Top Banner
An Experiment of GB-SAR An Experiment of GB-SAR Interferometric Measurement Interferometric Measurement of Target Displacement and of Target Displacement and Atmospheric Correction Atmospheric Correction Hoonyol Lee, Jae-Hee Lee Hoonyol Lee, Jae-Hee Lee Kangwon National University, Korea Kangwon National University, Korea Seong-Jun Cho, Nak-Hoon Sung, Jung-Ho Kim Seong-Jun Cho, Nak-Hoon Sung, Jung-Ho Kim Korea Institute of Geoscience and Mineral Korea Institute of Geoscience and Mineral Resources Resources IGARSS2008, Boston, MA, USA
42

Hoonyol Lee, Jae-Hee Lee Kangwon National University, Korea

Jan 02, 2016

Download

Documents

sumitra-chetan

IGARSS2008, Boston, MA, USA. An Experiment of GB-SAR Interferometric Measurement of Target Displacement and Atmospheric Correction. Hoonyol Lee, Jae-Hee Lee Kangwon National University, Korea Seong-Jun Cho, Nak-Hoon Sung, Jung-Ho Kim Korea Institute of Geoscience and Mineral Resources. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

An Experiment of GB-SAR Interferometric An Experiment of GB-SAR Interferometric Measurement of Target Displacement and Measurement of Target Displacement and

Atmospheric CorrectionAtmospheric Correction

Hoonyol Lee, Jae-Hee Lee Hoonyol Lee, Jae-Hee Lee Kangwon National University, KoreaKangwon National University, Korea

Seong-Jun Cho, Nak-Hoon Sung, Jung-Ho KimSeong-Jun Cho, Nak-Hoon Sung, Jung-Ho KimKorea Institute of Geoscience and Mineral ResourcesKorea Institute of Geoscience and Mineral Resources

IGARSS2008, Boston, MA, USA

Page 2: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Contents

• GB-SAR System

• Displacement Measurement

• Atmospheric Correction

• Conclusion

Page 3: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Introduction• GB-SAR: Ground-Based Synthetic Aperture Radar

– “Synthetic Aperture Radar”• Imaging Radar• Azimuth aperture synthesis

– “Ground-Based”• Fairly versatile system configuration

– Multiple frequency (L, C, X, Ku, Ka, etc)– Full Polarization (VV, VH, HV, HH)

• Ultimate SAR focusing– Zero Doppler centroid (stationary vehicle and target during Tx/Rx)– Accurate estimation of Doppler rate from geometry

• Topography Mapping: Cross-Track InSAR• Surface Motion: Zero-baseline and short atmospheric path for high temporal

coherency, DInSAR• Useful for new SAR concept design

• GB-SAR Activities– EU and Japan for avalanche, landslide, glacier, building monitoring

Page 4: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

GB-SAR System

< Example >Center frequency : 5.3 GHz

Range bandwidth : 600 MHz Range resolution: 25 cmNumber of points : 1601Maximum Range: 200 m Azimuth length : 5 m Azimuth Step : 5 cm Azimuth Resolution: 0.32 degreeAzimuth width: 32 degree Power : 33 dBmPolarization: Full

Page 5: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea
Page 6: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

System Configuration

Page 7: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

SAR Focusing Algorithms

Algorithms Advantage Disadvantage Usage

Range-Doppler or ω-k

Widely used for SAR

Memory inefficiency for partial-focusing

Near Range

(full-focusing)

Deramp-FFTEfficient in

memory and CPU time

Distortion in near range

Far Range

(partial-focusing)

Time Domain Exact everywhere Time consuming Everywhere

Page 8: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

DF vs RD (Indoor)

(a) DF algorithm (b) RD algorithm

Page 9: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

DF vs RD (outdoor)

(a) DF algorithm (2MB Memory)

(b) DF algorithm (geocoded) (b) RD algorithm (128MB Memory)

Page 10: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

GB-SAR Resolutions

(a) Full Focusing (Region IV) (b) Partial Focusing (Region I)

2

ResolutionAzimuth

aLx

MHz) 600for cm (252

Resolution Range

BB

cR

band)-C m, 5for 3.0(

2,

2

ResolutionAzimuth

X

XX

Rx

Page 11: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Image Area (Bw = 200 MHz)

Page 12: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

VV

T1

Page 13: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

VH

T1

Page 14: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

HH

T1

Page 15: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

DInSAR (T2-T1): Temporal baseline of 20 minutes

VV

Page 16: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Cross-Track InSAR (T3-T2)Vertical baseline of 30cm

VV

Page 17: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Delta-f InSAR (T4-T3)Carrier frequency shift of -10 MHz

VVVV

Page 18: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Cross-Track and Delta-f InSAR (T4-T2)

Vertical baseline of 30 cm, Carrier frequency shift of -10MHz

VVVVVV

Page 19: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Wider View2cm Step, 2007. 3. 19 7:22pm- 4:20am, A1~A9

HHVV

Page 20: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

System Phase Errors

Ideal CaseA6-A5, HH

Azimuth scan shift of 2cm. A9-A1, HH

Range System Shift of 2mm

Page 21: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Temporal Coherence

Temporal Coherence of 9 acquisitions for 2 hours.

