Top Banner
Hidden diversity in bent-winged bats (Chiroptera: Miniopteridae) of the Western Palaearctic and adjacent regions: implications for taxonomy JAN ŠRÁMEK 1 *, VÁCLAV GVOŽDÍK 2,3 and PETR BENDA 1,2 1 Department of Zoology, Faculty of Science, Charles University, Vinic ˇná 7, CZ–128 44 Prague, Czech Republic 2 Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ–115 79 Prague, Czech Republic 3 Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, CZ–277 21 Libe ˇchov, Czech Republic Received 6 December 2011; revised 28 August 2012; accepted for publication 29 August 2012 The taxonomic status of bent-winged bats (Miniopterus) in the Western Palaearctic and adjacent regions is unclear, particularly in some areas of the eastern Mediterranean, Middle East and Arabia. To address this, we analysed an extensive collection of museum materials from all principal parts of this distribution range, i.e. North Africa, Europe and southwest Asia, using morphological (skull) and genetic approaches (mitochondrial DNA). Linear and geometric morphometric analysis of cranial and dental characteristics, together with molecular phylogeny, suggested that Miniopterus populations comprise four separate species: (1) M. schreibersii sensu strictissimo (s.str.) – occurring in Europe, coastal Anatolia, Levant, Cyprus, western Transcaucasia, and North Africa; (2) M. pallidus – occurring in inland Anatolia, Jordan, eastern Transcaucasia, Turkmenistan, Iran and southern Afghanistan (Kandahar); (3) a Miniopterus sp. – recorded from Nangarhar province in eastern Afghanistan, which we tentatively assign to M. cf. fuliginosus; and (4) a Miniopterus sp. with Afro-tropic affinities confirmed from south-western Arabia and Ethiopia, which we tentatively name M. cf. arenarius. The latter two species are well differentiated by skull morphology, while M. pallidus possesses very similar skull morphology to M. schreibersii. The results also suggest the existence of a possible new taxon (subspecies) within M. schreibersii s.str. inhabiting the Atlas Mountains of Morocco. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190. doi: 10.1111/j.1096-3642.2012.00870.x ADDITIONAL KEYWORDS: Arabia – bent-winged bats – cryptic species – Europe – Middle East – mitochondrial DNA – morphology – North Africa – phylogeography – systematics. INTRODUCTION Bent-winged bats, family Miniopteridae, are repre- sented by a single genus, Miniopterus Bonaparte, 1837. The genus includes up to 19 species occurring mostly in the tropics and subtropics of the Old World, viz. Africa (except the Sahara), southern and central Europe, southern Asia from Anatolia, across the Middle East and Transcaucasia to China and Japan, the Sunda archipelago, the Philippines, and the Australasian region (Simmons, 2005). Morphological analysis suggests that the named forms (species/ subspecies) of this genus are very similar in their cranial and external characteristics (e.g. Tate, 1941; Maeda, 1982; Benda et al., 2006), meaning that *Corresponding author. Current address: Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, CZ–100 00 Prague, Czech Republic. E-mail: [email protected] Zoological Journal of the Linnean Society, 2013, 167, 165–190. With 4 figures © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 165
61

Hidden diversity in bent-winged bats (Chiroptera ...

Mar 22, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hidden diversity in bent-winged bats (Chiroptera ...

Hidden diversity in bent-winged bats (Chiroptera:Miniopteridae) of the Western Palaearctic and adjacentregions: implications for taxonomy

JAN ŠRÁMEK1*, VÁCLAV GVOŽDÍK2,3 and PETR BENDA1,2

1Department of Zoology, Faculty of Science, Charles University, Vinicná 7, CZ–128 44 Prague, CzechRepublic2Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ–115 79 Prague,Czech Republic3Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, Academy of Sciencesof the Czech Republic, Rumburská 89, CZ–277 21 Libechov, Czech Republic

Received 6 December 2011; revised 28 August 2012; accepted for publication 29 August 2012

The taxonomic status of bent-winged bats (Miniopterus) in the Western Palaearctic and adjacent regions is unclear,particularly in some areas of the eastern Mediterranean, Middle East and Arabia. To address this, we analysed anextensive collection of museum materials from all principal parts of this distribution range, i.e. North Africa,Europe and southwest Asia, using morphological (skull) and genetic approaches (mitochondrial DNA). Linearand geometric morphometric analysis of cranial and dental characteristics, together with molecular phylogeny,suggested that Miniopterus populations comprise four separate species: (1) M. schreibersii sensu strictissimo (s.str.)– occurring in Europe, coastal Anatolia, Levant, Cyprus, western Transcaucasia, and North Africa; (2) M. pallidus– occurring in inland Anatolia, Jordan, eastern Transcaucasia, Turkmenistan, Iran and southern Afghanistan(Kandahar); (3) a Miniopterus sp. – recorded from Nangarhar province in eastern Afghanistan, which wetentatively assign to M. cf. fuliginosus; and (4) a Miniopterus sp. with Afro-tropic affinities confirmed fromsouth-western Arabia and Ethiopia, which we tentatively name M. cf. arenarius. The latter two species are welldifferentiated by skull morphology, while M. pallidus possesses very similar skull morphology to M. schreibersii.The results also suggest the existence of a possible new taxon (subspecies) within M. schreibersii s.str. inhabitingthe Atlas Mountains of Morocco.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190.doi: 10.1111/j.1096-3642.2012.00870.x

ADDITIONAL KEYWORDS: Arabia – bent-winged bats – cryptic species – Europe – Middle East –mitochondrial DNA – morphology – North Africa – phylogeography – systematics.

