w ire o utp ut d ata were reduced a t 5increments in flow angle with r e spec t to the probe ax i s , over a range of 155.These da ta were ob ta ined a t var ious probe r o l l ang les . The flow ve loc i t i e s var iedfrom 8.94 to 40.23 m/s.

    SYMBOLS

    a

    b

    c

    2

    cons t an t determined by ca l i b r a t i on see eq . 1 , vo l t s 2/oC

    k2g 1 2ons tan t determined by ca l i b r a t i on s ee eq . 2m

    constant determined by ca l ibra t ion see eq. 1 , vol t s 2/ .C m : ~ s ) / 2cons tan t determined by ca l i b r a t i on see eq . 2 2 kg 4 1 2

    m - s -vo l t scons tan t determined from the i n t e r cep t o f a l e a s t - s qua r e s - f i t l i ne th roughmeasured and computed mass flow see eq . 4 , ~ 2

    m

  • 8/12/2019 Hot Wire Nasa Calibration

    7/52

    cons tan t determined from slope of a l e a s t - squa r e s - f i t l i ne throughmeasured and computed mass flow see eq . 4 , dimens ionless

    dc v olt ag e s up pli ed t o wire senso r , vo l t scons t an t in equat ion 3 , dimens ionlesscons t an t ranging from 0.48 to 0 .51 , n 1/2 here int emp er at ure o f envi ronmenta l cool ing f l u id , Ctemperature o f h ot-w ire se nso r, Ct o t a l ve loc i t y -vec to r magnitude, m/sve loc i t y component normal to hot wire , m/sacu te angle between flow d i rec t i on and l ong i t ud ina l ax i s of ho t wi re , degdens i ty of coo l ing f l u id , kg/mprobe r o l l angle measured from ve r t i c a l plane th ro ug h p ro be ax i s to ho t

    wire degprobe yaw angle w ith resp ec t to flow d i rec t i on 0 when ve loc i t y i s

    al igned with probe ax i s , deg

    exper imenta l ca l i b ra t ed angleg eomet ri ca l a ng lei t h hot wire i = 2, 3 fo r th ree -wi re probeminimumdenotes quant i ty a t a pa r t i c u l a r va lue of e

    PP R TUS ND TEST PROCEDUREApparatus

    Hot-wire sys t em. - Three ho t -w i re p ro be s ystems were t e s t ed in t h i s s tudy . Theof a l l the probes were gold p l a t ed . The wires were p la t inum-p la t ed tungs ten

    an ac t ive wire d iameter of and an ac t i ve leng th of 1.25 mm l eng th - t o r a t io of 250 . The t o t a l h ot-w ire le ng th d is ta nc e between prongs was

    mm which i s about th ree t imes the ac t ive wire l e ng th . The probes were opera ted i ncons t an t - t empera tu re mode and no l i nea r i ze r was used. The wires were opera ted a t

    n overhea t r a t i o of 1 .8 , which i s w ith in th e recommended opera t ing range.Two of the probes were t yp i ca l th ree -wi re probes of i den t i c a l manufacture .probes have th ree wires , each of which i s perpend icu la r to the othe r two.

    along the ax i s of the probe, the ho t wires pro j ec t an image onto a normal

  • 8/12/2019 Hot Wire Nasa Calibration

    8/52

    plane of 120 between wires . Figure 1 a i s a photograph of one of these probes .Disregarding flow i nt er fe re n ce s, t hi s probe system could t heo re t i c a l l y measure themagnitude and di rec t ion of the veloc i ty anywhere in a hemisphere.

    The th i rd probe had a s ing le wire . Figure 1 b i s a photograph of t h i s probe .This type probe cons t ruc t ion i s designed to min im iz e flow i n t e r fe rence for some t e s tcondi t ions .

    Cal ibra t ion r i g . - A complete ca l ib ra t ion of a th ree -hot -wi re probe over a speedrange r equi re s many t e s t condi t ions thousands in th is r epor t ) and can be very t imeconsuming. In order to d e r e s ~ the t ime, a spec i a l ca l i b r a t i on r ig has been cons t ruc t ed . This ca l i b r a t i on r ig makes use of the r ap id response t ime of a hot -wiresystem and grea t ly reduces the t e s t ing t ime . F igure i s a photograph of t h i s r ig .The hot -wire probe shown on the ca l ib ra t ion r ig in f igure can be yawed about apo in t near the center of the ho t w ires . The maximum y aw -ang le r an ge was about 1700data were r ec ord ed o ve r a range of 155 , and the yawing ra te could be var ied fromabout 6 to seconds p er cycle . During the high-speed t e s t s , the aerodynamic dragon the probe suppor t arm was such t h a t the yaw ra te was r e l a t ive ly slow aga ins t thewind and r e l a t ive ly fa s t with the wind. In f ac t , the maximum torque of the yaw motorwas the fac tor t ha t l imi t ed the maximum tunnel t e s t speed. However, even a t the yawra te extremes , the crank-arm t an g e nt ia l v e lo c it y was smal l compared with the flowve loc i t y . The s t ruc tu ra l def l ec t ion of the system was i n s ign i f i c an t .

    Figure a l so shows the square -wave yaw-ang le pos i t ion ind ica tor . This i nd i ca tor cons i s ted of a saw tooth and a photoce l l which generated an e l e c t r i c a l squarewave over a range of 155 a t in te rva l s corresponding to every 5 of yaw for theprobe systems. The ca l ib ra t ion of the probe yaw angle and square-wave genera to r i sshown i n tab le 1. The saw-tooth gear was machined very u r t e l y ~ however, theor i en t a t i on of the zero-yaw pos i t ion probe angle with r e spec t to the f ree streamwas not good as seen by the uneven angles in t ab l e 1) . This r es ul te d in f ixedangu la r displacement fo r a l l the yaw angle s . A f l i p - f l op system was incorpora tedin orde r to i nd i ca t e the probe yawing d i rec t i on of ro ta t ion i . e . , clockwise orcounterc lockwise) . The hot-wire p ro be sy stem could he manually or i en ted a t d i f f e r en tr o l l angles about the probe ax i s . op t i ca l system t r an s i t t heodol i t e ) was used toad j us t the r o l l angle of the ho t wires on the ca l ib ra t ion r i g .

    Test ProcedureThe t e s t s were conducted in the low-veloc i ty ca l i b r a t i on wind tunnel a t th e

    Langl ey Resear ch Center . A photograph of t h i s tunnel i s shown i n f igure 3. Thetunnel t e s t chamber i s 43.2 cm wide, 30.5 cm high , and 76 cm long, and the speedrange i s from 2.2 t o 89.4 m s The tu rbulence leve l in the t e s t chamber i s about0.5 to 0.75 percent , which i s adequate fo r the measurements presented in t h i srepor t . The tunne l veloc i ty can be measured to 0.5-pe rcent accuracy. The f lu idtemperature was the ambient temperature and was cons tan t w ith in the measuringaccuracy .

    As the ca l i b r a t i on r ig cycled back and for th through the yawing cyc le s , thee l e c t r i c a l outputs were recorded cont inuous ly and s imultaneous ly on d i f f e r en t channels of an magnet ic- tape recorder . These e l e c t r i c a l outputs cons i s ted of thethree hot -wire vol tages , the square-wave-yaw i d en t i f i c a t ion pulse , and the di rec t ionof-yaw f l ip - f lop i nd i ca t o r . In addi t ion , the probe i d en t i f i c a t ion , probe r o l l or i en t a t ion , probe yawing r a t e , and tunnel speed were manually r ecorded . Two extremeyawing r a t e s , about 6 and seconds per cycle , were used. For Ble cur ren t t e s t s ,4

