Top Banner
Contents: Lesson 1 Single Pipe Calculation (5) Lesson 2 Pipes in Parallel & Series (5) Lesson 3 Branched Network Layouts (2) Lesson 4 Looped Network L ayouts ( 3) Introduction The spreadsheet hydraulic lessons have been developed as an aid for steady state hydraulic calculatio These problems are elaborated during the workshop sessions and should normally be calculated manu More than the however, the spreadsheet lessons help the teacher to demonstrate a wider range of pro as well as they enable students to continue analysing them at home. Ultimately, through playing with th should be reached. Some forty problems have been classified in eight groups/worksheets according to the contents of the This package is lectured in the Water Supply Engineering specialisation and is separately offered as a Brief accompanying instructions for each problem are given in the "About" worksheet (below). The layout of each lesson covers app. one full screen (30 rows) consisting of drawings, tables and grap The green colour indicates input cells. These cells are unprotected and their contents are u The brown colour indicates output cells. These cells contain fixed formulas and are therefor Moreover, some intermediate calculations are moved further to the right in the worksheet, being irrelev Each lesson serves a kind of a "chess problem" in which the "check-mate" should be reached within a f takes more time than the execution, which was the main concept of development. Introduced simplifica Spreadsheet Hydraulic Lessons in Water Transport & D Part I N.Trifunovic, Senior Lecturer UNESCO-IHE Delft, The Netherlands 
322

hles1-4

Apr 03, 2018

Download

Documents

iwan setiawan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 1/322

Contents:

Lesson 1 Single Pipe Calculation (5)

Lesson 2 Pipes in Parallel & Series (5)

Lesson 3 Branched Network Layouts (2)

Lesson 4 Looped Network Layouts (3)

Introduction

The spreadsheet hydraulic lessons have been developed as an aid for steady state hydraulic calculatio

These problems are elaborated during the workshop sessions and should normally be calculated manu

More than the however, the spreadsheet lessons help the teacher to demonstrate a wider range of pro

as well as they enable students to continue analysing them at home. Ultimately, through playing with th

should be reached.

Some forty problems have been classified in eight groups/worksheets according to the contents of the

This package is lectured in the Water Supply Engineering specialisation and is separately offered as a

Brief accompanying instructions for each problem are given in the "About" worksheet (below).

The layout of each lesson covers app. one full screen (30 rows) consisting of drawings, tables and grap

The green colour indicates input cells. These cells are unprotected and their contents are u

The brown colour indicates output cells. These cells contain fixed formulas and are therefor 

Moreover, some intermediate calculations are moved further to the right in the worksheet, being irrelev

Each lesson serves a kind of a "chess problem" in which the "check-mate" should be reached within a f 

takes more time than the execution, which was the main concept of development. Introduced simplifica

SpreadsheetHydraulic Lessons in

Water Transport & DPart I

N.Trifunovic, Senior Lecturer UNESCO-IHE Delft, The Netherlands 

Page 2: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 2/322

were meant to facilitate this process. In addition, the worksheets are designed without complicated rout

 just initial knowledge of spreadsheets is required.

This is the first edition and any suggestion on improvement or extension will obviously be welcome.

N. Trifunovic

Lesson 1-1 Hydraulic Grade Line

Contents:Calculation of the friction losses in a single pipe (the Darcy-Weisbach formula applied).

Goal:Sensitivity analysis of the basic hydraulic parameters, namely the pipe length, diameter, internal rough

 Abbreviations:L (m) Pipe length v (m/s) Flow veloci

D (mm) Pipe diameter vis (m2/s) Kinematick (mm) Internal roughness Re Reynolds n

Q (l/s) Flow rate lambda Darcy-Wei

T (deg C) Water temperature (degrees Celsius) hf (mwc) Friction los

H2 (msl) Downstream piezometric head (metres above sea level) S Hydraulic g

Remarks:The calculation ultimately yields the upstream piezometric head required to maintain the specified dow

Lesson 1-2 Friction Loss Formulas

Contents:Single pipe calculation of the hydraulic gradients by the Darcy-Weisbach, Hazen-Williams and Mannin

Goal:Comparison of the calculation accuracy and sensitivity of the Darcy-Weisbach, Hazen-Williams and Ma

 Abbreviations:D (mm) Pipe diameter v (m/s) Flow veloci

Q (l/s) Flow rate vis (m2/s) Kinematic

T (deg C) Water temperature Re Reynolds n

k (mm) Internal roughness Sdw Hydraulic g

Chw Hazen-Williams friction factor Shw Hydraulic g

N(m-1/3s) Manning friction factor Sma Hydraulic g

Remarks:The percentage shows the difference between the lowest and the highest value of the three hydraulic g

Lesson 1-3 Maximum Capacity

Page 3: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 3/322

Contents:Single pipe calculation by using the Darcy-Weisbach formula.

Goal:Determination of the maximum flow rate in a pipe of specified diameter and hydraulic gradient.

 Abbreviations:L (m) Pipe length hf (mwc) Friction los

D (mm) Pipe diameter vis (m2/s) Kinematic

k (mm) Internal roughness Re Reynolds n

S Hydraulic gradient lambda Darcy-Wei

T (deg C) Water temperature v (m/s) Calculated

H2 (msl) Downstream piezometric head Q (l/s) Flow rate

v (m/s) Assumed flow velocity

Remarks:The iterative procedure starts by assuming the flow velocity (commonly at 1 m/s), required for determin

The velocity calculated afterwards by the Darcy-Weisbach formula serves as an input for the next iteratThe iterative process is achieved by typing the value of the calculated velocity into the cell of the assu

Message Iteration complete appears once the difference between the velocities in two iterations drop

Lesson 1-4 Optimal Diameter 

Contents:Single pipe calculation by using the Darcy-Weisbach formula.

Goal:Determination of the optimal pipe diameter for specified flow rate and hydraulic gradient.

 Abbreviations:L (m) Pipe length hf (mwc) Friction los

k (mm) Internal roughness vis (m2/s) Kinematic

Q (l/s) Flow rate D (mm) Pipe diame

S Hydraulic gradient Re Reynolds n

T (deg C) Water temperature lambda Darcy-Wei

H2 (msl) Downstream piezometric head v (m/s) Calculated

v (m/s) Assumed flow velocity

Remarks:The same iterative procedure as in Lesson 1-3, except that the pipe diameter is determined from the a

Message Iteration complete appears once the difference between the velocities in two iterations drop

Lesson 1-5 Pipe Characteristics

Contents:Friction loss calculation in a single pipe of specified length, diameter and roughness.

Page 4: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 4/322

Goal:Determination of the pipe characteristics diagram.

 Abbreviations:L (m) Pipe length v (m/s) Flow veloci

D (mm) Pipe diameter vis (m2/s) Kinematic

k (mm) Internal roughness Re Reynolds n

Q (l/s) Flow rate lambda Darcy-Wei

T (deg C) Water temperature hf (mwc) Friction los

H2 (msl) Downstream piezometric head S Hydraulic g

Remarks:The friction loss is calculated for the flow range 0-1.5Q (specified), in the same way as in Lesson 1-1, a

The three points selected in the graph show the upstream heads required to maintain the specified do

 Assumption of the reference level at the pipe axis equals the downstream piezometric head with the pr 

The friction loss at the same curve represents its dynamic head.