INTRODUCTION

Bent-winged bats, family Miniopteridae, are repre-sented by a single genus, Miniopterus Bonaparte,1837. The genus includes up to 19 species occurring

mostly in the tropics and subtropics of the Old World,viz. Africa (except the Sahara), southern and centralEurope, southern Asia from Anatolia, across theMiddle East and Transcaucasia to China and Japan,the Sunda archipelago, the Philippines, and theAustralasian region (Simmons, 2005). Morphologicalanalysis suggests that the named forms (species/subspecies) of this genus are very similar in theircranial and external characteristics (e.g. Tate, 1941;Maeda, 1982; Benda et al., 2006), meaning that

*Corresponding author. Current address: Department ofCell and Molecular Biology, Third Faculty of Medicine,Charles University, Ruská 87, CZ–100 00 Prague, CzechRepublic. E-mail: [email protected]

bs_bs_banner

Zoological Journal of the Linnean Society, 2013, 167, 165–190. With 4 figures

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190 165

Page 2: Hidden diversity in bent-winged bats (Chiroptera ...

identification of many taxa is difficult and the classi-fication of many populations of this genus remainsunclear. Further, a number of recent molecular phy-logenetic studies have indicated that the taxonomy ofthis genus is in urgent need of revision (Appleton,McKenzie & Christidis, 2004; Tian et al., 2004; Miller-Butterworth et al., 2005; Furman et al., 2009, 2010c;Furman, Öztunç & Çoraman, 2010b). This is particu-larly true for Miniopterus schreibersii (Kuhl, 1817)sensu lato (s.l.), the only species considered as inhab-iting the whole south-western portion of the Palae-arctic region (Koopman, 1993, 1994; Simmons, 2005).

For a long time, this species was considered apolytypic and widespread bat, with up to 25 subspe-cies recognised within its distribution range, whichis almost identical to that of the genus and com-prises most of the Old World region (e.g. Tate, 1941;Hayman & Hill, 1971; Corbet, 1978; Harrison &Bates, 1991; Corbet & Hill, 1992; Koopman, 1994).Nowadays, M. schreibersii sensu stricto (s.s.) is mostoften accepted as a south-western Palaearctic faunalelement occurring in southern and central Europe,supra-Saharan Africa, south-west Asia, and easternAfghanistan (cf. Appleton et al., 2004; Tian et al.,2004; Miller-Butterworth et al., 2005; Benda et al.,2006; Bilgin et al., 2006, 2008; Furman et al., 2009,2010b). It is interesting to note, however, that thesegeographical limits for M. schreibersii had alreadybeen proposed by Maeda (1982) in his precise mor-phometric analysis of the Palaearctic and Orientalpopulations of the genus.

The newly delimited species rank of M. schreibersii(as reviewed by Simmons, 2005) consists of twosubspecies, M. s. schreibersii [type locality (t.l.):Kolumbács Cave, left bank of the River Danube,near Coronini, Romania; sensu Ansell & Topál, 1976]and M. s. pallidus Thomas, 1907 [t.l.: vicinity ofBandar-i-Gaz (Golestan Province), Iran; sensu Lay,1967]. These subspecies are very similar in bothexternal and cranial characteristics (e.g. Ognev,1928; Albayrak & Coskun, 2000; Benda et al., 2006;Furman et al., 2009) and differ mainly in pelage col-oration. Evidence of seasonal and geographic changesin this trait, however, has shown it to be unsuit-able for taxonomic identification (Kuzâkin, 1950;Lay, 1967; Karatas & Sözen, 2004; Gazaryan, 2005).Furman et al. (2010c) studied differentiation betweenthese taxa in populations inhabiting Asia Minor andfound statistically significant genetic, morphological(body size and wing shape) and echolocation differ-ences. Following these findings, they suggested thatthe two taxa were reproductively isolated and consid-ered them to be two separately evolving units repre-senting distinct cryptic species, M. schreibersii sensustrictissimo (s.str.) and M. pallidus. This taxonomicproposal, however, was based almost solely on the

populations from Turkey, while most of the Palaearc-tic range of the bent-winged bats still remains ques-tionable from a taxonomic and phylogeographic pointof view (cf. Bilgin, 2011, 2012).

The subspecific taxonomic rank of the taxonpallidus has been applied, particularly by Russianauthors (e.g. Ellerman & Morrison-Scott, 1951;Kuzâkin, 1965; Strelkov, Sosnovcena & Babaev, 1978;Rahmatulina, 2005), for populations occurring insome areas of the former Soviet Union (currently theCaucasus region and southern Turkmenistan; Ognev,1927, 1928; Gazaryan, 2005). Distribution of thisform has also been reported from the Levant (Syria,Lebanon, Israel, Jordan), Iraq, Iran, Afghanistan andfrom the inland/highland areas of central and easternTurkey (e.g. Lay, 1967; Gaisler, 1970; Maeda, 1982;Horácek, Hanák & Gaisler, 2000; Boye, 2004; Bendaet al., 2006; Furman et al., 2010c); Ferguson (2002),however, reported the occurrence of a subspecies,schreibersii, for Israel. Populations from the Euro-pean distribution range of M. schreibersii, s.s. as wellas populations from North Africa and the larger Medi-terranean islands, have traditionally been attributedto the nominotypical subspecies (e.g. Aellen & Stri-nati, 1970; Spitzenberger, 1981; Gaisler, 1983; Cru-citti, 1989; Kowalski & Rzebik-Kowalska, 1991); thesituation in Cyprus, however, remains unclear. Boye(2004), for example, mentions the occurrence of sub-species pallidus, while others assume the island to beinhabited by the nominotypical form (e.g. Horáceket al., 2000).

In the Middle East, a morphologically distinctpopulation of M. schreibersii s.l. has been suggestedas present in the Nangarhar province of easternAfghanistan, on the border of the Palaearctic andOriental regions (Gaisler, 1970), and was thought torepresent M. s. fuliginosus Hodgson, 1835 (t.l.: Nepal)(Gaisler, 1970; Hill, 1983; Koopman, 1994; Bates &Harrison, 1997). A further population traditionallyassigned to M. schreibersii s.l. occurs at the border ofthe Palaearctic in south-western Arabia (Harrison &Bates, 1991). These populations were originally clas-sified as M. s. arenarius Heller, 1912 (t.l.: Nanyuki,Kenya) (Nader & Kock, 1987; Harrison & Bates, 1991;Koopman, 1994). This taxon, however, is currentlyconsidered as part of M. natalensis Smith, 1834 (t.l.:Durban, South Africa), which was recently revali-dated to species level within M. schreibersii s.l and isreported to occur in sub-Saharan Africa and south-western Arabia (Koopman, 1994; Simmons, 2005).