  • 8/12/2019 Hot Wire Nasa Calibration

    9/52

    he t unne l speed var ied from 8 .9 to 4 s in i n t e rva l s of about 4 .5 s fo r a t o t a lf seven speeds . s viewed along the ax is of the probe, r o l l angles of and0 were chosen fo r the th ree -w ire probes f i r s t with number one hot wire ve r t i c a lnd second with number one ho t wire hor i zon ta l . Looking along the ax is of th e

    probe, the projec t ion of the th ree wires in a normal plane are 120 The s ing le -wire probe was also t es ted over the same s peed ra ng e and a t the

    r o l l angles of and 90 i . e . , the s ingle wire ve r t i c a l and hor i zon t a l .the previously descr ibed procedures , the t o t a l data-acqui s i t ion t ime was

    to a few hours . The hot-wire , yaw-angIe-pulse , and d i r ec t ion -o f - ro t a t ionwere r eco rd ed s imu lt an eou sl y on a magnet ic- tape reco rde r . At l e a s t 40 com

    yaw cycles of the probe were recorded fo r each opera t ing t e s t condi t ion . Thedata were reduced as fo l lows. The magnet ic- tape data were d ig i t i zed a t the

    r i s e and f a l l pos i t ions ind ica ted by the square-wave yaw-angl e s i gna l .When the probe i s yawing in one d i r ec t i on , the probe yaw angle fo r the r ise on the

    wave corresponds to the same probe yaw angle fo r the f a l l o n the square waveyawing in th e o pp os ite d i r ec t ion . In f requen t ly dur ing the record ing of the

    quare-wave genera to r s i gna l , a no i se spike or reduced l eve l was recorded . Thisbe detec ted dur ing the d ig i t i z ing process of one complete probe yaw cyc le ,

    one square-wave pulse would be added or omit ted . Therefore , before anycomplete cycle of da ta was processed fur ther , the t o t a l number of d ig i t i zed

    data po in ts fo r each probe yaw cycle was counted. I f the sum did not add up to 62,l l the data w ith in t ha t cycle were d i sca rded . When the data fo r one yaw cycle werec ep ted , th e h ot-w ire v oltag es corresponding to ea ch p ro be yaw pos i t ion were squared

    to ob ta in e l ec t r i c a l power when wire r es i s t ance was assumed cons t an t . These valuesaccumulated fo r a l l the complete cycles and were t he n a ve ra ge d. The data fo r

    he d i f f e r en t d i r ec t i ons of yawing ro ta t ion were averaged sepa ra te ly so t h a t thef f e c t s , i f any, of the di rec t ion of yaw could be evaluated . The f i n a l output

    vol tage squared values presented here in rep resen t a t l e a s t 40 averaged data po in tsfo r e ac h p ro be yaw pos i t i on . The mean o utp ut v olta ge squared va lues and s tandarddevia t ions were t abula ted and machine p lo t t ed . The s t andard devia t ions were

    lc ula te d in order to evaluate the sca t t e r in the da ta .

    DISCUSSION O RESULTSThree hot-wire probes were t es ted in the low-veloci ty ca l ib ra t ion wind tunnel a t

    he Lang ley Resea rch Center . The probes were t e s t ed a t seven speeds and yaw anglesa range of 155 to determine in te r ference and o th er d ev ia ti on s from t heory .

    The r e su l t s a re p resen ted in four sec t ions : 1 probe geometr ic l imi t a t i ons ,2 p ro be r es po ns e with yaw, 3 comparison of two i den t i ca l three-wire probes, and4 veloc i ty magnitude mean flow and d i re c ti o n p r e di ct io n .

    Probe Geometric Limi ta t ionsWhen using a th ree -wire probe, t hr ee o pe ra ti ng problem regions a re c on sid er ed :

    1 when one ho t wire i s downstream of a no th er w ir e, 2 when the veloc i ty vec to r i sto the axis of a wire , and 3 when the re i s flow in te r ference due to th esuppor ts prongs . The f i r s t two opera t ing regions are discussed in th i s sec

    t ion , and these opera t ing l imi t s are ca l l ed p ro be g eomet ri c l imi t s here in . The th i r dregion requ i res a complete ca l ibra t ion and i s discussed here in . r{hen the meanveloc i ty vec to r i s known, the problem of geometr ic l imi t s can be minimized by properr i en t a t ion of the probe with re spec t to the flow d i r ec t i on . However, when the mean

    veloc i ty vec to r i s not known, the re i s no way of or ient ing the probe to avoid th epe ra t ing problem regions . Ins tead , i s e ss en tia l to make measurements a t two or

    5

  • 8/12/2019 Hot Wire Nasa Calibration

    10/52

    more probe o r i e n t a t i o n s , reduce t h e d a t a , and compare t h e r e s u l t s f o r s i m i l a r i t y . I fthe r e s u l t s f o r any two probe o r i e n t a t i o n s a r e not s i m i l a r , t h e r e i s no way of know-i n g which measurement, i f e i t h e r , i s c o r r e c t , and a t h i r d o r more measurement i sr e q u i r e d .

    The probe geometr ic l i m i t s d i s c u s s e d i n t h i s s e c t i o n a r e a s s o c i a t e d with flow a tsome f i x e d angle t o t h e a x i s of a h o t wire 8. In o r d e r t o ma in ta in a cc u ra cy , t h eprobe o p e r a t i o n should be l i m it e d t o an o p e r a t i n g r e g i o n where t h e flow angle 8 i snot s m all . G en e r a lly , f o r a t h r e e - w i r e probe , t h e i n d i v i d u a l wires a re a li g ne d p e r p e n d i c u l a r t o each o t h e r . This o r i e n t a t i o n s i m p l i f i e s t h e mathematics i n determin-in g the t o t a l flow r a t e from t h e output o f the t h r e e wires e . g . , s e c t i o n 7.3C o fr e f . 12 . From th e wire geometry and t h e known flow angle with r e s p e c t t o theprobe a x i s , th e angle 8 between the v e l o c i t y v e c t o r and any wire a x i s can bedetermined . These comput a ti ona l p r ocedu r es a r e given i n t h e appendix, and t h eg r a p h i c a l r e s u l t s a r e shown i n f i g u r e 4.

    The c e n t e r o f th e p o l a r p l o t i n f i g u r e 4 shows t h e o r i e n t a t i o n of the t h r e e hotw ires as seen looking along the a x i s o f t h e probe . The p o l a r angle r o l l angleon t h e f ig ur e r ep re se nt s the d i r e c t i o n o f t h e v e l o c i t y v e c t o r component i n a planenormal t o t h e a x i s o f th e probe . The yaw angle graduated a long a r a d i a l l i n e i nt h e f i g u r e , r e p r e s e n t s th e angle between th e v e l o c i t y v e c t o r and probe a x i s . Thus,any p o i n t on th e p l o t s p e c i f i e s th e a ng ula r p o s i t i o n of th e v e l o c i t y v e c t o r withr e s p ec t t o th e probe c e n t e r of p l o t ) . The a d v e r t i s e d hemispher ica l l i m i t t o probeo p e r a t i o n would be i n d i c a t e d i n the f i g u r e by a c i r c l e with a r a d i u s equal t o

    90. The contour l i n e s a r e f o r 8m 20, 30, and 40. This angle em i sd e f i n e d as t h e angle between t h e v e l o c i t y v e c t o r and t h e l o ng it ud in a l ) a xi s of anyh o t wire . The f i g u r e a l s o shows the o r i e n t a t i o n of t h e v e l o c i t y v e c t o r with r e s p e c tt o the f i x e d probe .

    The a r e a between t h e c i r c l e f o r = 0 and any 8m curve d e f i n e s the probeo p e r a t i n g region where 8 f o r any of t h e t h r e e h o t wires w i l l always be g r e a t e rthan 8m The p l o t shows t h a t , f o r th e s o l i d l i n e , t h e a n g l e s between th ev e l o c i t y v e c t o r and probe a x i s ) must not be g r e a t e r than about 16. F u r t h e r , f o rt h e 8m = 30 boundary, can be as l a r g e as 23, and f o r t h e 8m 20boundary, can be 36. In o t h e r words, i f th e v e l o c i t y - v e c t o r o r i e n t a t i o n i sunknown, and 8m 20 i s considered a reasonable minimum value r e f s . and 5 ) , then t h e angle between th e h ot - wir e probe a x i s and t h e v e l o c i t y v e c t o r mustbe l e s s than about 36. This r e p r e s e n t s a p h y s i c a l l i m i t f o r probe o p e r a t i o n .

    Probe Response With wThe d a t a p r es en te d h e re in a r e well beyond the m a n u f a c t u r e r s recommended yaw

    a n g l e s of u s a b i l i t y i . e . , g r e a t e r than hemisphere f o r t h i s s e n s o r . However, s i n c et h i s i s an e x p l o r a t o r y program, the c omplete r an ge o f measured d a t a i s p r e s e n t e d .I n i t i a l l y , t h e probe d a t a recorded when approaching a given yaw angle from upstreamand downs tre am were accumulated and averaged s e p a r a t e l y . This p ro ce du re p rov id ed ane v a l u a t i o n of the e f f e c t o f yawing d i r e c t i o n on t h e r e s u l t s . A comparison betweenaverage probe o u t p u t when approaching a given yaw angle from upstream o r downstreamproved t h e d i f f e r e n c e s were n e g l i g i b l e . T h e r e a f t e r , th e d a t a a t each yaw angle fo rboth d i r e c t i o n s o f yawing were averaged t o g e t h e r . Thus, t h e mean values of t h e o u t p u t v o l t s squared i n f i g u r e s 5 t o 9 a r e averages of a t l e a s t 80 i n d i v i d u a l t e s tp o i n t s f o r each o f t h e 62 probe yaw a n g l e s .

