Top Banner
Hölder continuity for the nonlinear stochastic heat equation with rough initial conditions Le CHEN Department of Mathematics University of Utah Joint work with Prof. Robert C. DALANG To appear in Stochastic Partial Differential Equations: Analysis and Computations, 2014 18–20, May 2014 Frontier Probability Days Tucson, Arizona 1 / 12
23

Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

May 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Hölder continuity for the nonlinear stochastic heat equationwith rough initial conditions

Le CHEN

Department of Mathematics

University of Utah

Joint work with Prof. Robert C. DALANG

To appear in Stochastic Partial Differential Equations: Analysis and Computations, 2014

18–20, May 2014Frontier Probability Days

Tucson, Arizona

1 / 12

Page 2: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Stochastic Heat Equation (SHE)

(∂

∂t− ν

2∂2

∂x2

)u(t , x) = ρ(u(t , x)) W (t , x), x ∈ R, t ∈ R∗+,

u(0, ·) = µ(·) ,(SHE)

W is the space-time white noise;

ρ is Lipschitz continuous;

µ is the initial measure (to be specified).

u(t , x) = J0(t , x) +

∫∫[0,t]×R

ρ(u(s, y))Gν(t − s, x − y)W (ds, dy).

Gν(t , x) =1√

2πνtexp

(−x2

2t

)J0(t , x) := (µ ∗Gν(t , ·))(x)

2 / 12

Page 3: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Definition of random field solution

u(t , x) = J0(t , x) +

∫∫[0,t]×R

ρ (u(s, y)) Gν(t − s, x − y)W (ds, dy)︸ ︷︷ ︸:=I(t,x)

. (SHE)

Definition (Random field solution)

u = (u(t , x) : (t , x) ∈ R∗+ × R) is called a random field solution to (SHE) if

(1) u is adapted, i.e., for all (t , x) ∈ R∗+ × R, u(t , x) is Ft -measurable;

(2) u is jointly measurable with respect to B (R∗+ × R)×F ;

(3)(

G2ν ? ||ρ(u)||22

)(t , x) < +∞ for all (t , x) ∈ R∗+ × R, and

(t , x) 7→ I(t , x) : R∗+ × R 7→ L2(Ω) is continuous;

(4) u satisfies (SHE) almost surely, for all (t , x) ∈ R∗+ × R.

(G2

ν ? ||ρ(u)||22

)(t, x) :=

∫ t

0ds∫R

dy G2ν(t − s, x − y) ||ρ(u(s, y))||22 .

3 / 12

Page 4: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Rough initial data

Initial data has a bounded density function (Walsh theory [2]), (Bounded initial data)i.e., µ(dx) = f (x)dx with f ∈ L∞(R).

Measure-valued initial data (Ch. & Dalang [1]).

MH(R) :=

signed Borel meas. µ, s.t.

∫R

e−ax2|µ|(dx) < +∞, ∀a > 0

(|µ| ∗Gν(t , ·)) (x) :=

∫R

1√2πνt

e−(x−y)2

2νt |µ|(dy) < +∞ ∀t > 0, ∀x ∈ R.

Initial data cannot go beyond measures. No random field solution for δ′0.

[1] L. Chen, R. Dalang, Moments and growth indices for the nonlinear stochastic heat equation withrough initial conditions, Ann. Probab., (accepted, pending revision), 2014.

[2] J. B. Walsh. An introduction to stochastic partial differential equations. In: École d’été deprobabilités de Saint-Flour, XIV—1984, pp. 265–439. Springer, Berlin, 1986.

4 / 12

Page 5: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Rough initial data

Initial data has a bounded density function (Walsh theory [2]), (Bounded initial data)i.e., µ(dx) = f (x)dx with f ∈ L∞(R).

Measure-valued initial data (Ch. & Dalang [1]).

MH(R) :=

signed Borel meas. µ, s.t.

∫R

e−ax2|µ|(dx) < +∞, ∀a > 0

(|µ| ∗Gν(t , ·)) (x) :=

∫R

1√2πνt

e−(x−y)2

2νt |µ|(dy) < +∞ ∀t > 0, ∀x ∈ R.

Initial data cannot go beyond measures. No random field solution for δ′0.

[1] L. Chen, R. Dalang, Moments and growth indices for the nonlinear stochastic heat equation withrough initial conditions, Ann. Probab., (accepted, pending revision), 2014.