Lesson 2-1a Pipes in Parallel - Maximum Capacity

Contents:Hydraulic calculation of two pipes connected in parallel.

Goal:Resulting from the demand growth, a new pipe (B) of specified diameter is to be laid in parallel, next to

The task is to find the maximum flow rate in this pipe by maintaining the same hydraulic gradient as in t

 Abbreviations:L (m) Pipe length hf (mwc) Friction los

D (mm) Pipe diameter vis (m2/s) Kinematick (mm) Internal roughness Re Reynolds n

Q (l/s) Flow rate in the existing pipe lambda Darcy-Wei

T (deg C) Water temperature v (m/s) Calculated

H2 (msl) Downstream piezometric head Q (l/s) Flow rate in

v (m/s) Assumed flow velocity in the new pipe S Hydraulic g

Remarks:The friction loss in the existing pipe is calculated as in Lesson 1-1. Its hydraulic gradient is used as an i

The same iterative procedure as in Lesson 1-3 applies for the new pipe.

Message Iteration complete appears once the difference between the velocities in two iterations drop

Lesson 2-1b Pipes in Parallel - Pipe Characteristics

Contents:Hydraulic calculation of two pipes connected in parallel.

Goal:Determination of the pipe characteristics diagrams for the system from Lesson 2-1b.

Page 5: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 5/322

 Abbreviations:L (m) Pipe length

D (mm) Pipe diameter  

k (mm) Internal roughness

Q (l/s) Flow rate in the existing pipe

Remarks:The pipe characteristics diagram is presented for each of the pipes and both of them operating in parall

The three points selected in the graph show the upstream heads required to maintain the specified do

Flow rate in each of the pipes can be determined in this way.

Lesson 2-2 Pipes in Parallel - Optimal Diameter 

Contents:Hydraulic calculation of two pipes connected in parallel.

Goal:Resulting from the demand growth, a new pipe (B) is to be laid in parallel, next to the existing one (A).The task is to determine optimal diameter of this pipe for given flow rate, by maintaining the same hydr 

 Abbreviations:L (m) Pipe length hf (mwc) Friction los

D (mm) Diameter of the existing pipe vis (m2/s) Kinematic

k (mm) Internal roughness Re Reynolds n

Q (l/s) Flow rate lambda Darcy-Wei

T (deg C) Water temperature v (m/s) Calculated

H2 (msl) Downstream piezometric head D (mm) Diameter o

v (m/s) Assumed flow velocity in the new pipe S Hydraulic g

Remarks:The friction loss in the existing pipe is calculated as in Lesson 1-1. Its hydraulic gradient is used as an i

The same iterative procedure as in Lesson 1-4 applies for the new pipe.

Message Iteration complete appears once the difference between the velocities in two iterations drop

Lesson 2-3 Pipes in Parallel - Equivalent Diameter 

Contents:Calculation of hydraulically equivalent pipe.

Goal: Alternatively to the system in Lesson 2-2, one larger pipe can be laid instead of the two parallel pipes.

The task is to determine optimal diameter of this pipe for given flow rate, by maintaining the same hydr 

 Abbreviations:The same as in Lesson 2-2.

Remarks:The total flow rate and hydraulic gradient from Lesson 2-2 are used as an input for calculation of the op

Page 6: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 6/322

The same iterative procedure as in Lesson 1-4 applies.

Message Iteration complete appears once the difference between the velocities in two iterations drop

Lesson 2-4 Pipes in Series - Hydraulic Grade Line

Contents:Calculation of the friction losses in two pipes connected in series.

Goal:Resulting from the system expansion, a new pipe (B) of specified diameter is to be laid in series, followi

The task is to determine the piezometric head at the upstream side (H1), required to maintain the mini

 Abbreviations:L (m) Pipe length v (m/s) Flow veloci

D (mm) Pipe diameter Re Reynolds n

k (mm) Internal roughness lambda Darcy-Wei

Q (l/s) Flow rate hf (mwc) Friction los

H3 (msl) Downstream piezometric head S Hydraulic gT (deg C) Water temperature vis (m2/s) Kinematic

Remarks:By maintaining the same flow rate in pipes A & B, the same calculation procedure as in Lesson 1-1 app

Lesson 2-5 Pipes in Series - Equivalent Diameter 

Contents:Calculation of hydraulically equivalent pipe.

Goal: Alternatively to the system in Lesson 2-4, one longer pipe can be laid instead of the two serial pipes.

The task is to determine optimal diameter of this pipe for given flow rate, by maintaining the existing he

 Abbreviations:The same as in Lesson 2-4.

Remarks:The flow rate and piezometric head difference (H1-H3 i.e. hfA+hfB) from Lesson 2-4 are used as an inp

The same iterative procedure as in Lesson 1-4 applies.

Message Iteration complete appears once the difference between the velocities in two iterations drop

Lesson 3-1 Branched Network Layouts - Residual Pressures

Contents:Calculation of the friction losses in a branched network configuration.

Goal:For specified network configuration, distribution of nodal demands and piezometric head fixed in a num

Page 7: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 7/322

 Abbreviations:NODES Node data PIPES Pipe data

X (m) Horizontal co-ordinate Nups Upstream

Y (m) Vertical co-ordinate Ndws Downstrea

Z (msl) Altitude Lxy(m) Length cal

Qn (l/s) Nodal demand L (m) Length adoH (msl) Piezometric head D (mm) Diameter  

p (mwc) Nodal pressure Q (l/s) Flow rate

v (m/s) Flow veloci

Qn total Total demand of the system Re Reynolds n

T (deg C) Water temperature lambda Darcy-Wei

vis(m2/s) Kinematic viscosity S Hydraulic g

hf (mwc) Friction los

PATH Pipes selected to be plotted with their piezometric heads.

(order from the upstream to the downstream pipes)

k (mm) Internal roughness (uniform)

Remarks:The nodes are plotted based on the X/Y input (origin of the graph is at the lower left corner). Any node

The first node in the list of nodes simulates the source and has therefore fixed piezometric head.

The pipes are plotted based on the Nups/Ndws input. This input determines connectivity between the n

From the determined pipe flows, the friction losses and consequently the nodal heads/pressures will be

Each node may appear only once as a downstream node (Ndws). Otherwise suggests a system consis

Lesson 3-2 Branched Network Layouts - Optimal Diameters

Contents:Hydraulic calculation of a branched network configuration.

