Top Banner
MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De
28
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Higher Order FEM

MANE 4240 & CIVL 4240Introduction to Finite Elements

Higher order elements

Prof. Suvranu De

Page 2: Higher Order FEM

Reading assignment:

Lecture notes

Summary:

• Properties of shape functions• Higher order elements in 1D • Higher order triangular elements (using area coordinates)• Higher order rectangular elements

Lagrange familySerendipity family

Page 3: Higher Order FEM

Recall that the finite element shape functions need to satisfy the following properties

1. Kronecker delta property

nodesotherallat

inodeatN i 0

1

...2211 uNuNu

Inside an element

At node 1, N1=1, N2=N3=…=0, hence

11uu

node

Facilitates the imposition of boundary conditions

Page 4: Higher Order FEM

2. Polynomial completeness

yyN

xxN

N

ii

i

ii

i

ii

1

yxuIf 321

Then

Page 5: Higher Order FEM

Higher order elements in 1D

2-noded (linear) element:

1 2

x2x1

12

12

21

21

xx

xxN

xx

xxN

In “local” coordinate system (shifted to center of element)

1 2

x

a a a

xaN

a

xaN

2

2

2

1

x

Page 6: Higher Order FEM

3-noded (quadratic) element:

1 2

x2x1

2313

213

3212

312

3121

321

xxxx

xxxxN

xxxx

xxxxN

xxxx

xxxxN

In “local” coordinate system (shifted to center of element)

1 2

x

a a

2

22

3

22

21

2

2

a

xaN

a

xaxN

a

xaxN

3

x3

x

axxax 321 ;0;

3

Page 7: Higher Order FEM

4-noded (cubic) element:

1 2

x2x1

342414

3214

432313

4213

423212

4312

413121

4321

xxxxxx

xxxxxxN

xxxxxx

xxxxxxN

xxxxxx

xxxxxxN

xxxxxx

xxxxxxN

In “local” coordinate system (shifted to center of element)

1 2

2a/3x

a a

)3/)(3/)((16

27

))(3/)((16

27

)3/)(3/)((16

9

)3/)(3/)((16

9

34

33

32

31

axaxaxa

N

xaxaxaa

N

axaxaxa

N

axaxaxa

N

3

x3

xx4

4

3 4

2a/32a/3

Page 8: Higher Order FEM

Polynomial completeness

4

3

2

1

x

x

x

x 2 node; k=1; p=2

3 node; k=2; p=3

4 node; k=3; p=4

Convergence rate (displacement)

1;0

kpChuu ph

Recall that the convergence in displacements

k=order of complete polynomial

Page 9: Higher Order FEM

Triangular elements

Area coordinates (L1, L2, L3)1

A=A1+A2+A3Total area of the triangle

At any point P(x,y) inside the triangle, we define

A

AL

A

AL

A

AL

33

22

11

Note: Only 2 of the three area coordinates are independent, since

x

y

2

3

PA1

A2A3

L1+L2+L3=1

Page 10: Higher Order FEM

A

ycxbaL iiii 2

12321312213

31213231132

23132123321

33

22

11

x1

x1

x1

det2

1

xxcyybyxyxa

xxcyybyxyxa

xxcyybyxyxa

y

y

y

triangleofareaA

Page 11: Higher Order FEM

Check that

yyLyLyL

xxLxLxL

LLL

332211

332211

321 1

Page 12: Higher Order FEM

x

y

2

3

PA1

1

L1= constantP’

Lines parallel to the base of the triangle are lines of constant ‘L’

Page 13: Higher Order FEM

We will develop the shape functions of triangular elements in terms of the area coordinates

x

y

2

3

PA1

1

L1= 0

L1= 1

L2= 0

L2= 1L3= 0

L3= 1

Page 14: Higher Order FEM

For a 3-noded triangle

33

22

11

LN

LN

LN

Page 15: Higher Order FEM

x

y

2

3

1

L1= 0

L1= 1L2= 0

L2= 1

L3= 0 L3= 1

For a 6-noded triangle

L1= 1/2L2= 1/2

L3= 1/2

4

5

6

Page 16: Higher Order FEM

How to write down the expression for N1?