    6

  • 8/12/2019 Hot Wire Nasa Calibration

    11/52

    A s tandard devia t ion was ca lcu la t ed fo r each t e s t condi t ion . The s tandard devi a t ion provides a measure of sca t t e r in the i nd iv idua l data and a l so an e va lu atio n o fthe var ia t ion of the mean value or the number of i nd iv idua l data poin t s required t od ec rea se th e var ia t ion i n the mean value . I t was i n i t i a l l y bel ieved t h a t absolu tes ca t t e r i n the data would be h ighe s t a t probe yaw a ng le s w ith flow i n t e r fe rence onone of the ho t wires i . e . , 8 sma l l . However, t h i s was no t usua l ly the case . Thereason fo r the var ia t ion in the sca t t e r with 8 could n ot be determined .

    The one s tandard devia t ion value var i ed from 0.5 percent to 2 percent of th emean value of the o ~ t p u t Let t ing on e s tandard devia t ion equal 2 percen t , two s t an dard devia t ions , which inc lude 95 percent of the da ta , a re with in 4 percent of th emean value . In o the r words, one t e s t poin t would have 4-percent a cc ura cy w ith a95-percent conf idence . Averaged data presented he re i n , which are average values xof about 80 ind iv idua l po in t s , are accu ra te to with in 0.5 percent with a conf idenceof 95 percent ax 0.04/vao .

    The bottom p lo t s of f igures 5 a to 5 c are p lo t s of the output aga ins t th eprobe pos i t i on or yaw angle fo r each of the t h ree wires or sensors o f the p robe .Lines are fa i red through the d i sc re t e data po in t s . The sYmbols on the curves areonly used to iden t i fy the var ious mean flow r a t e s each f a i r ed curve inc ludes data a tevery 5 of yaw angle . The top plo t s of f igures 5 a t o 5 c show the ca lcu la t edflow angle 8 with respec t to t h a t wire . When 8 90, the veloc i ty i s pe r pendicu la r to the axis of the wire . The d i f f e r en t curves in the bottom p lo t s off igures Sea to S c are fo r d i f f e r en t mass flow pV F ig ure s S ea , S b , and S care fo r wires 1, 2, ,and 3, r e spec t i ve l y , of the probe. The wires are numbered cons ec uti ve ly i n a c lockwise d i rec t i on when looking from the r ea r of the probe. Inf igure 5, the number one wire was a l igned ve r t i c a l l y . The f igure shows t h a t maximum h ot -w ir e o utp ut cool ing occurs when the f lu id flow i s perpendicu la r to the wire8 = 90 . Discont inu i t i es in the o utp ut c oo lin g ra te or vo l t s suppl ied curves arei nd ica t ions of flow in te r fe rence . For example, fo r wire number one in f igure 5 at he re i s flow i n t e r f e rence for a probe yaw angle of about 75. Figure 5 also showst h a t some of the i n t e r f e rences are veloc i ty dependent r a t he r than geometrydependent. When the i n t e r f e rence occurs a t a l l mass flow ra tes a t the same yawangle ~ t i s pr imar i ly a geometr ic i n t e r f e rence e . g . , f ig . 5 b , ~ 100 .When the i n t e r f e rence occurs a t d i f f e r en t mass flow r a t e s , t i s veloc i ty dependent e . g . , f ig . S b , -24 or 26 . mentioned previous ly , the output datapresented a re a cc ura te to 0.5 percent of mean value w ith a conf idence l im i t of95 percent : t he re fo re , the noted e f f ec t cannot be a t t r ibu ted t o er rors i n dataacquis i t ion .

    For the lowest mass flow pV = 10.89 , t here are two curves . These two curveswere obta ined by cycl ing the ca l ib ra t ion r ig a t yaw ra tes of 6 and 2 seconds percyc le . I t was expected t h a t the l a rge s t di f fe rence induced by the cycl ing r a t e wouldoccur a t the lowest flow r a t e . seen in the f i gu re , the curves fo r the two cyc l ingr a t e s a re near ly i d en t i c a l . Therefore , t i s concluded t h a t for the lowes t mass flowt e s t ed , the cycl ing ra te or yawing veloc i ty had very l ttl e f fec t on wire output .

    Figure 5 a l so shows two curves fo r a mass flow r a t e pV of 21.81. These twocurves were obta ined from data taken on d i f f e r en t days . Differences i n these curvesprov ide an i nd ica t ion of c a li b ra ti o n r e p e at a b il it y and wire de te r io ra t ion with usage.Figure 5 b fo r wire 2 i nd i ca t e s some unexpla inable s h i f t in the mean value . Theother two sensors on th e probe do i nd i ca t e some d i f f e rences , bu t they are r e l a t ive lysmall ~ 0 5 percen t .

    7

  • 8/12/2019 Hot Wire Nasa Calibration

    12/52

    For anyone curve in f igure 5, the mass flow ra te i s cons tan t ; t he re fo re , theoutput wire cool ing or power suppl ied i s d i re c tl y r el at ed to flow ang le 8 withr e spec t to each wire . When 8 i s h ig he st , the cool ing i s highes t ; when 8 i slow est, the cool ing i s lowest . The l a rge r the v ar ia tio n in 8 w ith probe yaw, thel a rger the v ar i a tio n in ou tpu t vo l t s squared . The var ia t ion i n 8 was ca lcu la tedfrom the known geometry of each sensor on the probe and the measured probe yawpos i t i on .

    The data presented in f igure 6 fol low the same format as thef igure 5. The f igure 6 data a re fo r the same probe; however wirelooking from the r ea r , wire i s to the l e f t . In f igure 5 wireF igure 6 a shows t h a t t here i s a l inear r e l a t i onsh i p between 8expected. A ls o, b ec au se of probe symmetry, wires 2 and 3 shouldca l geometr ical cha rac t e r i s t i c s with v ar i a tio n in yaw angle .

    d ata p re se nt ed in i s hor i zonta l was ve r t i c a l .and ~ a s would be

    and do have i d en t i -

    Figure 6 shows many of the same cha rac t e r i s t i c s al ready seen in f igure 5.For example, some of the cool ing i n t e r fe rences are s l igh t ly veloc i ty dependent f ig . 6 a , ~ = 75 and some i n t e r fe rences a re geometr ic f i g . 6 b , = -133 , orf ig . 6 c , ~ = -123 . The outpu t vo l t s squared curves show t h a t the geometr ici n t e r f e rences fo r wires 2 and 3 around ~ = -123 a re not the same. This may bebecause the wires are symmetr ical and the s en so r s up po rt prongs a re no t .

    The var ia t ion i n output i s a funct ion of the var ia t ion in the flow angle 8with r e spec t to each wire . In genera l , f igure 6 shows t ha t the same w ire w ith equalva lues of 8 bu t with d i f f e r en t values of can have d i f f e r en t cool ing r a t e s .This i s i nd ica t ive of the di f fe rences in flow i n t e r fe rence over the extreme yaw-anglerange. For example, i n f igure 6 a fo r p = 15.13, the maximum output values fo r8 = 90 a t ~ = -143 and 35 a re not equa l . Likewise , fo r the same wire and thesame p the minimum output values are unequal fo r 8 0 a t -54 and 120.Fur the r i nd ica t ions of flow i n t e r fe rence are shown by comparing the ca lcu la t ed yawang les fo r minimum cool ing 8 = 0 with the measured va lues . For example, in f ig ure 6 a the ca lcu la t ed yaw angles fo r minimum co olin g are -52 .7 and 127.7 , whereasthe measured minimum cool ing i s a t about = -48 and 130. This same e f f ec t can beseen in o the r data e . g . , f i g . 7 c . This implies t h a t the probe yaw angles ~should be r e s t r i c t ed to perhaps 500 t o 700. Also, the angular flow l im i t a t i onsdescr ibed in f igu re 4, which a re based on p ro be g eome tr y, may be too r e s t r i c t i ve .

    Figure 7 presen t s the response cha rac t e r i s t i c s of a second th ree -wi re probei den t i c a l to the probe used to obta in the data presented i n f igures 5 and 6. Thisprobe had wire a l igned ve r t i c a l ly ; t herefore the data can be compared d i r ec t l y withthe data in f igure 5. The r e su l t s a re s im i l a r fo r the two probes .

    In addi t ion t o the three-wire probes , the s ing le -wi re probe shown in f igure 1 bwas t e s ted on the ca l i b r a t i on r i g . Figure 8 a shows the response fo r t h i s probewith the wire a l igned ve r t i c a l ly , and f igure 8 b shows the response with the wireal igned hor izon ta l ly . In f igure 8 a , the mass flow d i rec t i on i s always a t 90 tothe wire the sensor i s yawed about i t s axis as the ca l ib ra t ion r ig cycles in yaw .Figure 8 a shows t h a t the o utp ut c oo lin g r a t e i s near ly cons tan t wi th in pe r cent as the yaw var ies . There i s severe i n t e r fe rence by th e w ire -p ro ng su pp orts a ton e of the extreme yaw pos i t i ons ~ = 111 and not a t the o the r . This would beexpected from th e p hy sic al c on str uc ti on of t h i s type probe.