Goal:For specified network configuration, distribution of nodal demands and uniform (= design) hydraulic gra

 Abbreviations:NODES Node data PIPES Pipe data

X (m) Horizontal co-ordinate Nups Upstream

Y (m) Vertical co-ordinate Ndws Downstrea

Z (msl) Altitude Lxy(m) Length cal

Qn (l/s) Nodal demand L (m) Length ado

H (msl) Piezometric head Q (l/s) Flow rate

p (mwc) Nodal pressure v (m/s) Flow veloci

D (mm) Calculated

Qn total Total demand of the system Re Reynolds nT (deg C) Water temperature lambda Darcy-Wei

vis(m2/s) Kinematic viscosity v (m/s) Flow veloci

hf (mwc) Friction los

PATH Pipes selected to be plotted with their piezometric heads. D (mm) Adopted di

(order from the upstream to the downstream pipes)

S Design hydraulic gradient (uniform)

k (mm) Internal roughness (uniform)

Page 8: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 8/322

Remarks:Procedure of the network building is the same as in Lesson 3-1. The order of the nodes from upstream

The first node in the list of nodes simulates the source and has therefore fixed piezometric head.

The hydraulic calculation follows the principles of the single pipe calculation from Lesson 1-4; the iterati

That can be done at once, by copying the entire column of the "i+1" velocities, and pasting it subseque

"Excel" command "Edit/Paste Special (Values)" should only be used in this case (the ordinary "Paste"Message Iteration complete appears once the total difference between the velocities in two iterations

Lesson 4-1 Looped Network Layouts - Method of Balancing H

Contents:Hydraulic calculation of a looped network configuration by the Hardy-Cross Method of Balancing Head

Goal:For specified network configuration, nodal demands and piezometric head fixed in a source node, the fl

 Abbreviations:NODES Node data PIPES Pipe data p

X (m) Horizontal co-ordinate N1cw Upstream

Y (m) Vertical co-ordinate N2cw Downstrea

Z (msl) Altitude Lxy(m) Length cal

Qn (l/s) Nodal demand L (m) Length ado

H (msl) Piezometric head D (mm) Diameter  

p (mwc) Nodal pressure Q (l/s) Flow rate o

v (m/s) Flow veloci

Qtot(l/s) Total demand of the system hf (mwc) Friction los

T (deg C) Water temperature Q (l/s) Flow rate o

vis(m2/s) Kinematic viscosity

dQ (l/s) Flow rate c

k (mm) Internal roughness (uniform) Sum Sum of frict

Remarks:The table with the nodal data is prepared in the same way as in Lessons 3-1 and 3-2.

The pipes are plotted based on the N1cw/N2cw input. As a convention, this input has to be made in a c

The pipes shared by neighbouring loops should appear in both tables (with opposite flow directions).

The first node in the list of nodes and pipes (in loop 1) simulates the source and has therefore fixed pie

To provide correct spreadsheet calculation of nodal piezometric heads, the tables of loops 2 & 3 should

The iterative process starts by distributing the pipe flows "i" arbitrarily, but satisfying the continuity equa

Negative flows, velocities and friction losses, indicate anti-clockwise flow direction.

The flow correction (dQ) is calculated from the friction losses/piezometric heads, and flows for iteration

Both dQ corrections are applied in case of the shared pipes (with opposite signs!).

The iteration proceeds by copying the entire column of the "i+1" flows, and pasting it subsequently to th"Excel" command "Edit/Paste Special (Values)" should only be used in this case (the ordinary "Paste"

Message Iteration complete appears once the sum of friction losses in the loop drops below 0.01 mw

Lesson 4-2 Looped Network Layouts - Method of Balancing Fl

Page 9: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 9/322

Contents:Hydraulic calculation of a looped network configuration by the Hardy-Cross Method of Balancing Flows

Goal:For specified network configuration, nodal demands and piezometric head fixed in a source node, the fl

 Abbreviations:NODES Node data PIPES Pipe data

X (m) Horizontal co-ordinate N1 Node nam

Y (m) Vertical co-ordinate N2 Node nam

Z (msl) Altitude Lxy(m) Length cal

Qn (l/s) Nodal demand L (m) Length ado

H (msl) Piezometric head of iteration "i" D (mm) Diameter  

p (mwc) Nodal pressure hf (mwc) Friction los

dQ (l/s) Balance of the flow continuity equation S Hydraulic g

dH (msl) Piezometric head correction. Hi+1 = Hi + dH v (m/s) Flow veloci

H (msl) Piezometric head of iteration "i+1" Re Reynolds n

lambda Darcy-Wei

Qn total Total demand of the system v (m/s) Flow veloci

T (degC) Water temperature Q (l/s) Flow rate

vis(m2/s) Kinematic viscosity Q/hf Ratio used

dH total Sum of all dH-corrections k (mm) Internal rou

Remarks:The table with the nodal data is prepared in the same way as in Lesson 4-1

The pipes are plotted based on the N1/N2 input. Unlike in Lesson 4-1, the order of nodes/pipes is not c

The first node in the list of nodes simulates the source and has therefore fixed piezometric head.

The heads in other nodes are distributed arbitrarily in the 1st iteration, except that no nodes should be

The calculation starts by iterating the velocities in order to determine the pipe flows for given piezometi

Message Iteration complete appears once the total difference between the velocities in two iterations After the pipe flows have been determined, the correction (dH) is calculated and the iteration of piezom

 A consecutive iteration is done node by node, by typing the current "Hi+1" value into "Hi" cell. Copying

The new values of nodal piezometric heads should result in gradual reduction of the "dH total" value; t

Message Iteration complete appears once the sum of dH corrections for all nodes drops below 0.01

Lesson 4-3 Looped Network Layouts - Linear Theory

Contents:Hydraulic calculation of a looped network configuration based on the linear theory (solution by the Newt

Goal:For specified network configuration, nodal demands and piezometric head fixed in a source node, the fl

 Abbreviations:NODES Node data PIPES Pipe data

X (m) Horizontal co-ordinate N1 Node nam

Y (m) Vertical co-ordinate N2 Node nam

Z (msl) Altitude Lxy(m) Length cal

Qn (l/s) Nodal demand L (m) Length ado

Page 10: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 10/322

H (msl) Piezometric head of iteration "i" D (mm) Diameter  

p (mwc) Nodal pressure Q(l/s) Flow rate o

dQ (l/s) Balance of the flow continuity equation v (m/s) Flow veloci

H (msl) Piezometric head of iteration "i+1" Re Reynolds n

lambda Darcy-Wei

Qn total Total demand of the system 1/U Linearisatio

T (degC) Water temperature H1/U Ratio usedvis(m2/s) Kinematic viscosity H2/U Ratio used

hf (mwc) Friction los

dH total Total error between two iterations (dH = ABS(Hi+1 - Hi)) S Hydraulic g

v (m/s) Flow veloci

Omega Successive over-relaxation factor (value range 1.0-2.0) Q (l/s) Flow rate o

k (mm) Internal rou

Remarks:The table with the nodal and pipe data is prepared in the same way as in Lesson 4-2

The first node in the list of nodes simulates the source and has therefore fixed piezometric head.

The heads in other nodes are distributed arbitrarily in the 1st iteration, except that no nodes should be

The pipe flows in the 1st iteration are also distributed arbitrarily (commonly to fit the velocities around 1

The calculation starts by iterating piezometric heads in the nodes, in order to determine the pipe flows i A consecutive iteration is done node by node, by typing the current "Hi+1" value into "Hi" cell.