Realize the N1 must be zero along edge 2-3 (i.e., L1=0) and at nodes 4&6 (which lie on L1=1/2)

2/10 111 LLcN

Determine the constant ‘c’ from the condition that N1=1 at node 1 (i.e., L1=1)

2/12

2

12/111)1(

111

11

LLN

c

cLatN

Page 17: Higher Order FEM

136

235

214

333

222

111

4

4

4

)2/1(2

)2/1(2

)2/1(2

LLN

LLN

LLN

LLN

LLN

LLN

Page 18: Higher Order FEM

x

y

2

3

1

L1= 0

L1= 1L2= 0

L2= 1

L3= 0 L3= 1

For a 10-noded triangle

L1= 2/3

L2= 2/3

L3= 1/3 L3= 2/3

L2= 1/3

L1= 1/3

5

4

67

89

10

Page 19: Higher Order FEM

32110

3327

2326

2215

1214

3333

2222

1111

27

:

)3/1(2

27

)3/1(2

27

)3/1(2

27

)3/1(2

27

)3/2)(3/1(2

9

)3/2)(3/1(2

9

)3/2)(3/1(2

9

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

Page 20: Higher Order FEM

NOTES:1. Polynomial completeness

3 node; k=1; p=2

6 node; k=2; p=3

10 node; k=3; p=4

Convergence rate (displacement)

3223

22

1

yxyyxx

yxyx

yx

Page 21: Higher Order FEM

2. Integration on triangular domain

)!1(

!!.2

)!2(

!!!2.1

2121 21

321

mk

mkldSLL

nmk

nmkAdALLL

edge

mk

A

nmk

1

x

y

2

3

l1-2

Page 22: Higher Order FEM

3. Computation of derivatives of shape functions: use chain rule

x

L

L

N

x

L

L

N

x

L

L

N

x

N iiii

3

3

2

2

1

1

e.g.,

ButA

b

x

L

A

b

x

L

A

b

x

L

2;

2;

2332211

e.g., for the 6-noded triangle

A

bL

A

bL

x

N

LLN

24

24

4

12

21

4

214

Page 23: Higher Order FEM

Rectangular elements

Lagrange familySerendipity family

Lagrange family

4-noded rectangle

x

ya a 12

3 4

b

b

In local coordinate system

ab

ybxaN

ab

ybxaN

ab

ybxaN

ab

ybxaN

4

))((4

))((4

))((4

))((

4

3

2

1

Page 24: Higher Order FEM

9-noded quadratic

x

ya a 12

3 4

b

b

Corner nodes

224223

222221

2

)(

2

)(

2

)(

2

)(

2

)(

2

)(

2

)(

2

)(

b

yby

a

xaxN

b

yby

a

xaxN

b

yby

a

xaxN

b

yby

a

xaxN5

6

7

89

Midside nodes

2

22

2822

22

7

2

22

2622

22

5

2

)(

2

)(

2

)(

2

)(

b

yb

a

xaxN

b

yby

a

xaN

b

yb

a

xaxN

b

yby

a

xaN

Center node

2

22

2

22

9 b

yb

a

xaN

Page 25: Higher Order FEM

54322345

432234

3223

22

1

yxyyxyxyxx

yxyyxyxx

yxyyxx

yxyx

yx

NOTES:1. Polynomial completeness

4 node; p=2

9 node; p=3

Convergence rate (displacement)

Lagrange shape functions contain higher order terms but miss out lower order terms

Page 26: Higher Order FEM

Serendipity family

Then go to the corner nodes. At each corner node, first assume a bilinear shape function as in a 4-noded element and then modify:

22ˆ

4

))((ˆ

8511

1

NNNN

ab

ybxaN

x

ya a 12

3 4

b

b

5

6

7

8

First generate the shape functions of the midside nodes as appropriate products of 1D shape functions, e.g.,

2

22

82

22

5 2

)(;

2

)(

b

yb

a

xaN

b

yb

a

xaN

4-noded same as Lagrange

8-noded rectangle: how to generate the shape functions?

“bilinear” shape fn at node 1:

actual shape fn at node 1:

Page 27: Higher Order FEM

Corner nodes

224

))((

224

))((224

))((

224

))((

784

763

652

851

NN

ab

ybxaN

NN

ab

ybxaN

NN

ab

ybxaN

NN

ab

ybxaN

x

ya a 12

3 4

b

b

5

6

7

8

Midside nodes

2

22

82

22

7

2

22

62

22

5

2

)(

2

)(

2

)(

2

)(

b

yb

a

xaN

b

yb

a

xaN

b

yb

a

xaN

b

yb

a

xaN

8-noded rectangle

Page 28: Higher Order FEM

54322345

432234

3223

22

1

yxyyxyxyxx

yxyyxyxx

yxyyxx

yxyx

yx

NOTES:1. Polynomial completeness

4 node; p=2

8 node; p=3

Convergence rate (displacement)

12 node; p=4

16 node; p=4

More even distribution of polynomial terms than Lagrange shape functions but ‘p’ cannot exceed 4!