[2] J. B. Walsh. An introduction to stochastic partial differential equations. In: École d’été deprobabilités de Saint-Flour, XIV—1984, pp. 265–439. Springer, Berlin, 1986.

4 / 12

Page 6: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Rough initial data

Initial data has a bounded density function (Walsh theory [2]), (Bounded initial data)i.e., µ(dx) = f (x)dx with f ∈ L∞(R).

Measure-valued initial data (Ch. & Dalang [1]).

MH(R) :=

signed Borel meas. µ, s.t.

∫R

e−ax2|µ|(dx) < +∞, ∀a > 0

(|µ| ∗Gν(t , ·)) (x) :=

∫R

1√2πνt

e−(x−y)2

2νt |µ|(dy) < +∞ ∀t > 0, ∀x ∈ R.

Initial data cannot go beyond measures. No random field solution for δ′0.

[1] L. Chen, R. Dalang, Moments and growth indices for the nonlinear stochastic heat equation withrough initial conditions, Ann. Probab., (accepted, pending revision), 2014.

[2] J. B. Walsh. An introduction to stochastic partial differential equations. In: École d’été deprobabilités de Saint-Flour, XIV—1984, pp. 265–439. Springer, Berlin, 1986.

4 / 12

Page 7: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Rough initial data

Initial data has a bounded density function (Walsh theory [2]), (Bounded initial data)i.e., µ(dx) = f (x)dx with f ∈ L∞(R).

Measure-valued initial data (Ch. & Dalang [1]).

MH(R) :=

signed Borel meas. µ, s.t.

∫R

e−ax2|µ|(dx) < +∞, ∀a > 0

(|µ| ∗Gν(t , ·)) (x) :=

∫R

1√2πνt

e−(x−y)2

2νt |µ|(dy) < +∞ ∀t > 0, ∀x ∈ R.

Initial data cannot go beyond measures. No random field solution for δ′0.

J0(t , x) ∈ C∞(R∗+ × R)

I(t , x) ∈ C?,?(R∗+ × R)

4 / 12

Page 8: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Some notation for locally Hölder continuous functions

Given a subset D ⊆ R+ × R and positive constants β1, β2, denote byCβ1,β2 (D) the set of functions v : R+ × R→ R with the following property:

For each compact subset D ⊂ D, ∃C s.t. for all (t , x) and (s, y) ∈ D,

|v(t , x)− v(s, y)| ≤ C(|t − s|β1 + |x − y |β2

).

Cβ1−,β2−(D) :=⋂

0<α1<β1

⋂0<α2<β2

Cα1,α2 (D) .

5 / 12

Page 9: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

u(t , x) = J0(t , x) + I(t , x)

MH(R) :=

signed Borel meas. µ, s.t.

∫R

e−ax2|µ|(dx) < +∞, ∀a > 0

M∗H(R) :=

µ(dx) = f (x)dx , s.t. ∃a ∈ ]1, 2[ , sup

x∈R|f (x)|e−|x|

a< +∞

.

Theorem

(1) If µ ∈MH(R), then I ∈ C 14−,

12−

(R∗+ × R) a.s. Therefore,

u ∈ C 14−,

12−

(R∗+ × R) , a.s.

(2) If µ ∈M∗H(R) with µ(dx) = f (x)dx, then I ∈ C 14−,

12−

(R+ × R), a.s.Moreover,(i) If f is continuous, then

u ∈ C (R+ × R) ∩ C 14−,

12−

(R∗+ × R) , a.s.

(ii) If f is α-Hölder continuous, then

u ∈ C( α2 ∧

14 )−,(α∧ 1

2 )− (R+ × R) ∩ C 14−,

12−

(R∗+ × R) , a.s.

6 / 12

Page 10: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

u(t , x) = J0(t , x) + I(t , x)

MH(R) :=

signed Borel meas. µ, s.t.

∫R

e−ax2|µ|(dx) < +∞, ∀a > 0

M∗H(R) :=

µ(dx) = f (x)dx , s.t. ∃a ∈ ]1, 2[ , sup

x∈R|f (x)|e−|x|

a< +∞

.

Theorem

(1) If µ ∈MH(R), then I ∈ C 14−,

12−

(R∗+ × R) a.s. Therefore,

u ∈ C 14−,

12−

(R∗+ × R) , a.s.