    In f igure 8 b , where the s ing le wire i s o r ie n te d ho r iz o n ta l ly , the massang le 8 va r i e s l inear ly with the probe yaw angle . Note the symmetry in thecool ing r a t e , even fo r the poin t s of minimum cool ing a t ~ 85 and 900.8

    flowoutpu tThe

  • 8/12/2019 Hot Wire Nasa Calibration

    13/52

    data in f igu re 8 fo r th e s ingle-wire probe ind ica te a lack of in te r ferences asexpec ted . This f ac t i s i l l u s t r a t ed by the smoothness of the cu rv es w ith var i a t i onsin e i the r mass flow ra te or yaw angle .

    Comparison of Two Similar T hr ee -W i re P ro be sA comparison of the re sp on se o f the two three-wire probes which are of i d en t i c a l

    model and manufacture i s presented in f igure 9. The d ata p re se nt ed in f igure 9 wereobta ined by of f se t t i ng the mean vol tage l eve ls by th e same amount fo r a l l th ree wireson one probe. This was done to obta in a r e l a t i ve comparison fo r the two probes . Thes lopes of these curves ind ica te the capab i l i t y of determining flow di rec t ion from theth ree curves fo r anyone sensor . Since the slopes fo r each wire on the two probesare about the same, the re i s a s t rong s imi l a r i t y in the ind iv idua l w ires of e le twoprobes .

    The m ajor flow in te r ferences seem to occur a t the same probe yaw ang les . Mostnot iceable i s the l a r ge r number of in te r ferences fo r probe 1 as compared withprobe 2. These d i f fe rences are most probably due to the hot -wire- -prong j o in tconnect ion d i f fe rences on a very sm all sca l e . This seems apparent fo r a l l th reewires on probe 1, especia l ly fo r w i r ~ Although these d i f fe rences are on the orderof only a few percen t , t he y u nd er sc or e th e need fo r ca l ib ra t ing each ind iv idua l probethrough a range of ve loc i t i e s and yaw and r o l l angles i f accuracy i s to bea t t a ined . This ca l ib ra t ion should be extensive enough to obta in da ta - reduc t ioncons tan ts and an a sse ss me nt o f the in te r ference fo r each probe. Unfor tunate ly , anys ingle probe may not l a s t long enough to perform the ca l i b r a t i on as i s the casehere in with probe 1, which fa i led during ca l i b r a ti on .

    Veloci ty Magnitude and Direc t ion Pred ic t ionThroughout th i s repor t th e d is cu ss io n has been assoc ia ted with mass flow r a tepV r a t he r than ve loc i t y . There are a number of equ iva len t ways to d es crib e th es e

    t e rms. F or e xa mp le , when th e d en si ty i s known, the mass flow can be conver tedd i r ec t ly to ve loc i t y . Another common procedure i s to conver t the ac tua l mass flowr a te to tha t of s tandard-densi ty mass flow r a t e . With th i s unders tanding the massflow ra te and veloc i ty terms are used in terchangeably here in .

    To eva lua te th e capabi l i ty of determining the magnitude of the veloc i ty from thethree-wire probe , th e fol lowing procedure i s normally used. From equat ion 1 o freference where the mass flow i s perpend icu la r to the wire sensor , i ee = 90 ,

    By solv ing equat ion 1 fo r th e mass flow r a t e pv and r eca l l i ngtempera ture opera t ion Ts i s cons tan t fo r the cur ren t t e s t Teconstant t h a t Ts - Te can be considered cons t an t , equat ion 1

    pV 1/2 = bE 2 a

    1

    tha t fo r cons tan t i s su f f i c ien t lycan be rewr i t t en as

    9

  • 8/12/2019 Hot Wire Nasa Calibration

    14/52

    where th e c o n s t a n t s a and b a r e de te rmined from t h e d a t a t a b u l a t e d f o r t h e t e s t sh e r e i n . Since one probe was t e s t e d with w i r e 1 i n two p o s i t i o n s f i g s . 5 and 6 ) ,t h e a and b c o n s t a n t s were de te rmined s e p a r a t e l y f o r both s e r i e s o f t e s t s . Asrecommended by t h e m a n u f a c t u r e r , each wire on t h e probe should be c a l i b r a t e d with t h emass flow a t 9 t o t h e wire 8 = 90 Data a t some probe yaw p o s i t i o n s were d i s carded because flow i n t e r f e r e n c e was p r e s e n t . See f i g s . 5 and 6 . ) A f t e r s p e c i f y i n ga p a r t i c u l a r probe yaw p o s i t i o n n e a r 8 = 90 f o r each w i r e , a l l t h e pv d a t a andt h e c o r r e s p o n d i n g E2 e xp e ri m en ta l d a ta were accumulated and a l e a s t - s q u a r e s - f i ts t r a i g h t l i n e through t h e d a t a was determined . The c o n s t a n t s a and b c o r r e s p o n dt o t h e i n t e r c e p t and s l o p e o f t h e l e a s t - s q u a r e s - f i t l i n e . Table 2 summarizes t h er e s u l t s . In t a b l e 2 t h e r e a r e f o u r v a l u e s o f t h e a and b c o n s t a n t s f o r each wireon t h e p ro b e. Normal ly , t h e c a l i b r a t i o n p r o c e d u r e i s t o de te rmine only one v a l u e f o reach w i r e . For any o f t h e t h r e e w ir e s , t h e d i f f e r e n c e s between t h e c o n s t a n t s a r esmal l f o r t h e same probe r o l l p o s i t i o n as i n d i c a t e d by h o r i z o n t a l o r v e r t i c a l p o s i t i o n o f w ire 1 . There i s a r e l a t i v e l y l a r g e d i f f e r e n c e between t h e c o ns t a n t s f o rt h e same wire when t h e probe r o l l p o s i t i o n s a r e d i f f e r e n t . T h i s v a r i a t i o n f o r t h ea and b c o n s t a n t s , e s p e c i a l l y f o r w i r e s 2 and 3, c o u l d be a t t r i b u t e d t od e t e r i o r a t i o n o f t h e i n d i v i d u a l w i r e s with u s a g e . The f i r s t s e r i e s o f t e s t s werec ondu ct ed w it h t h e probe r o l l a n g l e such t h a t wire 1 was v e r t i c a l f i g . 5 . Thiss e r i e s o f t e s t s r e q u i r e d about 3 hours o f w i n d - t u n n e l a i r blowing a c ro ss t h e p r o b e .While c o n d u c t i n g t h e second s e r i e s o f t e s t s wi th t h e probe r o l l a n g l e such t h a tw i r e 1 was h o r i z o n t a l ) , w i r e s 2 and 3 f a i l e d . The i m p l i c a t i o n i s t h a t t h e w i r eendurance i s n o t s u f f i c i e n t t o l a s t through a complete c a l i b r a t i o n . The w i r e s wereo p e r a t i n g a t a c c e p t a b l e t e m p e r a t u r e l i m i t s ; however , smal l p a r t i c l e s may have s t r u c kt h e s e two w i r e s on t h e p r o b e .

    V e l o c i t y magnitude c a l i b r a t i o n . - To c o n t i n u e t h e e va lu at io n o f t h e mass flowp r e d i c t i o n a c c u r a c y , t h e tw o v a l u e s f o r th e c o n s t a n t s a and b de te rmined w i t hw i r e 1 v e r t i c a l , which were almos t t h e same, were averaged t o g e t h e r . The mass flowr a t e s de te rmined from each o f t h e t h r e e w i r e s can be combined i n t o a t o t a l mass flowby u s i n g t h e f o l l o w i n g e q u a t i o n from s e c t i o n 7.3C o f r e f e r e n c e 12:

    2pV + 2pV2 22 + K 3

    During th e d e r i v a t i o n o f t h i s e q u a t i o n , i s assumed t h a t th e v alu es o f K f o r eachwire a r e a l l e q u a l and t h a t t h e i n d i v i d u a l w i r e s a re p er p e nd ic u la r t o each o t h e r .