To summarise, the taxonomic status and dis-tribution ranges of particular taxa/populations of Pal-aearctic Miniopterus bats have tended to be reportedmore-or-less intuitively (mainly on a geographicbasis) and its status remains unclear in most of therespective areas. Classification of the Levantine,

166 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 3: Hidden diversity in bent-winged bats (Chiroptera ...

Middle Eastern, North African and, especially,European populations remains in need of revision.Delimitation of the geographical margins and contactzones between respective taxa, especially in the lightof new findings (cf. Furman et al., 2010c), is alsonecessary.

Here, we present a revision of the taxonomy ofMiniopterus populations of Western Palaearctic andsome adjacent regions, based on a synthesis of resultsfrom morphological and molecular analysis of a richmuseum-material collection from all principal parts ofthe Miniopterus distribution range (i.e. southernEurope, south-west Asia and North Africa). In doingso, we aim to answer two main questions arisingfrom several recent studies (e.g. Appleton et al., 2004;Miller-Butterworth et al., 2005; Bilgin et al., 2008;Furman et al., 2010b, c): (1) what are the phylogeneticand phenotypic relationships between particularWestern Palaearctic Miniopterus populations (aswell as their taxonomic status), and (2) is M. pallidus[demonstrated as representing a separate species in arecent study (Furman et al., 2010c)] morphologicallywell differentiated and what is its present distribu-tion range?

MATERIAL AND METHODS

In order to assess the taxonomic status of Miniopteruspopulations from the Western Palaearctic and adja-cent regions (i.e. Afghanistan, Yemen and Ethiopia),we examined 352 skulls morphologically (Appendix 1)and 52 samples genetically. Fifty-seven additionalsequences of Miniopterus spp. from around the OldWorld were retrieved from GenBank (Table 1). Areview of the geographic origin of all the materialinvestigated is displayed in Figure 1A.

MOLECULAR ANALYSIS

Total genomic DNA was extracted from tissuesamples (c. 1 mm2 of wing membrane) using theGenomed JetQuick Tissue DNA Spin Kit (Löhne,Germany), following the manufacturer’s protocol. Asegment of extracted mitochondrial DNA (mtDNA),the complete gene for the second subunit of NADHdehydrogenase (ND2 – 1044 bp), was amplified byPolymerase Chain Reaction (PCR) using the primersND2-1 and ND2-2 (Kirchman et al., 2001) underthe following thermal profile: initial denaturation of93 °C for 3 min, 35 subsequent cycles of 93 °C for 30 s,52 °C for 40 s and 72 °C for 1 min, and a final exten-sion of 72 °C for 10 min. Sequencing was carriedout by Macrogen Inc. (Seoul, South Korea, http://www.macrogen.com) using a combination of theabove mentioned PCR primers, one formerly pub-lished internal forward primer (mmND2.1; Osborne

& Christidis, 2001), and one newly developedMiniopterus-specific internal reverse primer(mND2inR: 5′-TGAATRACYGCCGTACTA-3′). Newsequences of different haplotypes were depositedin GenBank (see Table 1 for Accession Nos.). Fifty-seven additional sequences from various Miniopterusspecies were added to our dataset from GenBank(AY169435–46, AY169448–71, Appleton et al., 2004;GU290290–310, Furman et al., 2010b), as well asfour outgroup taxa: Myotis muricola (AY504566;J. M. Worthington Wilmer, C. J. Schneider & M. D.Sorenson, unpubl. data), Chalinolobus tuberculatus(AF321051; Lin & Penny, 2001), Chalinolobus nigrog-riseus (AY504561; J. M. Worthington Wilmer, C. J.Schneider & M. D. Sorenson, unpubl. data), andChalinolobus morio (AY169472; Appleton et al., 2004).For phylogenetic analysis, we shortened the newsequences from this study to 1034 bp in orderto match the additional GenBank sequences. Allsequences were aligned in BioEdit 7.0 (Hall, 1999)and examined by translation into amino acids withthe vertebrate mitochondrial genetic code usingDnaSP 5.10 (Librado & Rozas, 2009); no stop codonswere detected.

Phylogenetic trees were constructed using a datasetof 89 sequences that comprised only unique haplo-types (haplotype dataset). The trees were constructedusing the maximum likelihood (ML), Bayesianapproach (BA), and neighbour-joining (NJ) methods.For ML and BA, the jModelTest 0.1.1 softwarepackage (Posada, 2008) was employed prior to analy-sis to calculate the best-fit model of nucleotide evolu-tion (selected according to the Akaike informationcriterion for the whole sequence length in ML, andeach codon position separately in BA). ML analysiswas performed using PhyML 3.0 (Guindon et al.,2010). The best-fit substitution model correspondedwith the transitional model with a proportion ofinvariant positions and gamma distribution ofrate heterogeneity (TIM2 + I + G). The best branch-swapping approach was applied, which combinesnearest neighbour interchanges with subtree pruningand regrafting, and optimisation of topology andbranch length settings. Bootstrap branch support wascalculated based on 1000 resampled datasets. The BAwas carried out using MrBayes 3.2 (Huelsenbeck& Ronquist, 2001; Ronquist & Huelsenbeck, 2003),with partitions for codon positions and parametersoptimised during runs. The likelihood settings corre-sponded with the general time-reversible model,which was the closest approximation of the best-fitsubstitution model for each partition available inMrBayes (we applied GTR + G/GTR + G/GTR + I + Gfor codon position 1/2/3). BA analysis was performedfor six million generations with two runs (to checkconvergence) and four coupled chains for each run,

TAXONOMY OF MINIOPTERUS 167

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 4: Hidden diversity in bent-winged bats (Chiroptera ...