(2) If µ ∈M∗H(R) with µ(dx) = f (x)dx, then I ∈ C 14−,

12−

(R+ × R), a.s.Moreover,(i) If f is continuous, then

u ∈ C (R+ × R) ∩ C 14−,

12−

(R∗+ × R) , a.s.

(ii) If f is α-Hölder continuous, then

u ∈ C( α2 ∧

14 )−,(α∧ 1

2 )− (R+ × R) ∩ C 14−,

12−

(R∗+ × R) , a.s.

6 / 12

Page 11: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Difficulties with rough initial dataConventional method: For p > 1 and q = p/(p − 1), t < t ′ (ρ(u) = u), Set

Gν(t − s, x − y ; t ′ − s, x ′ − y) = Gν(t − s, x − y)−Gν(t ′ − s, x ′ − y).

∣∣∣∣I(t , x)− I(t ′, x ′)∣∣∣∣2p

2p =

∣∣∣∣∣∣∣∣∣∣∫∫

[0,t′]×RGν(t − s, x − y ; t ′ − s, x ′ − y)u(s, y)W (dsdy)

∣∣∣∣∣∣∣∣∣∣2p

2p

≤ C

[∫ t′

0

∫RGν(· · · )2dsdy

]p/q ∫ t′

0

∫RG2ν ·(

1 + ||u(s, y)||2p2p

)dsdy

≤ C sups∈[0,t′]

supy∈R

(1 + ||u(s, y)||2p

2p

)[∫ t′

0

∫RGν(· · · )2dsdy

]p

≤ C sups∈[0,t′]

supy∈R

(1 + ||u(s, y)||2p

2p

) [|t ′ − t |p/2 + |x ′ − x |p

][1] Robert C. Dalang. The stochastic wave equation. In A minicourse on stochastic partial differential equations, volume 1962 of LectureNotes in Math. Springer, Berlin, 2009.[2] Marta Sanz-Solé and Mònica Sarrà. Hölder continuity for the stochastic heat equation with spatially correlated noise. In Seminar onStochastic Analysis, Random Fields and Applications, III, volume 52 of Progr. Probab.. Birkhäuser, Basel, 2002.[3] Tokuzo Shiga. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math.,46(2):415–437, 1994.

7 / 12

Page 12: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Difficulties with rough initial dataConventional method: For p > 1 and q = p/(p − 1), t < t ′ (ρ(u) = u), Set

Gν(t − s, x − y ; t ′ − s, x ′ − y) = Gν(t − s, x − y)−Gν(t ′ − s, x ′ − y).

∣∣∣∣I(t , x)− I(t ′, x ′)∣∣∣∣2p

2p =

∣∣∣∣∣∣∣∣∣∣∫∫

[0,t′]×RGν(t − s, x − y ; t ′ − s, x ′ − y)u(s, y)W (dsdy)

∣∣∣∣∣∣∣∣∣∣2p

2p

≤ C

[∫ t′

0

∫RGν(· · · )2dsdy

]p/q ∫ t′

0

∫RG2ν ·(

1 + ||u(s, y)||2p2p

)dsdy

≤ C sups∈[0,t′]

supy∈R

(1 + ||u(s, y)||2p

2p

)[∫ t′

0

∫RGν(· · · )2dsdy

]p

≤ C sups∈[0,t′]

supy∈R

(1 + ||u(s, y)||2p

2p

) [|t ′ − t |p/2 + |x ′ − x |p

]Tails⇒ integrability of x at ±∞.Measure⇒ integrability of t at 0: e.g., µ = δ0,

||u(s, y)||22p ≥ ||u(s, y)||22 ≥ G ν2

(s, y)1√

4πνs=

Cs

e−y2νs ⇒ p < 3/2.

7 / 12

Page 13: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Difficulties with rough initial dataConventional method: For p > 1 and q = p/(p − 1), t < t ′ (ρ(u) = u), Set

Gν(t − s, x − y ; t ′ − s, x ′ − y) = Gν(t − s, x − y)−Gν(t ′ − s, x ′ − y).