    For one probe yaw angle f i g . 5 and t h e a and b c o n s t a n t s f o r each wireand t h e o u tp u t v o l t s squared f o r each w i r e , pVi 2 c o u l d be de te rmined by u s i n ge q u a t i o n 2 ) . The numera tor o f t h e r ig h t- ha n d s i d e o f e q ua t i o n 3 c o u l d t h e n bec a l c u l a t e d . c a l c u l a t e d v a l u e c o u l d t h e n be compared w i t h t h e a c t u a l measuredmass flow r a t e l e f t - h a n d s i d e o f eq. 3 . These r e s u l t s a r e shown i n f i g u r e 1 f o rv a r i o u s probe yaw a n g l e s . Also shown i n f i g u r e 1 a r e l e a s t - s q u a r e s - f i t s t r a i g h tl i n e s through th e d a t a which a re r ep re se nt e d by

    10

    pu 2 2pv. + C1 4

  • 8/12/2019 Hot Wire Nasa Calibration

    15/52

    c and d a re cons t an t s . The c and d c on sta nts a re t abu la ted in t ab le 3,shows t h a t the cons tan t c the i n t e r c ep t fo r th e s t r a i gh t l i nes in f i g . 10

    s sm all as would be expected . This shows e l a t th e computed mass flow from the i nd i wire ou tpu t i s near ly zero when th e ac tu a l flow i s zero . The c or re la tio n in10 n eg le cte d th e denominator on th e r ig ht-h an d s id e o f equat ion 3 , 2 + K2 .

    va lue cor responds to the value of d determined from the l e a s t - s qua r e s - f i tl i n e . Solv ing fo r K2 from d = 1 / 2 K2 r e su l t s in n eg at iv e v al ue s

    o r K2 , which i s con t r a ry to recommended va lues e .g ., r e f. 13 . Using th e recomvalue of K2 as 0.02 r e su l t s in d = 1 / 2 K2 = 0.495 . Comparing t h i s

    with the d value in t a b l e 3, it can be seen t h a t th e capab i l i t y of us ing th efo r p red i c t i ng th e mass flow r a t e good if th e pred ic t ed hot-wire values

    re with in 3 percen t of the measured va lues . The same a and b cons tan t s used inhe above cor r e l a t i on , which i s based on da ta from f igu re 5, were used to pr ed i c t the

    r a t e s fo r th e probe t e s t s w ith w ire 1 hor izon ta l as fo r f i g . 6 . As might befrom th e p re vio us d isc uss io n of probe de t e r i o r a t i on , th e co r r e l a t i on o f theand ac tu a l flow r a t e s was poor . When a and b cons tan t s determined from

    w ith w ire 1 ho r i zon t a l were used see t ab le 2 , th e co r r e l a t i on d id no t improve

    Veloci ty d i r e c t i on ca l i b r a t i on . - For an eva lua t ion of th e use of the t h r ee -wi reto pr ed i c t th e flow d i r ec t i on , th e fo llowin g procedure was used. The f low

    de te rmina t ion with r e spec t to the probe i s dependent upon th e capab i l i t y o ft ermi nin g t he flow ang le 8 with r espec t to th e i nd iv id u a l w i re s. From th e s i n e

    aw r e l a t i onsh ip in r e f e r ence 12, it can be determined t h a t

    2pV 8 2 2 2 = s in 8 K cos 82 pv 8=90 0 r u s in g e qu at io n 2 , equat ion 5 can be rewr i t t en as

    6

    func t ion r ep resen t s the r e l a t i on sh ip between the maximum mass flow coo l ing r a t ePV8=90 0 and th e mass flow coo l ing r a t e when the f l u i d i s moving a t some ang le 8r e spec t t o th e i nd i v i dua l wire . Equat ion 6 can be used to solve fo r th e flow

    8 with r e spec t to one o f the wires fo r any measured ou tpu t vo l t s squared ,e le cons tan t K and the maximum coo l ing r a t e PV8=90 0 have been determined .e cons tan t K i s a func t ion of flow r a t e pV o r and was determined here in as

    funct ion of flow r a t e . Cons tan t s a and b fo r each wire have a l ready beenand a re known to prov ide good r e su l t s fo r p re di ct i ng th e mass flow r a t e

    o r th e probe descr ibed in f igu re 5 and t a b l e 2. From f igu re 5, tw o probe yaw angleschosen t h a t were known to be f ree of i n t e r f e r ence ; one yaw ang le cor responds to

    he maximum coo l ing 8 = 90 0 and the o the r yaw a ng le c or re sp on ds to near-minimumFrom the measured ou tpu t a t t hese two probe yaw angles and with th e known

    and b cons tan ts , pV 2 and PV8=90 0 2 were determined . These quan t i t i e sin t u rn used with th e known wire flow ang le 8 and equa t ion 6 to determinehe cons tan t K. The cons tan t K was determined fo r both the maximum and minimum

    flow r a t e s fo r each wire , and th e squares of t hese values are t abu la ted in

  • 8/12/2019 Hot Wire Nasa Calibration

    16/52

    t ab le 4. As s t a t ed previous ly , with K known, equat ion 6 was used to compute theflow angle e with r e spec t to each wire from the measured wire output vo l t ssquared a t numerous probe yaw angles f i g . 5 . From the top por t ion of f igures 5 ato 5 c , the geometr ic flow angle e was a lso determined fo r the same probe yawang le . The r e su l t i ng comparison of the computed geometr ic angles and the flow anglesfrom appl i ca t ion of the ca l ib ra t ion data and ca lcu la t ed from equat ion 6 a re shownin f igure 11.

    Figures 11 a , 11 b , and 11 c present the co r re l a t i on for each of the th reewires on the probe . These data correspond to the p ro be r es po ns e data shown in f ig ure 5, where wire was al igned ve r t i c a l ly . The co r re l a t i on for the maximum andminimum flow ra tes a re both shown in f igu re 11. The data presented inc lude probeyawing i n both d i r ec t i ons . Also, data a re included fo r probe opera t ion well beyondi t s opera t ing l im i t s , namely with yaw angles grea te r than 90 f lagged symbols orflow from the r ea r of the probe. The so l i d symbols are data poin t s from f igure 5t ha t a re suspected o f in vo lv in g probe flow in te r fe rence . Figure a l so shows thei d ea l c o rr e la ti on l i n e . While equat ion 6 i s simple to use and i s recommended bythe manufacturers , to obta in more accura te r e su l t s a complete ca l i b r a t i on with avary ing K value or more complex equat ion should be used e .g . , see r e f s . 7, 8 , 9,10, and 14 .

    Figure 11 a , which i s fo r wire 1, inc ludes flow angles e from 55 to 90,which correspond to the e values in f igu re 5 a . The data in f igure 11 a showgood co r r e l a t i on , w ith only a few data poin t s showing an er ror grea t e r than 5. Thetwo data po in ts in f igu re 11 a where flow i n t e r f e rence i s suspec ted so l id symbolsshow r e l a t i ve ly poor cor re la t ion . Without some knowledge of flow i n t e r fe rence orprobe l im i t a t i ons , probe o pe ra tio n i n th i s region would r e su l t i n poor accuracy .Note the la r3e negat ive values of K fo r wire in tab le 4. Of c ou rse , thesevalues of K do not appreciab ly a f f ec t the co r r e l a t i on . This i s because of ther e l a t ive ly l a rge va lues of e F or ex ample, from equat ion 6 , with e 55 asin f igure 11 a , the s in e term i s dominant compared with the cos e term.

    Figure 11 b i s fo r wire and corresponds to the data in f igu re 5 b . F ig ure 11 b shows f a i r co r re l a t i on a t r e l a t ive ly low flow angle s , 25 < e < 35, andpoor co r re l a t i on a t l a rge flow ang les , 60 < e < 80. The poor co r re l a t i on thev ic in i ty of e = 90 i s not unde rs tood becau se the same values of a and b weresuccessfu l ly p red ic ted in the mass flow in f igure 10. The co r re l a t i on in f ig -ure 11 b shows f low-angle e r ro r s up to 20.

    Figure 11 c present s the co r re l a t i on for wire 3 on the probe and cor responds tothe response data in f igure 5 c . The data for probe opera t ion with suspec ted flowi n t e r f e rence and fo r extreme probe yaw angles do not seem to a f fec t the cor re la t ion .In gene ra l , the cor re la t ion i nd ica tes t h a t the flow angles fo r t h i s sensor can bepred ic t ed with in 5 , which i s cons idered good.

    I t i s concluded t h a t for the th ree -wi re probe t e s t ed he re in , fo r prob e flowangles l e s s than 30 , and with a de qu at e p ro be ca l i b r a t i on , the mass flow ra te canbe predic ted with in a few percent f i g . 10 . However, with inadequate probe ca l ib ra t i on , the flow angles may have er rors as la rge as 20. Furthermore, withou t a comp le t e probe ca l i b r a t i on , e r ro r s of a t le a s t t h i s magnitude should be expec ted . withthe flow angle d et ermi ne d w it h r e spec t t o each w ire , the t o t a l veloc i ty vector i scompletely def ined in space, and t h i s vector can be reso lved i n to any des i redcoordina te system.

    12

  • 8/12/2019 Hot Wire Nasa Calibration

    17/52

    To complete the f low-angle ca l ib ra t ion s tudy , the s ing le -wi re probe w ith theire i n the ho ri zo n ta l p o s it io n was eva lua ted . The cor re la t ion i s shown in f igure 12hich was determined from the sensor response data shown i n f igure 8 b . With the

    s ing le wire hor i zon t a l , the probe yaw angle i s equal to the mass flow angle withr e spec t to the wire . C orre la tio n fo r the maximum and minimum flow r a t e s are shown.The data p r es en t ed i nc lude probe yaw angles i n both d i r ec t i ons . The data i n f i g -ure 2 show t h a t the f low-angle va lues predic ted from the sensor response are a lmosta l l lower than the i dea l va lues . An e r ro r i n t he d et erm in a ti on of K2 would have amore pronounced e f fec t on the c o rr el at io n e rr o rs fo r the smalle r values of e andwould have l ttl e f f e c t a t the l a rge r va lues o f e From equat ion 5 fo r eapproaching 90, the s in 2 e approaches and the K 2 . cos2 e approaches 0,whereas fo r e approaching 0, the s in 2 e approaches and the K2 cos 2 eapproaches K2 Therefore , the r e su l ti n g c o rr el at io n er rors shown i n f igu re 2 mustbe a t t r ibu ted to the determinat ion of pV/PVe=90 2 in equat ion 5 . I f a minimumof cor re la t ion data had been recorded to determine t he a p pr op ri at e da ta - reduc t ioncons tan t s , the flow angle determined with a s ing le -wi re probe would be approximately5 i n e r ro r .