 Alternative approach, by copying the entire column ("Excel" command "Edit/Paste Special (Values)"), i

The new values of nodal piezometric heads should result in gradual reduction of the "dH total" value; th

That is done by copying the entire "Qi+1" column into "Qi" cells ("Excel" command "Edit/Paste Special

Messages Iteration complete appear once the total difference between the heads (flows) in two iterati

Page 11: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 11/322

Version 1.0

January 2003

Scroll-down

ns of simple water transport and distribution problems.

ally; the spread-sheet serves here as a fast check of the results.

lems during the lectures, in a clear (and clean) way,

e data, a real understanding of the hydraulic concepts

ater Transport and Distribution package at UNESCO-IHE.

short course of duration between 1 to 3 weeks.

hs. In the tables:

ed for calculations.

e protected.

nt for educational purposes.

ew right moves. This suggests a study process where thinking

tions (neglected minor losses, pump curve definition, etc.)

stribution

Page 12: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 12/322

Page 13: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 13/322

s

iscosity

umber 

bach friction factor 

flow velocity

ation of the Reynolds number i.e. the lambda factor.

ion.ed velocity.

below 0.01 m/s.

s

iscosity

ter 

umber 

bach friction factor 

flow velocity

sumed/calculated velocity (and specified flow rate).

below 0.01 m/s.

Page 14: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 14/322

Page 15: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 15/322

lel, in the range 0-1.5Q (=Qa+Qb).

nstream head for 0.5Q, Q and 1.5Q, respectively.

ulic gradient as in the existing pipe.

s

iscosity

umber 

bach friction factor 

flow velocity

f the new pipe

radient

nput for calculation of the maximum capacity in the new pipe.

below 0.01 m/s.

ulic gradient as in the existing pipe.

timal pipe diameter.

Page 16: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 16/322

below 0.01 m/s.

ing the existing one (A).

um head at the downstream side (H3).

ty

umber 

bach friction factor 

s

radientiscosity

lies.

ad difference between the points 1 & 3.

ut for calculation of the optimal pipe diameter.

below 0.01 m/s.

ber of nodes, pressures in the system should be determined.

Page 17: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 17/322

ode name

node name

ulated from the X/Y co-ordinates

pted for hydraulic calculation

ty

umber 

bach friction factor 

radient

s

ame can be used.

odes and hence the flow rates/directions.

calculated.

ing of more than one source, or from loops.

dient, the pipe diameters in the system should be determined.

ode name

node name

ulated from the X/Y co-ordinates

pted for hydraulic calculation

ty of iteration "i"

diameter 

umber bach friction factor 

ty of iteration "i+1"

s

meter (manufactured size)

Page 18: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 18/322

to downstream has to be respected in the list of pipes.

ion procedure has to be conducted for all pipes.

tly to the column of "i" velocities.

ommand also copies the cell formulas, which is wrong).drops below 0.01 m/s.

eads

(Loop Oriented Method).

ows and pressures in the system should be determined.

er loop

ode name (clockwise direction)

node name (clockwise direction)

ulated from the X/Y co-ordinates

pted for hydraulic calculation

f iteration "i"

ty

s

f iteration "i+1"

orrection. Qi+1 = Qi + dQ

ion losses in the loop (clockwise direction)

lockwise direction for each loop.

zometric head.

start with previously filled (shared) pipe.

tion in each node.

"i+1" are determined for all loops simultaneously.

e column of "i" flows.ommand also copies the cell formulas).

.

ows

Page 19: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 19/322

(Node Oriented Method).

ows and pressures in the system should be determined.

1

2

ulated from the X/Y co-ordinates

pted for hydraulic calculation

s

radient

ty of iteration "i"

umber 

bach friction factor 

ty of iteration "i+1"

for calculation of dH-corrections

ghness (uniform)

rucial in this case.

llocated the same value.

heads. This is done in the same way as in Lesson 3-2.

drops below 0.01 m/s.etric heads proceeds.

he entire column does not lead to a convergence.

e velocities (flows) have to be re-iterated.

wc.

on-Raphson/successive over-relaxation method).

ows and pressures in the system should be determined.

1

2

ulated from the X/Y co-ordinates

pted for hydraulic calculation

Page 20: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 20/322

f iteration "i"

ty of iteration "i"

umber 

bach friction factor 

n coefficient

for calculation of "Hi+1" (from N1)for calculation of "Hi+1" (from N2)

s

radient

ty of iteration "i+1"

f iteration "i+1"

ghness (uniform)

llocated the same value.

m/s).

n the next iteration

likely to yield slower convergence.

e velocities (flows) have to be re-iterated.

Values)").

ons drops below 0.1 mwc (l/s).