Tab

le1.

Spe

cim

ens

exam

ined

gen

etic

ally

Spe

cies

Hap

loty

peL

inea

ge/

subl

inea

geC

oun

try

Loc

alit

yC

oord

inat

esG

enB

ank

Acc

.N

o.V

ouch

er/R

efer

ence

M.s

chre

iber

sii

MS

C1

WM

Ital

yE

tna,

Sic

ily

37.7

2N

,14

.92

EJX

0121

35bi

opsy

M.s

chre

iber

sii

MS

C1

WM

Ital

yE

tna,

Sic

ily

37.7

2N

,14

.92

EJX

0121

35bi

opsy

M.s

chre

iber

sii

MS

C1

WM

Ital

yE

tna,

Sic

ily

37.7

2N

,14

.92

EJX

0121

35bi

opsy

M.s

chre

iber

sii

MS

C1

WM

Rom

ania

Bet

fia

46.9

8N

,22

.02

EJX

0121

35bi

opsy

M.s

chre

iber

sii

MS

C1

WM

Rom

ania

Bet

fia

46.9

8N

,22

.02

EJX

0121

35bi

opsy

M.s

chre

iber

sii

MS

C1

WM

Slo

vaki

aD

rien

ovec

48.6

2N

,20

.95

EJX

0121

35N

MP

pb42

61M

.sch

reib

ersi

iM

SC

1W

MS

lova

kia

Dri

enov

ec48

.62

N,

20.9

5E

JX01

2135

NM

Ppb

4260

M.s

chre

iber

sii

MS

C2

WM

Rom

ania

Du

bova

47.6

2N

,22

.25

EJX

0121

36N

MP

pb44

19M

.sch

reib

ersi

iM

SC

2W

MR

oman

iaB

etfi

a46

.98

N,

22.0

2E

JX01

2136

NM

Ppb

4256

M.s

chre

iber

sii

MS

C3

WM

Rom

ania

Bet

fia

46.9

8N

,22

.02

EJX

0121

37N

MP

pb42

58M

.sch

reib

ersi

iM

SC

4W

MG

reec

eM

ilat

os,

Cre

te35

.30

N,

25.5

8E

JX01

2138

NM

P91

116

M.s

chre

iber

sii

MS

C4

WM

Gre

ece

Mil

atos

,C

rete

35.3

0N

,25

.58

EJX

0121

38N

MP

9111

3M

.sch

reib

ersi

iM

SC

4W

MG

reec

eO

mal

os,

Cre

te35

.35

N,

23.9

0E

JX01

2138

NM

P91

166

M.s

chre

iber

sii

MS

C4

WM

Gre

ece

Vre

ikos

Cav

e,C

rete

35.0

8N

,26

.00

EJX

0121

38N

MP

9231

6M

.sch

reib

ersi

iM

SC

5W

MG

reec

eL

efko

gia,

Cre

te35

.18

N,

24.4

7E

JX01

2139

NM

P92

311

M.s

chre

iber

sii

MS

C5

WM

Gre

ece

Om

alos

,C

rete

35.3

5N

,23

.90

EJX

0121

39N

MP

9117

2M

.sch

reib

ersi

iM

SC

6E

MC

ypru

sK

akop

etri

a34

.97

N,

32.8

7E

JX01

2140

NM

PC

H10

8M

.sch

reib

ersi

iM

SC

6E

MC

ypru

sK

akop

etri

a34

.97

N,

32.8

7E

JX01

2140

NM

PC

H46

M.s

chre

iber

sii

MS

C7

EM

Cyp

rus

Aka

mas

Pen

insu

la35

.05

N,

32.3

3E

JX01

2141

NM

PC

H12

3M

.sch

reib

ersi

iM

SC

7E

MC

ypru

sK

akop

etri

a34

.97

N,

32.8

7E

JX01

2141

NM

P90

406

M.s

chre

iber

sii

MS

C7

EM

Cyp

rus

Kak

opet

ria

34.9

7N

,32

.87

EJX

0121

41N

MP

9040

5M

.sch

reib

ersi

iM

SC

7E

MC

ypru

sK

alav

asos

34.8

0N

,33

.27

EJX

0121

41N

MP

9043

4M

.sch

reib

ersi

iM

SC

8E

MS

yria

Qal

a’at

al-H

osn

35.6

5N

,40

.73

EJX

0121

42N

MP

pb49

989

M.s

chre

iber

sii

MS

C8

EM

Syr

iaTa

lsh

’hab

32.7

0N

,35

.96

EJX

0121

42N

MP

4886

1M

.sch

reib

ersi

iM

SC

9E

MTu

rkey

Akb

ez36

.51

N,

36.3

0E

JX01

2143

NM

Ptr

099

M.s

chre

iber

sii

MS

C10

EM

Leb

anon

Aaq

ura

34.1

2N

,35

.92

EJX

0121

44N

MP

9177

8M

.sch

reib

ersi

iM

SC

10E

MS

yria

Safi

ta34

.83

N,

36.1

2E

JX01

2144

NM

P48

883

M.s

chre

iber

sii

MS

C11

EM

Syr

iaQ

ala’