    CONCLUDING REM RKS

    Hot-wire ca l i b r a t i on t e s t s were conducted with a newly developed t e s t r i g . Thisprocedure cons i s t s of the record ing of th e analog hot-wire output alo ng w ith asquare-wave-generator s i gna l as the probe cycles cont inuously through a range of flowangle s . The data are then e l ec t ro n i ca l ly d i gi ti ze d and analyzed a t i n t e rva l sd ic ta ted by the square-wave gene ra tor . The t e s t r ig u ti l iz ed was e ffe ct iv e inacqui r ing and process ing a l a rge amount of data i n a r e l a t ive ly sho r t per iod of t ime.

    A comparison of two probes of i den t i c a l model and manufacture i nd ica ted somed if fe re nc es in response and flow i n t e r f e rence . A s t a t i s t i c a l ana lys i s of the sca t t e rin the ind iv idua l da ta poin t s vo l t s i nd i ca t e s a s ca t t e r of about 4 percen t . Asshown by i ncreas ing the number of poin t s averaged, the sca t t e r of the mean values canbe reduced to approximately percent with a 95-percent -confidence l im i t .

    Flow i n t e r f e rence i s one major cont r ibu tor of e r ro r in using a th ree -wi re probewithou t an extens ive ca l i b r a t i on or withou t severe ly l imi t ing the opera t ion of theprobe. Because of the l imi t ed endurance of the probe, t i s s t rongly recommendedt h a t preca l ib ra t ions and pos tca l ib ra t ions be performed even when the ca l i b r a t i on i scu r ta i l ed . When a comparison of the two ca l i b r a t i ons do not ag ree , the data shouldnot be used. With pre ca l ib ra t ions and pos tca l ib ra t ions and opera t ion f low-anglel im i t s with re sp ec t to the ax is of the probe of 30, 3-percent accuracy indetermining mass flow r a t e s was a t t a ined . F urth erm ore , w ith on ly l imi t ed probeca l ib ra t ion , f low-angle er rors of 20 were observed. However, with extens iveca l ib ra t ions , these f low-angle e r ro r s can be decreased to 5.

    Langley Research CenterAeronaut ics and Space Adminis t ra t ion

    Hampton, V 23665January 28, 1982

    3

  • 8/12/2019 Hot Wire Nasa Calibration

    18/52

  • 8/12/2019 Hot Wire Nasa Calibration

    19/52

    APPENDIX.An unknown veloc l ty vec to r V can be resolved in to components with re spec t to

    th e probe coord ina te system by determining the r o l l angle and yaw angle shownin th e sketch which fo l lows:

    //- I / ~

    < iVc

    A

    Since only the angle between a ho t wire and th e veloc i ty vec to r i s des i red th emagnitude of the ve loc i ty vector i s s e t equal to one IVI = 1 . The t angen t o f ei s equal to the component of the ve loc i ty perpend icu la r to the wire divided by thecomponent pa r a l l e l to the w ire . The vector dot produc t of V and HW r e su l t s in th eve loc i t y component pa r a l l e l to the wire and th e corresponding vector cross produc tr e su l t s in th e veloc i ty perpendicular to the w ire . The magnitude of the c rossproduct i s the square roo t of the sum of th e square o f each component. Thereforefo r HW

    i 2 2 < i 2 2 _ 2 f2 r 2 3 c s 3 c 3 < ista n eHW V x HW A2V HW

    15

  • 8/12/2019 Hot Wire Nasa Calibration

    20/52

    APPENDIXand for HW2 an d HW3

    2c6

    1 2- c ~ O}s.c]

    A3

    ~ 1 2 2 2 ~ r a Os s c]s ~ < I 2 ~ < I 2 c2 {3 s 3 c

    t n eHW3 A 4 e Os

  • 8/12/2019 Hot Wire Nasa Calibration

    21/52

    REFERENCES1. Rorke, James B.; and Moffi t t , Robert C.: Wind Tunnel Simulation of Ful l ScaleVortices. NASA CR-2180, 1973.2 . Jacobsen , Robert A.: Hot-Wire Anemometry for In-Fl ight Measurement of Aircraf t

    Wake Vortices. Advancements in Fl ight Tes t Engineer ing, Fif th Annual SymposiumProceedings, Soc. Flight Test Eng., c.1974, pp. 4-13 - 4-24.3. Corsigl ia , Victor R .; Ja cobse n, Robert A.; and Chigier, Norman: An ExperimentalInvest igat ion of Trai l ing Vortices Behind a Wing With a Vortex Dissipator .

    NASA paper presented a t the Symposium on Aircraf t Wake Turbulence Seat t le ,Wash. , Sept. 1970.4. Zalay, Andrew D.; White, Richard P.; and Balcerak, John C.: Invest igat ion of

    Viscous L ine Vortices With and Without the Inject ion of Core Turbulence.Rep. 74-01 Contract No. N00014-71-C-0226 , Rochester Appl. Sci. Assoc. , Inc . ,Feb. 1974. Available from DTIC as 785 256.

    5. Yavuzkurt , Savas ; Crawford, Michael E.; and Moffat, Robert J . : Real-Time HotWire Measurements in Three-Dimensional Flows. Symposium on Turbulence, G K.Patterson and J . L. Zakin, eds . , Science Press, c.1979, pp. 265-279.6. Larsen, Soren E.; Mathiassen, Olaf; and Busch, Niels E.: Analysis of Data From3-Dimensional Hot-Wire Probes Using Comparison With Profi le Instrumentat ion forCalibrat ion. Proceedings of the Dynamic Flow Conference 1978 on Dynamic

    Measurements in Unsteady Flows, c.1978, pp. 591-597.7. Champagne F. H.; Sleicher , C. A.; and Wehrmann o. H.: Turbulence Measurements

    with Inclined Hot-Wires. Pt. 1. Heat Transfer Experiments with Inclined HotWire. J . Fluid Mech., vol . 28 , p t. 1, Apr. 12, 1967, pp. 153-175.

    8. Gilmore, D C.: The Probe I nt er fe rence Ef fe c t of Hot Wire Anemomete rs. TN. 67-3D. R. B. Grant No. 9551-12 , McGill Univ. Montreal , July 1967.9. Friehe, C. A.; and Schwarz, W H.:Cylindrical Anemometer Sensors.

    no. 4, Dec. 1968, pp. 655-662.Deviations From the Cosine Law for YawedTrans. ASME Sere E: J . Appl. Mech., vol . 35,

    10. Kjellstrom, Bjorn; andHot-wire Anemometer.1968.

    Hedberg, Stel lan: Calibrat ion Experiments With a DISAAE-338, Aktiebolaget Atomenergi Stockholm, Sweden , Nov.

    11. Coll is , D C.; and Williams, M J . : Two-Dimensional Convection From HeatedWires a t Low Reynolds Numbers. J . Fluid Mech., vol . 6, p t . 3, Oct. 1959,pp. 357-384.

    12. Hot Film and Hot Wire Anemometry - Theory and Applicat ion. Bull . TB5 ThermoSystems, Inc.

    13. Webster, C. A. G.: A Note on the Sensi t ivi ty to Yaw of a Hot-Wire Anemometer.J . Fluid Mech., vol . 13, p t . 2, June 1962, pp. 307-312.

    14. Delleur, Jacques W.: Flow Direction Measurement by Hot-wire Anemometry. J . Eng.Mech. Div., American Soc. Civil Eng., vol . 92, no. EM4 Aug. 1966, pp. 45-70.17

  • 8/12/2019 Hot Wire Nasa Calibration

    22/52

    18

    TABLE 1 PROBE YAW POSITION CALIBRATION

    Probe posi t ion number 1 Probe yaw angle2

    148405 12340984015 73402 484025 23403 12035 26204 512045 762050 1012055 126206 1512061 15620

    1Each probe posi t ion number represents a 5 yawang le inc remen t.2posi t ive yaw angles represent flow from l t ofprobe axis when looking upstream.