Page 21: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 21/322

Page 22: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 22/322

Page 23: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 23/322

Page 24: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 24/322

Page 25: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 25/322

Page 26: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 26/322

Page 27: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 27/322

Page 28: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 28/322

Page 29: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 29/322

Page 30: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 30/322

Page 31: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 31/322

Page 32: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 32/322

Page 33: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 33/322

Page 34: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 34/322

Page 35: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 35/322

Page 36: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 36/322

Page 37: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 37/322

Page 38: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 38/322

Page 39: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 39/322

Page 40: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 40/322

Page 41: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 41/322

Page 42: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 42/322

Page 43: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 43/322

Page 44: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 44/322

Page 45: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 45/322

Page 46: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 46/322

Page 47: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 47/322

Page 48: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 48/322

Page 49: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 49/322

Page 50: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 50/322

Page 51: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 51/322

Page 52: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 52/322

Page 53: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 53/322

Page 54: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 54/322

Page 55: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 55/322

Page 56: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 56/322

Page 57: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 57/322

Page 58: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 58/322

Page 59: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 59/322

Page 60: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 60/322

Page 61: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 61/322

Page 62: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 62/322

Page 63: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 63/322

Page 64: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 64/322

Page 65: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 65/322

Page 66: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 66/322

Page 67: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 67/322

Page 68: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 68/322

Page 69: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 69/322

Page 70: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 70/322

Page 71: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 71/322

Page 72: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 72/322

Page 73: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 73/322

Page 74: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 74/322

Page 75: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 75/322

Page 76: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 76/322

Page 77: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 77/322

Page 78: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 78/322

Page 79: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 79/322

Page 80: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 80/322

Page 81: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 81/322

Page 82: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 82/322

Page 83: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 83/322

Page 84: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 84/322

Page 85: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 85/322

Page 86: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 86/322

Page 87: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 87/322

Page 88: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 88/322

Page 89: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 89/322

Page 90: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 90/322

Page 91: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 91/322

Page 92: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 92/322

Page 93: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 93/322

Page 94: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 94/322

Page 95: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 95/322

Page 96: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 96/322

Page 97: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 97/322

Page 98: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 98/322

Page 99: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 99/322

Page 100: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 100/322

Page 101: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 101/322

Page 102: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 102/322

Page 103: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 103/322

Page 104: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 104/322

Page 105: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 105/322

Page 106: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 106/322

Page 107: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 107/322

Page 108: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 108/322

Page 109: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 109/322

Page 110: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 110/322

Page 111: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 111/322

Page 112: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 112/322

Page 113: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 113/322

Page 114: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 114/322

Page 115: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 115/322

Page 116: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 116/322

Page 117: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 117/322

Page 118: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 118/322

Page 119: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 119/322

Page 120: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 120/322

Page 121: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 121/322

Page 122: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 122/322

Page 123: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 123/322

Page 124: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 124/322

Page 125: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 125/322

Page 126: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 126/322

Page 127: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 127/322

Page 128: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 128/322

Page 129: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 129/322

Page 130: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 130/322

Page 131: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 131/322

Page 132: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 132/322

Page 133: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 133/322

Page 134: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 134/322

Page 135: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 135/322

Page 136: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 136/322

Page 137: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 137/322

Page 138: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 138/322

Page 139: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 139/322

Page 140: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 140/322

Page 141: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 141/322

Page 142: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 142/322

Page 143: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 143/322

Page 144: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 144/322

Page 145: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 145/322

Page 146: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 146/322

Page 147: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 147/322

Page 148: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 148/322

Page 149: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 149/322

Page 150: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 150/322

Page 151: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 151/322

Page 152: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 152/322

Page 153: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 153/322

Page 154: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 154/322

Page 155: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 155/322

Page 156: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 156/322

Page 157: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 157/322

Page 158: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 158/322

Page 159: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 159/322

Page 160: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 160/322

Page 161: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 161/322

Page 162: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 162/322

Page 163: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 163/322

Page 164: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 164/322

Page 165: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 165/322

Page 166: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 166/322

Page 167: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 167/322

Page 168: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 168/322

Page 169: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 169/322

Page 170: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 170/322

Page 171: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 171/322

Page 172: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 172/322

Page 173: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 173/322

Page 174: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 174/322

Page 175: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 175/322

Page 176: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 176/322

Page 177: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 177/322

Page 178: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 178/322

Page 179: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 179/322

Page 180: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 180/322

Page 181: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 181/322

Page 182: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 182/322

Page 183: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 183/322

Page 184: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 184/322

Page 185: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 185/322

Page 186: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 186/322

Page 187: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 187/322

Page 188: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 188/322

Page 189: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 189/322

Page 190: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 190/322

Page 191: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 191/322

Page 192: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 192/322

Page 193: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 193/322

Page 194: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 194/322

Page 195: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 195/322

Page 196: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 196/322

Page 197: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 197/322

Page 198: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 198/322

Page 199: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 199/322

Page 200: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 200/322

Page 201: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 201/322

Page 202: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 202/322

Page 203: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 203/322

Page 204: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 204/322

Page 205: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 205/322

Page 206: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 206/322

Page 207: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 207/322

Page 208: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 208/322

Page 209: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 209/322

Page 210: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 210/322

Page 211: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 211/322

Page 212: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 212/322

Page 213: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 213/322

Page 214: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 214/322

Page 215: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 215/322

Page 216: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 216/322

Page 217: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 217/322

Page 218: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 218/322

Page 219: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 219/322

Page 220: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 220/322

Page 221: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 221/322

Page 222: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 222/322

Page 223: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 223/322

Page 224: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 224/322

Page 225: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 225/322

Page 226: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 226/322

Page 227: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 227/322

Page 228: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 228/322

Page 229: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 229/322

Page 230: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 230/322

Page 231: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 231/322

Page 232: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 232/322

Page 233: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 233/322

Page 234: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 234/322

Page 235: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 235/322

Page 236: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 236/322

Page 237: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 237/322

Page 238: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 238/322

Page 239: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 239/322

Page 240: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 240/322

Page 241: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 241/322

Page 242: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 242/322

Page 243: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 243/322

Page 244: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 244/322

Page 245: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 245/322

Page 246: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 246/322

Page 247: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 247/322

Page 248: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 248/322

Page 249: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 249/322

Page 250: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 250/322

Page 251: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 251/322

Page 252: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 252/322

Page 253: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 253/322

Page 254: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 254/322

Page 255: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 255/322

Page 256: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 256/322

Page 257: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 257/322

Page 258: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 258/322

Page 259: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 259/322

Page 260: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 260/322

Page 261: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 261/322

Page 262: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 262/322

Page 263: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 263/322

Page 264: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 264/322

Page 265: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 265/322

Page 266: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 266/322

Page 267: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 267/322

Page 268: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 268/322

Page 269: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 269/322

Page 270: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 270/322

Page 271: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 271/322

Page 272: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 272/322

Page 273: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 273/322

Page 274: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 274/322

Page 275: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 275/322

Page 276: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 276/322

Page 277: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 277/322

Page 278: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 278/322

Page 279: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 279/322

Page 280: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 280/322

Page 281: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 281/322

Page 282: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 282/322

Page 283: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 283/322

Page 284: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 284/322

Page 285: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 285/322

Page 286: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 286/322

Page 287: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 287/322

Turbulent flow

INPUT OUTPUT

L (m) 3299.5 v (m/s) 2.52 640.80 m3/hD (mm) 300 vis (m2/s) 9.16E-07

k (mm) 0.1 Re 824299

Q (l/s) 178 lambda 0.0162

T (deg C) 24 hf (mwc) 57.56

H2 (msl) 0 S 0.0174

57.56

0.00

Lesson 1-1Hydraulic Grade Line

1 2

Lesson 1-2Friction Loss Formulas

Page 288: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 288/322

Difference

73.4%

Turbulent flow

INPUT OUTPUT

D (mm) 800 v (m/s) 1.99 3600.00 m3/hQ (l/s) 1000 vis (m2/s) 1.31E-06

T (deg C) 10 Re 1218155

k (mm) 0.2 Sdw 0.0038

Chw 115 Shw 0.0048

N(m-1/3s) 0.014 Sma 0.0066

INPUT OUTPUT

L (m) 1500.3 hf (mwc) 80.96

D (mm) 300 vis (m2/s) 9.16E-07

k (mm) 0.1 Re 1466477

S 0.05396 lambda 0.0158

DW

HW

MA

1 2

80.96

Lesson 1-3Maximum Capacity

Page 289: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 289/322

Turbulent flow T (deg C) 24 v (m/s) 4.48

H2 (msl) 0 Q (l/s) 316.50

Assumption

v (m/s) 4.48

1139.42 m3/hIteration complete

INPUT OUTPUT

L (m) 1236.3 hf (mwc) 76.03

k (mm) 0.15 vis (m2/s) 8.58E-07

Q (l/s) 200 D (mm) 249

S 0.0615 Re 1191195

Turbulent flow T (deg C) 27 lambda 0.0179

H2 (msl) 752.756 v (m/s) 4.10

Assumption

v (m/s) 4.1

0.001 2

Lesson 1-4Optimal Diameter 

1 2

Page 290: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 290/322

720.00 m3/hIteration complete

Turbulent flow

INPUT OUTPUT

L (m) 275 v (m/s) 4.07 180.00 m3/hD (mm) 125 vis (m2/s) 1.24E-06

k (mm) 0.01 Re 412295

Q (l/s) 50 lambda 0.0146

27.53

47.21

78.24

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

0 20 40 60 80

   H

   (  m  s   l   )