atal

-Hos

n35

.65

N,

40.7

3E

JX01

2145

NM

P48

873

M.s

chre

iber

sii

MS

C11

EM

Syr

iaS

afita

34.8

3N

,36

.12

EJX

0121

45N

MP

4888

1M

.sch

reib

ersi

iM

SC

12E

MC

ypru

sK

akop

etri

a34

.97

N,

32.8

7E

JX01

2146

NM

PC

H45

M.s

chre

iber

sii

MS

C12

EM

Leb

anon

Aam

chit

e34

.15

N,

35.6

7E

JX01

2146

NM

P91

808

M.s

chre

iber

sii

MS

C13

EM

Leb

anon

Aaq

ura

34.1

2N

,35

.92

EJX

0121

47N

MP

9177

7M

.sch

reib

ersi

iM

SC

14M

OM

oroc

coTa

zou

guer

te32

.02

N,

03.7

8W

JX01

2148

NM

Ppb

3906

M.s

chre

iber

sii

MS

C14

MO

Mor

occo

Tazo

ugu

erte

32.0

2N

,03

.78

WJX

0121

48N

MP

pb39

08M

.sch

reib

ersi

iM

SC

15M

OM

oroc

coS

ebt-

des-

Ait

-S

erh

rou

chen

34.0

3N

,04

.57

WJX

0121

49N

MP

9010

3

M.s

chre

iber

sii

MS

C15

MO

Mor

occo

Talk

out

31.6

8N

,07

.28

WJX

0121

49N

MP

9004

7M

.sch

reib

ersi

iM

SC

16M

OM

oroc

coTa

lkou

t31

.68

N,

07.2

8W

JX01

2150

NM

P90

051

168 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 5: Hidden diversity in bent-winged bats (Chiroptera ...

M.s

chre

iber

sii

MS

C17

WM

Bu

lgar

iaP

azar

dzik

AY

1694

46A

pple

ton

etal

.(2

004)

M.s

chre

iber

sii

MS

C18

WM

Bu

lgar

iaS

ofia

AY

1694

45A

pple

ton

etal

.(2

004)

M.s

chre

iber

sii

MS

C19

WM

Geo

rgia

Gh

lian

aG

U29

0307

Fu

rman

etal

.(2

010b

)M

.sch

reib

ersi

iM

SC

20W

MG

eorg

iaG

hli

ana

GU

2903

08F

urm

anet

al.

(201

0b)

M.s

chre

iber

sii

MS

C21

WM

Mor

occo

Aga

dir

AY

1694

50A

pple

ton

etal

.(2

004)

M.s

chre

iber

sii

MS

C21

WM

Mor

occo

Aga

dir

AY

1694

49A

pple

ton

etal

.(2

004)

M.s

chre

iber

sii

MS

C22

WM

Spa

inC

adiz

AY

1694

48A

pple

ton

etal

.(2

004)

M.s

chre

iber

sii

MS

C23

WM

Turk

eyH

ızar

GU

2903

01F

urm

anet

al.

(201

0b)

M.s

chre

iber

sii

MS

C24

WM

Turk

eyH

orat

ası

GU

2903

02F

urm

anet

al.

(201

0b)

M.s

chre

iber

sii

MS

C25

EM

Turk

eyK

aran

lık

GU

2903

04F

urm

anet

al.

(201

0b)

M.s

chre

iber

sii

MS

C26

EM

Turk

eyK

aran

lık

GU

2903

05F

urm

anet

al.

(201

0b)

M.s

chre

iber

sii

MS

C27

EM

Turk

eyO

bru

kG

U29

0309

Fu

rman

etal

.(2

010b

)M

.sch

reib

ersi

iM

SC

28E

MTu

rkey

Obr

uk

GU

2903

10F

urm

anet

al.

(201

0b)

M.s

chre

iber

sii

MS

C29

EM

Turk

eyZ

inda

nG

U29

0303

Fu

rman

etal

.(2

010b

)M

.sch

reib

ersi

iM

SC

30E

MTu

rkey

Zin

dan

GU

2903

06F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA1

ME

Iran

Dor

ud

33.4

5N

,49

.02

EJX

0121

51N

MP

4815

4M

.pal

lid

us

MPA

2M

EIr

anB

isot

un

34.3

8N

,47

.43

EJX

0121

52N

MP

4815

1M

.pal

lid

us

MPA

3M

EIr

anM

ina

37.3

0N

,58

.97

EJX

0121

53N

MP

9082

5M

.pal

lid

us

MPA

3M

EIr

anM

ina

37.3

0N

,58

.97

EJX

0121

53N

MP

9082

6M

.pal

lid

us

MPA

4M

EIr

anB

isot

un

34.3

8N

,47

.43

EJX

0121

54N

MP

4814

9M

.pal

lid

us

MPA

5M

EJo

rdan

Kh

ash

ibah

32.2

2N

,35

.72

EJX

0121

55N

MP

9253

2M

.pal

lid

us

MPA

6M

EA

zerb

aija

nA

zıx

GU

2902

93F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA7

ME

Aze

rbai

jan

Azı

xG

U29

0290

Fu

rman

etal

.(2

010b

)M

.pal

lid

us

MPA

8M

EA

zerb

aija

nA

zıx

GU

2902

95F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA8

ME

Turk

eyE

pçik

GU

2902

96F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA9

ME

Iran

Kar

aftu

GU

2902

92F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA10

ME

Iran

Kar

aftu

GU

2902

94F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA11

ME

Turk

eyD

elik

liG

U29

0299

Fu

rman

etal

.(2

010b

)M

.pal

lid

us

MPA

12M

EIr

anS

arin

Ab-

Gar

ma

GU

2902

91F

urm

anet

al.

(201

0b)

M.p

alli

du

sM

PA13

ME

Turk

eyD

elik

liG

U29

0300

Fu

rman

etal

.(2

010b

)M

.pal

lid

us

MPA

14M

ETu

rkey

Epç

ikG

U29

0297

Fu

rman

etal

.(2

010b

)M

.pal

lid

us

MPA

14M

ETu

rkey

Epç

ikG

U29

0298

Fu

rman

etal

.(2

010b

)M

.afr

ican

us

MA

F1

Eth

iopi

aS

ofO

mar

06.0

9N

,40

.85

EJX

0121

61N

MP

9212

9M

.afr

ican

us

MA

F2

Eth

iopi

aS

ofO

mar

06.0

9N

,40

.85

EJX

0121

62N

MP

9212

7M

.‘a

ust

rali

s’M

AU

1A

ust

rali

aC

ape

York

AY

1694

53A

pple

ton

etal

.(2

004)

M.