  • 8/12/2019 Hot Wire Nasa Calibration

    23/52

    TABLE 2 . ONST NTS FOR USE WITH EQU TION 2

    Probe r o l l Probe yawpos i t i on angle deg a b S deg

    Wire 1Wire 1 98 .7 -0 .2738 0.7216 85.0

    ve r t i c a l 88 .7 .2575 .7044 90.7Wire 1 26.3 -0 .2470 0.7384 81.1

    hor i zonta l 41.3 .2464 .7275 83.9Wire 2

    Wire 1 43 .7 -0 .1611 0.4608 81.4ve r t i c a l 38 .7 - .1707 .4601 89.5

    Wire 1 58 .7 -0 .2448 0.6892 87.2hor i zon t a l 121.3 - .2581 .6878 87.2

    Wire 3Wire 1 31.3 -0 .2206 0.6678 82.8

    ve r t i c a l 41.3 .2235 .6675 88Wire 1 63 .7 -0 .3081 0.8092 83.7

    hor i zon t a l 53 .7 .3029 .8031 89.2

    19

  • 8/12/2019 Hot Wire Nasa Calibration

    24/52

    20

    TABLE 3 CONST NTS FOR USE WITH EQU TION 4

    V g c 0.4993 0.001581 .5173 .00121

    -10 .5022 .0014920 .5164 .00134

    -20 .5040 .00090430 .4980 .00129

    -30 .4752 .00133

    T LE 4 CONST NTS FOR USE WITH EQU TION 6

    Probe/sensor pV kg/m 2 s K2Three-wire probe , wire 1 43.82 -0 .4034

    v e r t i c l ~ wire 1 10.89 - .7244Three-wire p r o e ~ wire 1 43.82 0.1471

    v e r t i c l ~ wire 2 10.89 .1536Three-wire p r o e ~ wire 1 43.82 -0 .02485

    v e r t i c l ~ ~ r i r 3 10.89 - .04879Sing le wi re sensor 43.30 0.00330Single wire sensor 10.82 .00499

  • 8/12/2019 Hot Wire Nasa Calibration

    25/52

    a Thr ee -w ir e p ro b e.F igure 1 w types of hot wi re probes t e s t ed

    L-77-1073

    21

  • 8/12/2019 Hot Wire Nasa Calibration

    26/52

    22

    b ingle wire probe.Figure 1 Concluded.

    L 77 1 7

  • 8/12/2019 Hot Wire Nasa Calibration

    27/52

    Wind tunnel o o r ~

    ot wireprobe

    Yaw angle position ndicatorsqua re w ve photo ell systemYaw angle drive motor

    L 77 1069 1Figure 2 Hot wire c a lib ra tio n r ig

    L 76 1321 1 igure 3 Low v e loc i ty ca l i b r a t i on wind tunne l a t the Langley Research Center

    23

  • 8/12/2019 Hot Wire Nasa Calibration

    28/52

    p

    4

    Figure 4 inimum angle e with re spec t to and Probe or i en t t i on m S so w n n cen te r of p l o t

  • 8/12/2019 Hot Wire Nasa Calibration

    29/52

    90 80 \Q0

    q60

    40

    2

    10.89 6 sec/cyclee \0.89 20 sec/cycle B 16.40

    21 81 day A 27.35

    33.18 38.44 e 43.82

    21 81 day 215 20000050100150200

    .6

    O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - -1.2

    1.0 ~0ZN 8w

    deg

    a) Wire Figure 5 Response of a three-wire hot-wire probe for various mass flow ra tesand probe yaw angles. Wire i s aligned ver t ica l ly . Upper figure displaystheoret ica l angle between mass flow and hot wire.

    25

  • 8/12/2019 Hot Wire Nasa Calibration

    30/52

    9080

    g 60C

    40

    20

    Ol L l . . L I ---l.. l l

    1.6

    1.4 ;::

    0 1.2N

    1.0

    .8

    6

    10.89 6 sec/cycle

    e 10.89 20 sec/cycleB 16.40

    21 8 day I27.35

    h 33.18--- - 8 448 43. 82

    21 81 day 24

    I-200 -150 -100 \-50 o 50 ,deg

    b) Wire 2.

    100 150 200

    26

    Figure 5 Cont inued.

  • 8/12/2019 Hot Wire Nasa Calibration

    31/52

  • 8/12/2019 Hot Wire Nasa Calibration

    32/52

    9080

    CZ 60

    4200 150 100 50 0 50 100 150 200

    t ga Wire 1.

    ~ i g u r 6. Response of a t h r ~ e w i r e ho t i r e probe fo r v ario us mass flow ra tes andprobe ya a n g l ~ s Wire 1 i s al igned hor i zon t a l l y Upper f igure d isp lays

    ~ h c o r e ~ i c a l angle between mass flow and ho t w ire .

  • 8/12/2019 Hot Wire Nasa Calibration

    33/52

    9080

    60t Tl 0CZ 40

    pV20 O 76

    e 690 -e-- 2 961 2 4 66

    6 71f r1 0 9 18

    :: ::::0 - - 11 97:

    .8LLJ 8 15 13

    .6

    .4200 150 100 50 o

    deg

    50 100 150 200

    b Wire 2.Figure 6 .- Continued.

  • 8/12/2019 Hot Wire Nasa Calibration

    34/52

    90

    \80 1 600

    CZ

    40p

    20 O 76 e 69

    2.96B1.2 4.66---b- 6.71 1.0V>

    h 9.18N tT 11.97Ll .8 e 15.13

    .6

    .4I I I I I I I I I200 150 100 50 50 1 15 200

    lJ degc Wire 3.

    Figure 6 . Concluded.

    3

  • 8/12/2019 Hot Wire Nasa Calibration

    35/52

    90

    80

    C lQC 60

    40

    20

    10 82

    -e - 16 32B 21 62 26 94 32 78h 37 82 tr 43 03 8 48 30

    OL __ - - - J L - - I ---J1 2

    1 0N

    8NUJ

    6

    4I I I I I I I I I

    200 150 100 50 50 5 200 g

    a Wire 1 Figure 7 Response of a second t hr ee wir e ho t w ir e probe for various mass flowra tes and probe yaw angles Wire 1 is aligned ver t ica l ly . Upper figuredisplays theoret ical angle between mass flow and hot w ire

    31

  • 8/12/2019 Hot Wire Nasa Calibration

    36/52

    9080

    60

    40

    20

    10 82

    16 32B 21 62

    26 94 32 78

    37 82 43 03 48 30

    5O0501001502004

    I

    1 0

    O ~ . . . . . L1 2

    8

    NI.LJ

    .6

    degb Wire 2.

    Figure 7 Continued.

    32

  • 8/12/2019 Hot Wire Nasa Calibration

    37/52

    9080

    60 0

    40

    20

    pV10.82

    --e- 16.32B 21 62

    26.94 32 78 h 37.82 r 43. 03--e- 48 306

    1.2

    0. J - - I L I - - .....1.4

    1.00Z

    N .UJ 8

    4200 150 100 50 o 50

    g100 150 200

    c Wire 3.Figure 7 . Concluded.

    33

  • 8/12/2019 Hot Wire Nasa Calibration

    38/52

  • 8/12/2019 Hot Wire Nasa Calibration

    39/52

  • 8/12/2019 Hot Wire Nasa Calibration

    40/52

    pV10 89

    Probe I ----0 27 35 38 44

    10 82Probe 2

  • 8/12/2019 Hot Wire Nasa Calibration

    41/52

    NLLI

    N:::::oZ

    T

    Probe

    Probe 2

    -/

    pV10 89 27 35

    38 44

    10 82 26 94

    37 82

    200 50 g

    b Wire 2.Figure 9 Continued.

    37

  • 8/12/2019 Hot Wire Nasa Calibration

    42/52

  • 8/12/2019 Hot Wire Nasa Calibration

    43/52

    C\Jl ilIC\JE .:s:.C\J

    :::>Q..

    C\JInIC\JE .:s:.