Q (l/s)

47.21

20.00

Lesson 1-5Pipe Characteristics

1 2

Page 291: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 291/322

T (deg C) 12 hf (mwc) 27.21

H2 (msl) 20 S 0.0989

Page 292: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 292/322

0 57.56

1 0.00

0 0.00 0.00 0.01

1 0 0 0

Page 293: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 293/322

0 80.96

1 0.00

Page 294: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 294/322

0 828.79

1 752.76

Page 295: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 295/322

0 47.21

1 20.00

0 0.00 0.00 0.00E+00 0.0000 2

0.1 5.00 0.41 4.12E+04 0.0220 2

0.2 10.00 0.81 8.25E+04 0.0190 20.3 15.00 1.22 1.24E+05 0.0176 22

0.4 20.00 1.63 1.65E+05 0.0168 2

0.5 25.00 2.04 2.06E+05 0.0162 2

0.6 30.00 2.44 2.47E+05 0.0157 3

0.7 35.00 2.85 2.89E+05 0.0154 34

0.8 40.00 3.26 3.30E+05 0.0151 3

0.9 45.00 3.67 3.71E+05 0.0148 42

1 50.00 4.07 4.12E+05 0.0146 4

1.1 55.00 4.48 4.54E+05 0.0144 52

1.2 60.00 4.89 4.95E+05 0.0143 5

1.3 65.00 5.30 5.36E+05 0.0141 64

1.4 70.00 5.70 5.77E+05 0.0140 7

1.5 75.00 6.11 6.18E+05 0.0139 7

Page 296: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 296/322

INPUT - A OUTPUT - A

L (m) 275 v (m/s) 1.13

D (mm) 150 Re 148934k (mm) 0.1 lambda 0.0203

H2 (msl) Q (l/s) 20 hf (mwc) 2.43

Turbulent flow 30 S 0.0088

72.00 m3/h Maximum Capacity

T(deg C) INPUT - B OUTPUT - B

15 L (m) 275 Re 76325

vis(m2/s) D (mm) 100 lambda 0.0230

1.14E-06 k (mm) 0.1 v (m/s) 0.87

v (m/s) 0.87 Q (l/s) 6.82

S 0.0088

Turbulent flow Iteration complete

24.55 m3/h

96.55 m3/h

32.43 30.00

Lesson 2-1aMaximum Capacity

hf = hf  A = hf B ; Q = Q A + QB

Lesson 2-1bPipes Characteristics

35.2835.0

36.0

1 2

A

B

Page 297: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 297/322

Turbulent flow

72.00 m3/h

From Lesson 2-1a

PIPE - A PIPE - B

Turbulent flow L (m) 275 L (m) 275

24.55 m3/h D (mm) 150 D (mm) 100

96.55 m3/h k (mm) 0.100 k (mm) 0.100

Q (l/s) 20.00 Q (l/s) 6.82

INPUT - A OUTPUT - A

L (m) 1400 v (m/s) 1.20

D (mm) 500 Re 459391

k (mm) 0.1 lambda 0.0157

71.00 67.78

Lesson 2-2Optimal Diameter 

32.43 30.00

30.65

32.43

29.0

30.0

31.0

32.0

33.0

34.0

0 10 20 30 40 50

   H

   (  m  s   l   )

Q (l/s)

 A

B

 A+B

hf = hf  A = hf B ; Q = Q A + QB

1 2

A

B

Page 298: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 298/322

H2 (msl) Q (l/s) 235.7 hf (mwc) 3.22

Turbulent flow 67.78 S 0.0023

848.52 m3/h Optimal Diameter  

T(deg C) INPUT - B OUTPUT - B

10 L (m) 1400 D (mm) 360

vis(m2/s) k (mm) 0.1 Re 270365

1.31E-06 Q (l/s) 100 lambda 0.0171v (m/s) 0.98 v (m/s) 0.98

S 0.0023

Turbulent flow Iteration complete

360.00 m3/h

1208.52 m3/h

From Lesson 2-2

T (deg C) 10 vis (m2/s) 1.31E-06

H2 (msl) 67.78 hf (mwc) 3.22

PIPE - A PIPE - B

Turbulent flow L (m) 1400 L (m) 1400

D (mm) 500 D (mm) 360

71.00 67.78

Lesson 2-3Equivalent Diameter 

21

hf = hf  A = hf B ; Q = Q A + QB

1 2

A

B

Page 299: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 299/322

k (mm) 0.100 k (mm) 0.100

v (m/s) 1.20 v (m/s) 0.98

Q (l/s) 235.70 Q (l/s) 100.00

INPUT - C OUTPUT - C

L (m) 1000 D (mm) 563 1208.52 m3/hk (mm) 0.1 Re 581407

v (m/s) 1.35 lambda 0.0151Q (l/s) 335.70 v (m/s) 1.53

Iterate the velocity(diamater)!

T (deg C) Q (l/s)10 235.7

vis (m2/s) H3 (mwc)

1.31E-06 61.4

Turbulent flow Turbulent flow

INPUT - A OUTPUT - A INPUT - B OUTPUT - B

L (m) 1400 v (m/s) 1.20 L (m) 900 v (m/s) 1.88 848.52 m3/hD (mm) 500 Re 459391 D (mm) 400 Re 574238

C

71.00 67.7861.40

Lesson 2-4Pipes in Series

1 2 3

A B

hf C = hf  A = hf B ; QC = Q A + QB

Page 300: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 300/322

k (mm) 0.1 lambda 0.0157 k (mm) 0.1 lambda 0.0158

hf (mwc) 3.22 hf (mwc) 6.38

S 0.0023 S 0.0071

From Lesson 2-4

T (deg C) 10 vis (m2/s) 1.31E-06

H3 (msl) 61.4 Q (l/s) 235.70

PIPE - A PIPE - B

Turbulent flow L (m) 1400 L (m) 900

D (mm) 500 D (mm) 400

k (mm) 0.100 k (mm) 0.100

v (m/s) 1.20 v (m/s) 1.88

hf (mwc) 3.22 hf (mwc) 6.38

INPUT - C OUTPUT -C

L (m) 550 D (mm) 359 848.52 m3/hk (mm) 0.01 Re 640023

v (m/s) 2.33 lambda 0.0131

hf (mwc) 9.60 v (m/s) 3.07

Iterate the velocity(diamater)!