‘au

stra

lis’

MA

U2

Au

stra

lia

Sh

oalw

ater

Bay

AY

1694

52A

pple

ton

etal

.(2

004)

M.

‘au

stra

lis’

MA

U3

Indo

nes

iaJa

vaA

Y16

9444

App

leto

net

al.

(200

4)M

.‘a

ust

rali

s’M

AU

4P

hil

ippi

nes

Ley

teIs

lan

dA

Y16

9458

App

leto

net

al.

(200

4)M

.‘a

ust

rali

s’M

AU

5P

hil

ippi

nes

Neg

ros

Isla

nd

AY

1694

57A

pple

ton

etal

.(2

004)

TAXONOMY OF MINIOPTERUS 169

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 6: Hidden diversity in bent-winged bats (Chiroptera ...

Tab

le1.

Con

tin

ued

Spe

cies

Hap

loty

peL

inea

ge/

subl

inea

geC

oun

try

Loc

alit

yC

oord

inat

esG

enB

ank

Acc

.N

o.V

ouch

er/R

efer

ence

M.

‘au

stra

lis’

MA

U6

Van

uat

uA

ore

Isla

nd

AY

1694

54A

pple

ton

etal

.(2

004)

M.

‘au

stra

lis’

MA

U7

Van

uat

uTe

gua

Isla

nd

AY

1694

55A

pple

ton

etal

.(2

004)

M.

‘au

stra

lis’

MA

U8

Van

uat

uTo

gaIs

lan

dA

Y16

9456

App

leto

net

al.

(200

4)M

.bas

san

iiM

BA

Au

stra

lia

Nar

acoo

rte

AY

1694

35A

pple

ton

etal

.(2

004)

M.f

uli

gin

osu

sM

FU

1C

hin

aY

un

anA

Y16

9468

App

leto

net

al.

(200

4)M

.fu

ligi

nos

us

MF

U2

Japa

nW

akay

ama

AY

1694

69A

pple

ton

etal

.(2

004)

M.i

nfl

atu

sM

INU

gan

daR

wen

zori

Mou

nta

ins

AY

1694

65A

pple

ton

etal

.(2

004)

M.m

agn

ater

MM

AP

apu

aN

ewG

uin

eaN

ong

Riv

erA

Y16

9443

App

leto

net

al.

(200

4)M

.man

avi

MM

NM

adag

asca

rA

ndr

ingi

tra

Res

erve

AY

1694

64A

pple

ton

etal

.(2

004)

M.

‘med

ius’

MM

E1

Pap

ua

New

Gu

inea

Mag

idob

oA

Y16

9441

App

leto

net

al.

(200

4)M

.‘m

ediu

s’M

ME

2P

apu

aN

ewG

uin

eaS

olR

iver

AY

1694

42A

pple

ton

etal

.(2

004)

M.

cf.

aren

ariu

sM

AR

1Y

EYe

men

Hal

hal

15.7

3N

,43

.62

EJX

0121

56N

MP

pb37

47M

.cf

.ar

enar

ius

MA

R2

YE

Yem

enR

iqab

14.8

7N

,43

.42

EJX

0121

57N

MP

pb31

27M

.cf

.ar

enar

ius

MA

R3

YE

Eth

iopi

aM

ash

a07

.87

N,

35.4

8E

JX01

2158

NM

P92

178

M.

cf.

aren

ariu

sM

AR

4Y

EE

thio

pia

Mas

ha

07.8

7N

,35

.48

EJX

0121

59N

MP

9217

7M

.cf

.ar

enar

ius

MA

R5

YE

Yem

enR

iqab

14.8

7N

,43

.42

EJX

0121

60N

MP

pb31

28M

.nat

alen

sis

MN

A1

Sou

thA

fric

aS

teen

kam

pskr

aal

AY

1694

67A

pple

ton

etal

.(2

004)

M.n

atal

ensi

sM

NA

2S

outh

Afr

ica

Su

dwal

aA

Y16

9466

App

leto

net

al.

(200

4)M

.oce

anen

sis

MO

CA

ust

rali

aN

owa

Now

aA

Y16

9436

App

leto

net

al.

(200

4)M

.ori

anae

MO

R1

Au

stra

lia

Dar

win

AY

1694

37A

pple

ton

etal

.(2

004)

M.o

rian

aeM

OR

2A

ust

rali

aK

imbe

rley

Ran

ges

AY

1694

38A

pple

ton

etal

.(2

004)

M.p

ropr

itri

stis

MP

RP

apu

aN

ewG

uin

eaW

aro

AY

1694

40A

pple

ton

etal

.(2

004)

M.

sp.

MS

P1

Pap

ua

New

Gu

inea

War

oA

Y16

9439

App

leto

net

al.

(200

4)M

.sp

.M

SP

2P

hil

ippi

nes

Neg

ros

Isla

nd

AY

1694

51A

pple

ton

etal

.(2

004)

M.

sp.

MS

P3

Sol

omon

Isla

nds

San

taIs

abel

AY

1694

59A

pple

ton

etal

.(2

004)

M.

sp.

MS

P4

Sol

omon

Isla

nds

San

taIs

abel

AY

1694

60A

pple

ton

etal

.(2

004)

M.

sp.

MS

P5

Sol

omon

Isla

nds

San

taIs

abel

AY

1694

61A

pple

ton

etal

.(2

004)

M.

sp.

MS

P6

Tan

zan

iaG

onja

For

est

Res

erve

AY

1694

62A

pple

ton

etal

.(2

004)

M.

sp.

MS

P7

Tan

zan

iaU

sam

bara

Mou

nta

ins

AY

1694

63A

pple

ton

etal

.(2

004)

M.t

rist

isM

TR

1P

hil

ippi

nes

Ley

teIs

lan

dA

Y16

9471

App

leto

net

al.

(200

4)M

.tri

stis

MT

R2

Ph

ilip

pin

esN

egro

sIs

lan

dA

Y16

9470

App

leto

net

al.