Color scheme: black (0) to white (0.9), blue (0.9) to red (1)

Page 22: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Measurement of Target DisplacementMeasurement of Target Displacement

2007. 7. 18 3pm ~ 7pm2007. 7. 18 3pm ~ 7pm

Page 23: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Image Area (KIGAM, Daejeon, Korea)

Image Area

Page 24: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Precise Motion of the Trihedral Corner Reflector (160m away from the system)

↑ Radar

Direction

A trihedral corner reflector on top of an acrylic plate with rulers on both sides

Displacements toward GB-SAR:

1, 6, 10, 30, and 40 mm

Page 25: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

GB-SAR Images

VV VH

HV HH

Page 26: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Comparisons with Actual Displacement

Co-polarization

Page 27: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Cross-polarization

Comparisons with Actual Displacements

Page 28: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

GB-SAR Interferometry in a Non-Dispersive Medium

• GB-SAR phase in a medium:

n = refractive index λ = wavelength R = range

• Displacement sensitivity of phase:

ex) -12.72 degree/mm for C-band when n = 1 (vacuum)

4

Rn

4Rn

Page 29: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Refractive Index

• n is a spatio-temporal function of temperature, pressure and humidity (Pipia et al., 2008).

n = n (T, P, h)

• Among them humidity has the strongest influence on n (Noferini et al., 2005).

n = n (h)

Page 30: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Phase/Range vs. Humidity

Page 31: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Atmospheric Correction Algorithm

• Strong linear trend between phase/range and humidity

• Atmospheric correction algorithm:

4/ R n ah b

Page 32: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Regression Coefficients

a b

Total -4.32×10-4 2.06×10-2

HH -4.54×10-4 2.18×10-2

VV -4.70×10-4 2.24×10-2

VH -3.93×10-4 1.88×10-2

HV -4.20×10-4 2.00×10-2

4/ (47% 58%)R n ah b h

Page 33: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Comparisons – After Correction (total data)

Co-polarization

Page 34: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Cross-polarization

Comparisons – After Correction (total data)

Page 35: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Comparisons – After Correction (each pol.)

Co-polarization

Page 36: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Cross-polarization

Comparisons – After Correction (each pol.)

Page 37: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

RMS Errors

Before Correction (mm)

Total Correction (mm)

Each-pol. Correction (mm)

HH 1.560 0.188 0.219

VV 1.124 0.482 0.618

VH 0.764 0.918 0.783

HV 1.446 0.488 0.471

Page 38: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Comparison with Pipia et al., 2008

• Pipia et al., 2008– X-band (9.65GHz) GB-SAR system– HH polarization– Temp: 21°C– Humidity: 44 ~ 59%

• Our algorithm in HH polarization at 52% humidity (average of Pipia et al.) is:

33.30 10 R

31.85 10 R

Page 39: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Wavelength Dependency of Phase Delay

• n is constant over the wide range of electromagnetic spectrum (non-dispersive).

• Phase delay is inversely proportional to wavelength.

• Gradient ratio between X and C-band: 1.78

• Wavelength ratio between C and X-band: 1.82

4

Rn

Page 40: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

So, what’s the point?

• Merely 11% of the humidity change (47%-58%) between two C-band SAR observations may cause:– a DInSAR-error of 3 mm at 200 m range,– a satellite DInSAR-error of 3 cm (one fringe)

assuming 2 km range propagation through the tropospheric thick moist zone

– 1.5mm DInSAR-error between near-range and far-range (100 m path difference for 2 km lower troposphere) for Envisat IS2

• Care should be taken of when we try to seek a geophysical meaning of one or two fringes.

2 km thick moist layer

Satellite SAR

Page 41: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Conclusion

• We made a SAR system capable of highly accurate consecutive measurements.

• GB-SAR displacement measurement have shown 2-3 mm error with moisture change of 11% (47-58%) at 160 m range.

• Phase/Range vs humidity showed highly linear trend, resulting in a simple atmospheric correction algorithm in terms of humidity.

• Comparison with an X-band experiment (Pipia et al., 2008) confirmed the non-dispersive nature of microwave.

• Merely 11% moisture change both in time and space, for example, is enough to generate one or two fringes for satellite-based InSAR applications.

Page 42: Hoonyol Lee, Jae-Hee Lee  Kangwon National University, Korea

Thank YouThank You