    C\J:::>Q..

    m i l l ~ r l ~ ~ l , , ~ ~ i [ : 'I:; ~ ~ ~ : ~ g :,g :iii ~ ~ ; ~ ~ ~ ~ , iiii ~ ~ ~ , , ~ : : : : ; ~ , ~ r i ~ , ~ , [:[:iii iiii j ~ i [ : l'P I : ~ i [:t: \jJ deg iii: iii ::i: if.'; it : iii: , , ~ : i[:i : ; ~ i iii: i'ii : i ~ : ; i ~ 'ii: iii' i, i [ : ~ : ; 'i:;2000 m m :m ; ~ : ~ ~ _:g IMeasured ~ :m ~ l l i m: ml :m :m ;;;: ;;;-*H ~ 0 : ~ ;i [ : ~ i f ~ ~ l:i liii iii iiB [ : i ~ , : , ~ '2 ~ i i i iff: :ig iii ii: ,,,: ?: -i : [: lil' I iiiill :iF. irE f..f ::1i iii: B' == ILeast-squares-fit sii iii: :;;; [ ; i ~ :iii r..j: I ~ : I :::i i i ~ ~ il :l ? 8 :i ~ i i ~ i :if if : ~ ~ : 'Iit : ilii lif. iiii ~ i i i ~ i i i i ~ H ~ U ~ ~ i l il j : iiii iii i i ~ ~ i i ~ ~ i i :FF ie , ~ ~ ~ i ~ : I:'i I ~ ~ : ~ ', : i ~ ~ ~ ~ i i ~ ~ ~ ~iiE lU 'lil gii iif. Ui L I [:} f: :r , : : ~ :iii iii I*; Y ::i i i i ~ iiI ~ ~ i : ~ ~ i ~ [ : , , ~ ~ i i l ~ i I

    F:ii i : : ~ ~ j j iiii iTt : : ~ i i ~ iii: ;ii :3 ii :;:: iW ;5 ji :i, iii: if ~ ;.;ii : i.j: i' : iiii i : i ~ ii :ii :iii ~ ~ ~ iif, ill ii: Ii' iii m: iii: 'i i 'ii 'iii :Ig ; ~ ~ 2 :tii :Fe: :::; :: i ::l: ; f u : ~ ii iF liil ~ i : ~ : i iii :;: :;:: it : i i::im: ~ ~ j ~ ~ ~ ; ; : r ~ ~ t : ~ ~ ~ ~ ~ ~ P ? : ~ ~ ~ ~ (b) Yaw angle \jJ = + m m;;m ;'li1000 I:ii ::ii i i ~ ~ ' lill : I:: :Fii ~ i i l iiE lit Ji ~ : : : : f::ig;r:i?:2 tt:: .j l;i ,,_: '*. 'i i 'ii, i iii :::':i ~ i : F :ii I:F ~ ~ ~ : i il Ii,

    i i l ~ i ~ iff Iii liri iii i [ : ~ m: fUa 112 [: lEi :tt: - I ip Iill;:: ilii i ;: , ~ i i I iiii : ; ~ : iiii i i i ~ i i ~ i il:: > :iii i ii ::i:~ ~ ~ ~ ~ i l i ; ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ = ; ~ s ; ~ ~ ; f i l i ~ ~ ~ i mi m; lli iW:m:m;m m

    ::E iili tE fil':-2 : , , ~ ill- _ : ~ . , . .::. 11 - . : ; t ; : : ~ I::: ,i::i, ;; ii' : ~ : F l::i ~ , , ~ :i:i i ~ : I i I : ~ i i ~ : ~ : ~iIl::if': :'i; :::: IiiI liii ;;:: : q ~ : _ ~ : _ :::,:iE ill #'i ::-. ::;: Hi: :;; .::: i : : ~ ::'jci ii: liIi :Ii iIIi :II: iili :ii' :i': : I ~ : eli: : ~ ~U Ii. if i ifJ m II ~ , 1 i :::: - -::; ~ . : : ~ ; ~ ; p .. : ., ;:, :,:i:tt:::: if: lsi fii: I'ii ii:: IIlI Ii:: iiii 'Iii ~ i i ~ ~ ~ j if : i:; i: i~ iii ~ r ~ j [:it ~ , . ~ ::;; ::i f:1 f8 fililiE tE. ~ - ' : ; : : iii 'ili I : ; ; ; ~ : g ii S :iii fig : : j ~ I ~ f i ',:: f:1 'iti iii' ~ : i i :rol ifi iii I: i ~ I :~ g ; H W EEHJD gg illi mf gg ~ i i i ::: I;: : 5 : : n : ~ :i l ip ;nl .. ; : : ~ :q; ; ~ i ~ : f: ~ ~ ~ ~ ~ ~ g ~ ~ u ~ U ; ~ l g U ~ l ~ ~ g ~ ; in: ~ i ~ :U++ ::;i fin ffii tiP FP fin mi nn in; :tn tiP fm ml Hr ii mf ,:71 i i ~ ~ fii: mi im m: ; f ~ l ;;i ~ i i i ~ i i i f ~ i i i ; ~ iii; iii

    00 1000 2000 3000 4000 pV 2, (kg m -s)2

    Figure 10 Comparison of ac tua l mass flow ra te (pU) with flow r a te determined fromho t wi re probe for d i f f e r en t probe flow ang les

    39

  • 8/12/2019 Hot Wire Nasa Calibration

    44/52

    4

    enl- l

    Figure 10 Concluded

  • 8/12/2019 Hot Wire Nasa Calibration

    45/52

    90

    8

    70

    6

    50

    8 deg9 30

    20

    EJ El J pV kgfm 2so 43 8o 10 9Ideal correlationSolid symbols are for flow

    interference

    a Three-wire probe w it h w ir e 1 ver t ic l data for wire 1.Figure 11.- Comparison of geomet ri cal angle between mass flow and hot wire and computed flow angle for eachof th e individual wires of a three-wire probe.

  • 8/12/2019 Hot Wire Nasa Calibration

    46/52

    90

    80 EJ

    EJ q

    Q 070

    50

    409 deg

    30

    20

    o

    J

    2V kg m -s )o 43 8o 10 9---Ideal correlationFlagged symbols for probe yawangles greater than 900Solid symbols are for flowinte rfe rence

    20 3 40 50 60 709e deg80 90

    b) Three-wire probe with wire 1 aligned ver t ic l data for wire 2.Figure 11.- Continued.

  • 8/12/2019 Hot Wire Nasa Calibration

    47/52

    9

    8

    7

    6

    50g deg

    pV kg m 2So 43 8o 10.9

    Ideal correlationFlagged symbols for probe yaw anglesgreater than 9 0Solid symbols are for flow interference

    5 6dege7 8 9

    W

    c Three-wire p ro be w ith w ire 1 a l igned ve r t i c a l da ta fo r wire 3 .Figure 11 . Concluded.

  • 8/12/2019 Hot Wire Nasa Calibration

    48/52

    p V kg m so 43 3 1 8 Ideal correlation

    8

    7

    2 3 4 5 6e deg 7 89

    F ig ure 1 2 Comparison of geometrical angle between mass flow and hot wire and computed flow anglefo r a single wire p ~ o e Wire horizontal

  • 8/12/2019 Hot Wire Nasa Calibration

    49/52

  • 8/12/2019 Hot Wire Nasa Calibration

    50/52

    r 1 Report No.NASA TM-83254

    2. Government Accession No. 3. R ec ip ie nt s Ca ta log No.4. Ti tle and SubtitleA CALIBRATION TECHNIQUE FOR A HOT-WIRE-PROBE

    VECTOR ANEMOMETER5. Report Date

    March 19826. P er fo rm in g O rg an iz at io n C od e

    505-31-33-097 Author s)

    James Scheiman, Charles Marple, and David S. Vann8 . P erfo rm ing O rgan izatio n Report No.

    L-1444510. Work Unit No.

    9. P erform in g O rgan izatio n N am e andNASA Lang ley Resear ch CenterHampton, VA 23665

    11. Contract or Grant No.

    12. S po ns or in g A ge nc y N am e and AddressNationa l Aeronaut ics and Space Adminis t ra t ionWashington, DC 20546

    13. Type o f Repo rt and P eriod C ov eredTechnica l Memorandum

    . 14. Spons or ing Age nc y Code

    15. Supplementary Notes

    Abstract

    Cal ib r a t ion t e s t s using hot wires were conducted using a newly developed t e s t r igth at g re at ly reduced the da ta acqu is i t ion t ime . A comparison of mea su re d andcomputed ve loc i ty vec to r magnitude and d i rec t ion i nd ica t e s the necess i ty of comp l e t e probe ca l ib ra t ion to determine flow in te r fe rence and/or opera t ing l imi t a t ionregions Cal ibra t ion r esu l t s ind ica te tha t flow r a tes with 3 percen t accuracy andflow angles with 5 accuracy are a t t a inab le

    18. Distribution StatementUnclass i f ied - Unlimited

    17. Key Words S u g g ~ t e d by Author s))Hot-wire ca l ib ra t ionThree -w i re p ro beVeloc i ty vec tor pred ic t ionAnemometer

    Subjec t Category 35f . : : : = : : ~ _ : _ ~ _ _ : _ : _ . . . . L . . . - - - - - - _ _ _ - - - - - - - - - - - - ~I Security Classif. of this reporti 20. Security C1assif. of this page) 21. No. of Pages 22. Price

    Unclass i f ied Unclass i f ied 45 A03 L L I or sale by the National Technical Information Service Srringfleld Virginia 6 NASA Langl ey , 1982

  • 8/12/2019 Hot Wire Nasa Calibration

    51/52

  • 8/12/2019 Hot Wire Nasa Calibration

    52/52

    National Aeronautics andSpace AdministrationWashington, D.C.20546Official BusinessPenalty for Private Use, 3

    THIRD-CLASS BULK RATE Postage and Fees Paid Iational Aeronautics and pace AdministrationNASA-451U S M IL

    NI\SI\ POSTMASTER: Undeliverable Section 158Postal Manual Do Not Return