∣∣∣∣I(t , x)− I(t ′, x ′)∣∣∣∣2p

2p =

∣∣∣∣∣∣∣∣∣∣∫∫

[0,t′]×RGν(t − s, x − y ; t ′ − s, x ′ − y)u(s, y)W (dsdy)

∣∣∣∣∣∣∣∣∣∣2p

2p

≤ C

[∫ t′

0

∫RGν(· · · )2dsdy

]p/q ∫ t′

0

∫RG2ν ·(

1 + ||u(s, y)||2p2p

)dsdy

≤ C sups∈[0,t′]

supy∈R

(1 + ||u(s, y)||2p

2p

)[∫ t′

0

∫RGν(· · · )2dsdy

]p

≤ C sups∈[0,t′]

supy∈R

(1 + ||u(s, y)||2p

2p

) [|t ′ − t |p/2 + |x ′ − x |p

]

Lemma. For each Kn := [1/n, n]× [n, n] and p ≥ 2, find Cn,p such that∣∣∣∣I(t , x)− I(t ′, x ′)∣∣∣∣

p ≤ Cn,p

(|t − t ′|1/4 + |x − x ′|1/2

), ∀(t , x), (t ′, x ′) ∈ Kn.

7 / 12

Page 14: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Instead of∫∫R+×R

dsdy(Gν(t − s, x − y)−Gν(t ′ − s, x ′ − y)

)2 ≤ C(|x − x ′|+

√|t − t ′|

).

For all (t , x) and (t ′, x ′) ∈ [1/n, n]× [−n, n], find Cn > 0 s.t.,∫∫R+×R

dsdy J0(s, y)2 (Gν (t − s, x − y)−Gν(t ′ − s, x ′ − y))2

≤ Cn

(|x − x ′|+

√|t − t ′|

).

8 / 12

Page 15: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Two key estimates on heat kernel

-5 5

0.1

0.2

0.3

0.4

Gν(t , x) =1√

2πνtexp

(−x2

2t

)

Lemma 1. For all L > 0, 0 < β < 1, t > 0, x ∈ R, and |h| ≤ βL, ∃C ≈ 0.45,

|Gν(t , x + h) + Gν(t , x − h)− 2Gν(t , x)|

≤ 2|h|(

C√2νt

+1

(1− β)L

)[Gν(t , x) + e

3L22νt Gν (t , x − 2L ) + Gν (t , x + 2L )

].

Lemma 2. For all t > 0, n > 1, x ∈ R and 0 < r < n2t ,∣∣∣G ν2

(t + r , x)−G ν2

(t , x)∣∣∣ ≤ 3

2

√1 + n2√

tG ν(1+n2)

2(t , x)

√r .

9 / 12

Page 16: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Moment formula

||u(t , x)||2p ≤ J20 (t , x) +

(J2

0 ?Kp(t , x))

(t , x)

K(t , x ;λ) := G ν2

(t , x)

(λ2

√4πνt

+λ4

2νe

λ44ν Φ

(λ2

√t

))

Kp(t , x) := K(t , x ; 4√

p Lρ)

[1] L. Chen, R. Dalang, Moments and growth indices for the nonlinear stochastic heat equation with

rough initial conditions, Ann. Probab., (accepted, pending revision), 2014.

10 / 12

Page 17: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Related work

u ∈ C 14−,

12−

(R∗+ × R)

Bounded initial data (Walsh theory).Shiga’s work f ∈ Ctem(R): continuous function with tails tails grow atmost exponentially at ±∞.Sanz-Solé & Sarrà’s work on SHE over Rd with spatially homogeneouscolored noise which is white in time: bounded continuous function.Work by Conus et al: finite measure, 1/2− in space.Work by Dalang, Khoshnevisan & Nualart: a system of SHE’s withvanishing initial data.

SHE on bounded domains rather than R: Maximal inequality andstochastic convolutions. (initial data in some Banach space)

J. B. Walsh. An introduction to stochastic partial differential equations. In: École d’été deprobabilités de Saint-Flour, XIV—1984 , pp. 265–439. Springer, Berlin, 1986.

11 / 12

Page 18: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Related work

u ∈ C 14−,

12−

(R∗+ × R)

Bounded initial data (Walsh theory).Shiga’s work f ∈ Ctem(R): continuous function with tails tails grow atmost exponentially at ±∞.Sanz-Solé & Sarrà’s work on SHE over Rd with spatially homogeneouscolored noise which is white in time: bounded continuous function.Work by Conus et al: finite measure, 1/2− in space.Work by Dalang, Khoshnevisan & Nualart: a system of SHE’s withvanishing initial data.