hf = hf  A + hf B ; Q = Q A = QB

71.0061.40

Lesson 2-5Equivalent Diameter 

21

C

hf C = hf  A = hf B ; QC = Q A + QB

Page 301: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 301/322

0 32.43

1 30.00

0.00 0.00 0.00E+00 0.000

2.00 0.11 1.49E+04 0.029

4.00 0.23 2.98E+04 0.025

6.00 0.34 4.47E+04 0.023

Page 302: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 302/322

8.00 0.45 5.96E+04 0.022

10.00 0.57 7.45E+04 0.021

12.00 0.68 8.94E+04 0.021

14.00 0.79 1.04E+05 0.021

16.00 0.91 1.19E+05 0.020

18.00 1.02 1.34E+05 0.020

20.00 1.13 1.49E+05 0.02022.00 1.24 1.64E+05 0.020

24.00 1.36 1.79E+05 0.019

26.00 1.47 1.94E+05 0.019

28.00 1.58 2.09E+05 0.019

30.00 1.70 2.23E+05 0.019

0 71.00

1 67.78

Page 303: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 303/322

Page 304: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 304/322

0 71.00

1 67.78

2 61.40

Page 305: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 305/322

0 71.00

1 61.40

Page 306: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 306/322

0.00 0.00

0.68 2.68

1.36 5.36

2.05 8.05

Page 307: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 307/322

2.73 10.73

30.65 3.41 13.41

4.09 16.09

4.77 18.77

5.46 21.46

6.14 24.14

32.43 6.82 26.827.50 29.50

8.18 32.18

8.87 34.87

9.55 37.55

35.28 10.23 40.23

Page 308: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 308/322

Qn total T (deg C) vis(m2/s) PATH

131 10 1.3E-06 ups p3

p5p6

NODES X (m) Y (m) Z (msl) Qn (l/s) H (msl) p (mwc)n1 45 135 54 0 54 0.00

n2 25 200 12 10.4 52.46 40.46

n3 60 46 22 18.5 49.68 27.68n4 65 88 17 12.2 52.91 35.91 dws

n5 100 100 25 22.1 47.06 22.06

n6 130 20 20 14.4 41.41 21.41

n7 81 39 22 13.8 43.95 21.95n8 99 154 38 12.5 52.89 14.89

n9 60 180 33 19.1 49.19 16.19 k (mm)n10 12 134 28 8 44.35 16.35 0.1

PIPES Nups Ndws Lxy(m) L (m) D (mm) Q (l/s) v (m/s) Re lambda S hf (mwc)

p1 n1 n8 57 570 250 34.60 0.70 134874 0.0192 0.0019 1.11

p2 n8 n5 54 540 150 22.10 1.25 143580 0.0203 0.0108 5.84

p3 n1 n4 51 510 300 58.90 0.83 191332 0.0181 0.0021 1.09p4 n4 n3 42 420 150 18.50 1.05 120191 0.0207 0.0077 3.24

p5 n4 n7 52 520 150 28.20 1.60 183211 0.0199 0.0172 8.96

p6 n7 n6 53 530 150 14.40 0.81 93554 0.0213 0.0048 2.54

p7 n1 n2 68 680 250 37.50 0.76 146179 0.0190 0.0023 1.54

p8 n2 n10 67 670 100 8.00 1.02 77962 0.0229 0.0121 8.11

p9 n2 n9 40 400 150 19.10 1.08 124089 0.0206 0.0082 3.27

Qn total T (deg C) vis(m2/s) PATH

131 10 1.3E-06 ups p3

p5p6

NODES X (m) Y (m) Z (msl) Qn (l/s) H (msl) p (mwc)

n1 50 135 54 0 54 0.00

n2 25 200 12 10.4 48.56 36.56

n3 60 46 22 18.5 46.56 24.56n4 65 88 17 12.2 49.92 32.92 dws

n5 100 100 25 22.1 45.12 20.12n6 130 20 20 14.4 42.80 22.80

n7 81 39 22 13.8 45.76 23.76 Sn8 99 154 38 12.5 49.44 11.44 0.008

n9 60 180 33 19.1 45.36 12.36 k (mm)n10 12 134 28 8 43.20 15.20 0.1

Iteration complete

PIPES Nups Ndws Lxy(m) L (m) Q (l/s) v (m/s) D (mm) Re lambda v (m/s) hf (mwc)

p1 n1 n8 53 570 34.60 1.24 189 178786 0.0193 1.24 4.56

p2 n8 n5 54 540 22.10 1.11 159 135267 0.0203 1.11 4.32

p3 n1 n4 49 510 58.90 1.41 231 248841 0.0182 1.41 4.08

Page 309: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 309/322

p4 n4 n3 42 420 18.50 1.06 149 121088 0.0207 1.06 3.36

p5 n4 n7 52 520 28.20 1.18 175 157426 0.0197 1.18 4.16

p6 n7 n6 53 370 14.40 1.00 135 103586 0.0213 1.00 2.96

p7 n1 n2 70 680 37.50 1.26 194 187962 0.0191 1.26 5.44

p8 n2 n10 67 670 8.00 0.86 109 71786 0.0229 0.86 5.36

p9 n2 n9 40 400 19.10 1.07 151 123519 0.0206 1.07 3.20

Page 310: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 310/322

D (mm)

200

200

250

1722 20

52.91

43.9541.41

500 1000 1500 2000

L (m)

X-Y

1722 20

49.9245.76

42.80

500 1000 1500

L (m)

Page 311: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 311/322

150

200

150

200

150

150

X-Y

Page 312: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 312/322

Page 313: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 313/322

0.00 n4 n8

0.00 n4 n7

0.00 n7 n4

0.00 n1 n1

0.00 n2 n2

0.00 n2 n2

0.00 0.00 #N/A

Page 314: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 314/322

0 0 54.00508.66 508.66 52.91

519.98 1028.63 43.95

530.00 1558.63 41.41

#VALUE! #VALUE! #N/A#VALUE! #VALUE! #N/A

#VALUE! #VALUE! #N/A#VALUE! #VALUE! #N/A

0 0 54.00

508.66 508.66 49.92519.98 1028.63 45.76

369.99 1398.63 42.80

#VALUE! #VALUE! #N/A#VALUE! #VALUE! #N/A

#VALUE! #VALUE! #N/A

#VALUE! #VALUE! #N/A

Page 315: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 315/322

k (mm) 0.1

Qn total T (degC) vis(m2/s) PIPES N1cw N2cw Lxy(m)

72.9 10 1.3E-06 p1 n1 n4 40

p2 n4 n2 50

NODES X (m) Y (m) Z (msl) Qn (l/s) H (msl) p (mwc) p3 n2 n3 40

n1 40 80 54 0 60 6.00 p4 n3 n1 50n2 80 30 12 10.4 55.84 43.84

n3 40 30 17 12.2 58.05 41.05 LOOP 1  

n4 80 80 25 22.1 56.04 31.04 Iteration complete

n5 120 80 20 14.4 52.65 32.65

n6 120 30 22 13.8 50.10 28.10 PIPES N1cw N2cw Lxy(m)

p2 n2 n4 50

p5 n4 n5 40

p6 n5 n6 50

p7 n6 n2 40

LOOP 2  

Iteration complete

PIPES N1cw N2cw Lxy(m)