(200

4)M

yoti

sm

uri

cola

AY

5045

66W

orth

ingt

onW

ilm

eret

al.

(un

publ

.)C

hal

inol

obu

sm

orio

AY

1694

72A

pple

ton

etal

.(2

004)

Ch

alin

olob

us

nig

rogr

iseu

sA

Y50

4561

Wor

thin

gton

Wil

mer

etal

.(u

npu

bl.)

Ch

alin

olob

us

tube

rcu

latu

sA

F32

1051

Lin

&P

enn

y(2

001)

NM

P=

Nat

ion

alM

use

um

inP

ragu

e,C

zech

Rep

ubl

ic.

170 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 7: Hidden diversity in bent-winged bats (Chiroptera ...

Figure 1. A. Map showing the origin of specimens investigated in this study and their sorting to nine groups definedfor morphometric analysis. (1) Morocco = purple, (2) Western Europe = bluish green, (3) Pannonia = red, (4) Balkans = violet,(5) Crete = brown, (6) Levant = light blue, (7) Middle East = light green, (8) Eastern Afghanistan (Jalalabad) = dark blue,(9) Yemen and Ethiopia = yellow. Colours correspond to those in Figures 4A–4D, S4 and S5. Circles with any colour exceptwhite = samples used for morphometric analysis, white circles = samples used for molecular analysis, two-coloured circles =samples using both methods; grey shading delimits the distribution of Miniopterus spp.; black cross = type locality ofM. schreibersii, white cross = type locality of M. pallidus. B. Geographic representation of the Western Palaearctic andYemeni-Ethiopian lineages/sublineages, and approximate distribution of the respective species. Species and type localities(t.l.) are represented by different symbols (circles = M. schreibersii s.str.; squares = M. pallidus; triangles = M. cf. arenarius;diamond = M. cf. fuliginosus; black cross = t.l. of M. schreibersii; white cross = t.l. of M. pallidus). Coloured symbols indicategenetic, or both genetic and morphological, approaches used; white symbols represent morphological approach only used(colours of symbols correspond to different species/lineage/sublineage as indicated in Fig. 2 and to haplotypes presented inthe haplotype network in Fig. 3). Coloured shading delimits the approximate distribution of species occurring in the WesternPalaearctic and adjacent regions: grey = M. schreibersii s.str.; blue = M. pallidus; yellow = M. cf. arenarius; brown = M. cf.fuliginosus.

TAXONOMY OF MINIOPTERUS 171

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 8: Hidden diversity in bent-winged bats (Chiroptera ...

and parameter and tree samples saved every 100generations. A 50% majority-rule consensus tree wasconstructed from the sampled trees after discardingthe first 20 000 (two million generations) as burn-in,which included samples before attainment of thestationarity plateau on the log-likelihood score plotaccording to Tracer 1.4 (Drummond & Rambaut,2007). Posterior probabilities were calculated as thefrequency of samples recovering any particular clade(Huelsenbeck & Ronquist, 2001). The NJ tree wasinferred using PAUP* 4.0b10 (Swofford, 2003), basedon uncorrected p-distances and calculating the boot-strap branch support based on 1000 resampled data-sets. Haplotype networks were prepared using thestatistical parsimony algorithm implemented in TCS1.21 (Clement, Posada & Crandall, 2000) under a 95%limit of parsimony. Based on the results obtainedthrough phylogenetic analysis, ingroup haplotypes forbent-winged bat populations were divided into sevensets and average uncorrected p-distances betweenthem calculated using MEGA 4.0 (Tamura et al.,2007). In the text, we always refer to uncorrectedp-distances as they are easily comparable with mostprevious molecular-taxonomic studies.

MORPHOLOGICAL ANALYSIS

Morphometric analysis was based on skull traits. Thecomplete set of specimens was divided into ninegroups (Fig. 1A) based on the results of both pub-lished (Appleton et al., 2004; Bilgin et al., 2006, 2008;Furman et al., 2009, 2010b, c) and our own preli-minary genetic analysis, geographic origin of thesamples, and obvious differences observed in biomet-ric data (cranial and dental metrics and non-metrictraits): viz. (1) Morocco – specimens from the AtlasMountains (N = 18); (2) Western Europe – specimensfrom Spain, France, Italy, and Austria (N = 37); (3)Pannonia – specimens from Slovakia and Romania(N = 49); (4) Balkans – specimens from Bulgariaand continental Greece (N = 84); (5) Crete (N = 19); (6)Levant – specimens from southern Turkey, westernSyria, Cyprus, and Lebanon (N = 93); (7) Middle East– specimens from Iran and southern Afghanistan(N = 14); (8) Eastern Afghanistan (Jalalabad area)(N = 28); and (9) Yemen and Ethiopia – includingone specimen from Sudan (N = 11). Only individualsmorphologically assignable to M. schreibersii s.l. wereincluded. Group 6 (Levant) contained some samplesfrom the area of the zone of sympatry of M. schreib-ersii and M. pallidus. These samples were classifiedaccording to the prevailing genotypes present in theplace of origin. Explanation of some geographic termsused in this study (considering the grouping of theexamined material): Levant = western Syria andLebanon, but including southern Turkey and Cyprus;

Middle East = central and eastern Turkey, southernAzerbaijan, Iran, southern Afghanistan and north-western Jordan. The Statistica 6.0 software package(StatSoft) was used for all morphological statisticalanalyses.

Linear morphometricsWe recorded 24 cranio-dental measurements (11 skullor mandible measurements and 13 upper or lowertooth-row dimensions) taken using a digital calliper(by JŠ) to the nearest 0.01 mm (Fig. S1). Further, werecorded 57 dental measurements (width, length andhigh dimensions of respective teeth; Fig. S2) to thenearest 0.0125 mm using an optical calliper (for acomplete list of all measurements, see Appendix S1).

