Top Banner
HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002
26

HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Jan 15, 2016

Download

Documents

Tiffany Bates
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

HokieSat Thermal System

Michael BelcherThermal Lead

December 11, 2002

Page 2: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Introduction

• Thermal modeling

• Software

• Calculations

• Results from analysis

• Conclusions

• Future plans

Page 3: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Heat Transfer Fundamentals

• Convection• Q = hconvectionA(T)

• Conduction• Q = G(T)

• Radiation• Q = A (T2

4-T14)

• Heat transfer in space occurs through conduction and radiation only

Page 4: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Thermal Model

• Predicts temperatures of spacecraft components

• Identifies problem areas

• Useful in analyzing existing design

• Usually software based• TSS, SINDA, TRAYSIS, SSPTA, I-DEAS

Page 5: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

SSPTA

• Simplified Space Payload Thermal Analyzer

• Evaluation/ Educational Software from Swales Aerospace

• Consists of several smaller programs, which calculate view factors, radiation couplings, absorbed heat loads

• Used in conjunction with SINDA

Page 6: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

SINDA

• Systems Integrated Numerical Differential Analyzer

• Freeware

• Calculates temperatures based on a network of thermal nodes

• Solves network using finite difference method

Page 7: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

SSPTA Models

Page 8: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

SSPTA Models

Page 9: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

SSPTA Models

Page 10: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Radiation Surface Properties

Irridite Aluminum 0.01 0.11

300 Series Stainless Steel 0.47 0.14

Delrin AF 0.96 0.87

GaInP2/GaAs/Ge (Solar Cells) 0.92 0.85

Ultem 2300 (PPTs) 0.3 0.3

Page 11: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Conduction Couplings

• Calculated in Excel

• Q = G(T)

• G = hA

• Value of h dependant upon:• Interface type• Conduction coefficient

Page 12: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Conduction Couplings

h (W/m2°C)

Interface type Low High

Bolted 300 1000

Pressure contact 15 30

Thermal interface filler 10,000 15,000

Page 13: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Thermal Models

• Created separately for independent verification and ease of use

• Stand-alone models• Battery box• CEE• External

• Integrated model• Internal, external, battery box, CEE

Page 14: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Hot and Cold Case Parameters

Hot Cold

Peak powerrequirements

Average powerrequirements

Maximum orbitalincident fluxes

Minimum orbitalincident fluxes

Page 15: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Model Results: CEE

• Preliminary results showed need for a thermal filler around bolted interfaces

Component

Min Ave Max Cold Hot

Boards 35.2 38.3 46.6 -40 80

Cells 30.0 30.0 30.2 -40 80

Predicted Temps (°C) Operational Limits

Page 16: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Overall Model: Cold Case

Component

Min Ave Max Cold Hot

Batteries 43.2 43.8 44.6 5 20

Boards 20.6 24.0 32.0 -40 80

PPU 11.8 19.1 24.7 -55 125

PPT Capacitors -28.1 -13.1 6.6 N/A 125

Thrusters -26.8 -10.7 10.4 -40 100

Predicted Temps (°C) Operational Limits

Page 17: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Overall Model: Cold Case

Component

Min Ave Max Cold Hot

Cameras -25.2 3.3 53.7 -20 60

Rate gyros 10.3 11.4 12.6 -40 80

Magnetometer -8.7 20.0 51.2 -40 85

D/L transmitter 16.4 36.3 61.9 -20 70

U/L receiver 6.4 33.3 52.2 -20 70

Predicted Temps (°C) Operational Limits

Page 18: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Overall Model: Cold Case

Component

Min Ave Max Cold Hot

GPS filter -8.3 3.8 20.7 0 50

GPS isolator -18.1 -16.2 -14.3 0 50

GPS NCLT 21.4 21.6 21.8 0 50

GPS preamp -7.9 4.0 20.1 0 50

GPS switch -18.1 -16.1 -14.1 0 50

Predicted Temps (°C) Operational Limits

Page 19: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Overall Model: Hot Case

Component

Min Ave Max Cold Hot

Batteries 48.7 49.3 50.0 5 20

Boards 26.0 29.2 37.2 -40 80

PPU 56.4 63.3 68.6 -55 125

PPT Capacitors -20.4 -6.0 13.1 N/A 125

Thrusters -20.0 -4.5 16.0 -40 100

Predicted Temps (°C) Operational Limits

Page 20: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Overall Model: Hot Case

Component

Min Ave Max Cold Hot

Cameras -21.2 7.3 57.8 -20 60

Rate gyros 15.6 16.7 17.9 -40 80

Magnetometer -3.1 25.3 56.4 -40 85

D/L transmitter 23.5 42.9 68.3 -20 70

U/L receiver 11.6 37.9 56.5 -20 70

Predicted Temps (°C) Operational Limits

Page 21: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Overall Model: Hot Case

Component

Min Ave Max Cold Hot

GPS filter -4.7 7.2 24.1 0 50

GPS isolator -14.2 -12.4 -10.5 0 50

GPS NCLT 45.4 45.5 45.7 0 50

GPS preamp -4.2 7.5 23.5 0 50

GPS switch -14.3 -12.3 -10.4 0 50

Predicted Temps (°C) Operational Limits

Page 22: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Parametric Study: Battery Box

Batteries

Min Ave Max Cold Hot

Hot Case 17.3 22.8 28.5 5 20

Cold Case 11.8 17.5 23.3 5 20

Predicted Temps (°C) Operational Limits

• Assumed thermal filler (h = 14000 W/m2°C) used at bolted interface between battery box frame and nadir panel

Page 23: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Parametric Study: Effect of h

• Assumed h = 1000 W/m2°C at all bolted interfaces

• Variance of less than ±2 °C in most component temperatures

• In general, the variance indicated that a lower value of h is conservative

Page 24: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Plans

• Verify G’s with CEE, battery box testing

• Study effects of MLI

• Procure interface materials (indium tape)

• Examine possibility of heater control for cold components

• Study survival and shuttle bay environments

Page 25: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Recap

• Thermal models

• Results from models

• Parametric studies

• Future plans

Page 26: HokieSat Thermal System Michael Belcher Thermal Lead December 11, 2002.

Conclusions

• Detailed thermal model of HokieSat has been generated and tested

• Additional analyses are necessary

• Verification of model with test data desired

• Some changes to the thermal design are required