SHE on bounded domains rather than R: Maximal inequality andstochastic convolutions. (initial data in some Banach space)

T. Shiga. Two contrasting properties of solutions for one-dimensional stochastic partial differentialequations. Canad. J. Math., 46(2):415–437, 1994.

11 / 12

Page 19: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Related work

u ∈ C 14−,

12−

(R∗+ × R)

Bounded initial data (Walsh theory).Shiga’s work f ∈ Ctem(R): continuous function with tails tails grow atmost exponentially at ±∞.Sanz-Solé & Sarrà’s work on SHE over Rd with spatially homogeneouscolored noise which is white in time: bounded continuous function.Work by Conus et al: finite measure, 1/2− in space.Work by Dalang, Khoshnevisan & Nualart: a system of SHE’s withvanishing initial data.

SHE on bounded domains rather than R: Maximal inequality andstochastic convolutions. (initial data in some Banach space)

M. Sanz-Solé and M. Sarrà. Hölder continuity for the stochastic heat equation with spatiallycorrelated noise. In: Seminar on Stochastic Analysis, Random Fields and Applications, III , pp.259–268. Birkhäuser, Basel, 2002. (R. C. Dalang, M. Dozzi and F. Russo, eds).

11 / 12

Page 20: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Related work

u ∈ C 14−,

12−

(R∗+ × R)

Bounded initial data (Walsh theory).Shiga’s work f ∈ Ctem(R): continuous function with tails tails grow atmost exponentially at ±∞.Sanz-Solé & Sarrà’s work on SHE over Rd with spatially homogeneouscolored noise which is white in time: bounded continuous function.Work by Conus et al: finite measure, 1/2− in space.Work by Dalang, Khoshnevisan & Nualart: a system of SHE’s withvanishing initial data.

SHE on bounded domains rather than R: Maximal inequality andstochastic convolutions. (initial data in some Banach space)

D. Conus, M. Joseph, D. Khoshnevisan, and S.-Y. Shiu. Initial measures for the stochastic heatequation. Ann. Inst. Henri Poincaré Probab. Stat., 2014.

11 / 12

Page 21: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Related work

u ∈ C 14−,

12−

(R∗+ × R)

Bounded initial data (Walsh theory).Shiga’s work f ∈ Ctem(R): continuous function with tails tails grow atmost exponentially at ±∞.Sanz-Solé & Sarrà’s work on SHE over Rd with spatially homogeneouscolored noise which is white in time: bounded continuous function.Work by Conus et al: finite measure, 1/2− in space.Work by Dalang, Khoshnevisan & Nualart: a system of SHE’s withvanishing initial data.

SHE on bounded domains rather than R: Maximal inequality andstochastic convolutions. (initial data in some Banach space)

R. C. Dalang, D. Khoshnevisan, and E. Nualart. Hitting probabilities for systems for non-linearstochastic heat equations with multiplicative noise. Probab. Theory Related Fields, 2009.

11 / 12

Page 22: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Related work

u ∈ C 14−,

12−

(R∗+ × R)

Bounded initial data (Walsh theory).Shiga’s work f ∈ Ctem(R): continuous function with tails tails grow atmost exponentially at ±∞.Sanz-Solé & Sarrà’s work on SHE over Rd with spatially homogeneouscolored noise which is white in time: bounded continuous function.Work by Conus et al: finite measure, 1/2− in space.Work by Dalang, Khoshnevisan & Nualart: a system of SHE’s withvanishing initial data.

SHE on bounded domains rather than R: Maximal inequality andstochastic convolutions. (initial data in some Banach space)

Z. Brzezniak. On stochastic convolution in Banach spaces and applications. Stochastics StochasticRep. 61(3-4):245–295, 1997.S. Peszat and J. Seidler. Maximal inequalities and space-time regularity of stochastic convolutions.Mathematica Bohemica 123(1): 7-32, 1998.

11 / 12

Page 23: Hölder continuity for the nonlinear stochastic heat ...math.arizona.edu/~fpd/Talks/Chen.pdfIn A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes

Thank you!

Le Chen ([email protected])Robert C. Dalang ([email protected])

12 / 12