LOOP 3  

Iteration complete

Qn total T (degC) vis(m2/s) dH total72.9 10 1.3E-06 0.01

Iteration complete

NODES X (m) Y (m) Z (msl) Qn (l/s) H (msl) p (mwc) dQ (l/s) dH (msl) H (msl)

n1 40 80 54 0 60 6.00 -72.86 0.00 60.00

n2 80 30 12 10.4 55.85 43.85 -0.04 0.00 55.85

n3 40 30 17 12.2 58.05 41.05 0.01 0.00 58.05

n4 80 80 25 22.1 56.04 31.04 -0.01 0.00 56.04

n5 120 80 20 14.4 52.65 32.65 0.00 0.00 52.65

n6 120 30 22 13.8 50.10 28.10 0.01 0.00 50.10

Iteration complete

PIPES N1 N2 Lxy(m) L (m) D (mm) hf (mwc) S v (m/s) Re lambda v (m/s)

p1 n1 n4 40 400 200 3.96 0.0099 1.44 220102 0.0188 1.44

p2 n4 n2 50 500 150 0.19 0.0004 0.21 23622 0.0264 0.21

p3 n2 n3 40 400 150 -2.20 0.0055 0.88 100560 0.0211 0.88

p4 n3 n1 50 500 200 -1.95 0.0039 0.88 134885 0.0197 0.88p5 n4 n5 40 400 150 3.39 0.0085 1.10 126362 0.0206 1.10

p6 n5 n6 50 500 100 2.55 0.0051 0.64 49208 0.0242 0.64

Lesson 4-1Method of 

Balancing Heads

Lesson 4-2

Method of Balancing Flows

X-Y

X-Y

Page 316: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 316/322

p7 n6 n2 40 400 100 -5.75 0.0144 1.11 85335 0.0227 1.11

0.00 0.00

0.00 0.000.00 0.00

Qn total T (degC) vis(m2/s) dH total72.9 10 1.3E-06 0.06

Iteration complete

NODES X (m) Y (m) Z (msl) Qn (l/s) H (msl) p (mwc) dQ (l/s) H (msl)

n1 40 70 54 0 60 6.00 -72.59 60.00

n2 80 20 12 10.4 55.88 55.87 -0.25 55.87

n3 40 20 17 12.2 58.07 41.07 -0.11 58.06

n4 80 70 25 22.1 56.06 31.06 -0.12 56.06

n5 120 70 20 14.4 52.64 32.64 0.04 52.65n6 120 20 22 13.8 50.04 28.04 0.13 50.08

Omega1

k (mm)0.1

PIPES N1 N2 Lxy(m) L (m) D (mm) Q(l/s) v (m/s) Re lambda 1/U H1/U

p1 n1 n4 40 400 200 45.05 1.43 219531 0.0188 0.0114 0.69

p2 n4 n2 50 500 150 3.54 0.20 23017 0.0265 0.0196 1.10

p3 n2 n3 40 400 150 -15.44 -0.87 100333 0.0211 0.0071 0.39

p4 n3 n1 50 500 200 -27.54 -0.88 134170 0.0197 0.0143 0.83p5 n4 n5 40 400 150 19.54 1.11 126952 0.0206 0.0057 0.32

p6 n5 n6 50 500 100 5.11 0.65 49790 0.0242 0.0020 0.10

p7 n6 n2 40 400 100 -8.83 -1.12 86071 0.0227 0.0015 0.08

Lesson 4-3Linear Theory

X-Y

Page 317: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 317/322

L (m) D (mm) Q (l/s) v (m/s) hf (mwc) Q (l/s)

400 200 45.20 1.44 3.96 45.20

500 150 3.65 0.21 0.19 3.66

400 150 -15.50 -0.88 -2.20 -15.50

500 200 -27.70 -0.88 -1.95 -27.700.00 0.00

Q (l/s)= 0.00 Sum= 0.00

L (m) D (mm) Q (l/s) v (m/s) hf (mwc) Q (l/s)

500 150 -3.65 -0.21 -0.19 -3.66

400 150 19.45 1.10 3.39 19.45

500 100 5.05 0.64 2.55 5.05

400 100 -8.75 -1.11 -5.75 -8.75

0.00 0.00

Q (l/s)= 0.00 Sum= 0.00

L (m) D (mm) Q (l/s) v (m/s) hf (mwc) Q (l/s)

0.00

0.00

0.00

0.00

0.00

Q (l/s)= 0.00 Sum= 0.00

Q (l/s) Q/hf k (mm)

45.18 11.41 0.1

3.64 19.14

-15.48 7.04

-27.69 14.2019.45 5.74

5.05 1.98

 

Page 318: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 318/322

-8.76 1.52

Iteration complete

H2/U hf (mwc) S v (m/s) Q (l/s)

0.64 3.94 0.0098 1.43 45.06

1.09 0.18 0.0004 0.20 3.53

0.41 -2.19 0.0055 0.87 -15.44

0.86 -1.93 0.0039 0.88 -27.540.30 3.42 0.0086 1.11 19.54

0.10 2.60 0.0052 0.65 5.10

0.08 -5.84 0.0146 1.12 -8.83

0.00

0.000.00

 

Page 319: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 319/322

56.04 220246 0.0188 0.0877 40 80 80 80 0

55.84 23742 0.0264 0.052435 80 80 80 30 0.000648

58.05 100696 0.0211 0.142262 80 40 30 30 0

60.00 134968 0.0197 0.07046 40 40 30 80 0#VALUE! #VALUE! - 0 #N/A #N/A #N/A #N/A 0

56.04 23742 0.0264 0.052435 80 80 30 80 0.001289

52.65 126340 0.0206 0.174239 80 120 80 80 0

50.10 49178 0.0242 0.504756 120 120 80 30 0

55.85 85306 0.0227 0.656382 120 80 30 30 0

#VALUE! #VALUE! - 0 #N/A #N/A #N/A #N/A 0

#N/A #VALUE! - 0 #N/A #N/A #N/A #N/A 0

#N/A #VALUE! - 0 #N/A #N/A #N/A #N/A 0

#N/A #VALUE! - 0 #N/A #N/A #N/A #N/A 0

#N/A #VALUE! - 0 #N/A #N/A #N/A #N/A 0

#N/A #VALUE! - 0 #N/A #N/A #N/A #N/A 0

40 80 80 8080 80 80 30

80 40 30 3040 40 30 80

80 120 80 80

120 120 80 30

0.00 120 80 30 30

0.00 #N/A #N/A #N/A #N/A

0.00 #N/A #N/A #N/A #N/A

0.00 #N/A #N/A #N/A #N/A

0.00

0.00

0.00

0.00

0.00

0.00

0.00 45.18

0.00 3.64

0.00 15.48

0.00 27.690.00 19.45

0.00 5.05

Page 320: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 320/322

0.00 8.76

0.00 0.00

0.00 0.000.00 0.00

40 80 70 7080 80 70 20

80 40 20 2040 40 20 70

80 120 70 70

120 120 70 20

0.00 120 80 20 20

0.01 #N/A #N/A #N/A #N/A

0.01 #N/A #N/A #N/A #N/A

0.00 #N/A #N/A #N/A #N/A

0.010.04

0.000.00

0.000.00

0.00 45.06

0.01 3.53

0.00 15.44

0.00 27.540.00 19.54

0.01 5.10

0.00 8.83

0.00 #VALUE!

0.00 #VALUE!0.00 #VALUE!

Page 321: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 321/322

0

0

0

00

0

0

0

0

0

0

0

0

0

0

Page 322: hles1-4

7/28/2019 hles1-4

http://slidepdf.com/reader/full/hles1-4 322/322