Basic descriptive statistical parameters (mean,minimum, maximum, and standard deviation) werecalculated for each measurement and for each group(1–9). We further used the morphometric data toperform factor (FA) and discriminant function (DFA)analyses to test: (1) grouping and/or separation of theabove groups (1–9); (2) similarity/dissimilarity of par-ticular populations/taxa; and (3) the importance ofparticular dimensions for intrageneric, inter-specificand intraspecific variation and differentiation. FA andDFA were first performed on samples from all groups(1–9), and subsequently on groups 1–7, in order tobetter demonstrate differences between geographi-cally and morphologically close populations. Cranialand dental characteristics were divided into six data-sets (maxillary, mandibular, cranial, cranio-dental,all dental, and all cranial characteristics) and thesetested separately in consecutive FAs and DFAs toassess the influence of different character sets on thegrouping/separation of individuals in morphospace.The FA and DFA canonical scores were plotted toshow relationships among the examined groups ofsamples. Morphological data of the Balkan (withaddition of genotyped samples of the Levantinegroup) and Middle Eastern sample sets were analysedby analysis of variance (ANOVA).

Geometric morphometrics and non-metric traitsGeometric morphometrics were used to analysegeographic variation in Miniopterus skulls and man-dibles. This technique has been demonstrated to beboth objective and efficient compared to traditionalmethods (e.g. Zelditch, Fink & Swiderski, 1995; Rohlf,Loy & Corti, 1996; Rohlf, 1998), including in studieson bats (e.g. Velazco, Gardner & Patterson, 2010). Thesame material was used as for linear morphometrics(Appendix 1).

Images of skulls (lateral, ventral and dorsal view),mandibles (lateral and occlusal view) and dentition(details of the upper and lower tooth-row) weretaken with a digital camera, archived (jpeg format;

172 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 9: Hidden diversity in bent-winged bats (Chiroptera ...

1360 ¥ 1200 pixels resolution), and processed usingQuickPhoto 4.1 software (Promicra, Prague). Imagesof mandibles were taken separately. All images weretaken at an identical angle. Images of skulls andmandibles were converted to thin-plate spline format(tps) using tpsUtil 1.46 software (Rohlf, 2010).Homologous and topologically equivalent landmarkswere plotted on the skull (lateral, dorsal, and ventralviews) and mandible (lateral view) images using thetpsDig 1.40 program (Rohlf, 2004) in order to describesize and shape variation (for landmark definitions seeAppendix S1).

Landmark coordinates were converted into millime-tres using an established conversion factor (pixel/mm)and the original scale. The centroid size (CS) scoresof all view types for each specimen (CS1 – lateralview of mandible, CS2 – lateral view of skull, CS3 –ventral view of skull, and CS4 – dorsal view of skull)were calculated using the tpsRegr 1.36 program(Rohlf, 2009), and subsequently plotted to show sizedifferences between the groups examined. In orderto compare the shape of specimens from differentgroups, the coordinates for each specimen werescaled, aligned and transformed by general procrustesalignment (which generates a consensus configura-tion based on the landmark coordinates of all speci-mens) using the tpsRelw 1.46 software package(Rohlf, 2008) with a = 0, and orthogonal projectionand uniform component included. Shape differencesbetween the consensus landmark configuration andeach individual specimen were obtained and used tocompute a matrix of partial warp (PW) scores. Rela-tive warp (RW) scores were computed over the cov-ariance matrix of the PW scores; these are, therefore,analogous to a principal components analysis (PCA)in the sense that they describe the axes of greatestvariation in shape for all specimens investigated. ThePW matrix was used in a DFA to describe differencesbetween the studied groups and to confirm patternspreviously suggested by the RW scores. The scoresfrom canonical variant 1 of the DFA (of partial matrixdata) and the CS of skull and mandible were plottedin order to visualise and evaluate how size and shapecontributed to the arrangement of these groups. Dataobtained by geometric morphometrics (RW scores) ofthe Balkan (with addition the genotyped Levantinesamples) and Middle Eastern sample sets were ana-lysed by ANOVA.

The status of 49 non-metric cranial and dentalcharacteristics (44 dental and five skull or mandible;see Table S1) were investigated based on images ofskulls, mandibles and dentition. Each characteristicwas evaluated based on a pre-defined scale system1–5 (see Fig. S3). Non-metric data were analysed inthe same way as the linear metric data (basic descrip-tive statistics, FA and DFA computed).

RESULTS

MOLECULAR ANALYSIS

Eighty-nine haplotypes were registered from 111shortened (1034 bp) sequences (including GenBankand outgroup sequences) of the mitochondrial ND2gene. Within this haplotype dataset, 591 characterswere variable and 527 parsimony-informative. Topolo-gies from all analyses performed (ML, BA, NJ),as well as the log likelihood values (lnL), weresimilar (Fig. 2; ML lnL = -10614.95; BA meanlnL = -10316.71). Three well supported Miniopterusbat clades were identified within the completedata set: (A) an Australian-Oriental clade (Australa-sian, Oriental and Eastern-Palaearctic regions) inthe basal position; (B) an Afro-Arabian clade (sub-Saharan Africa and south-western Arabia); and (C) aWest Palaearctic clade (Europe, North Africa, AsiaMinor and the Middle East). The Western Palaearcticclade could be further divided into three well sepa-rated lineages: a Middle Eastern lineage (ME) (Iran,inland Turkey, Azerbaijan, Jordan) in the basal posi-tion, differing by 4.3 and 5.4% from the remaining twolineages; a Moroccan lineage (MO) from the AtlasMts.; and a Mediterranean lineage (M) identified fromSpain, Sicily, Slovakia, Romania, Bulgaria, Crete, theAtlantic coast of Morocco, the eastern Mediterraneanregion (southern Turkey, Cyprus, Syria, Lebanon),and the Black Sea region (northern Turkey, Georgia).The latter two lineages differed from each other by2.5%. Within the third lineage, we detected a furthersubdivision into two seemingly parapatric subline-ages with 1.2% divergence: a West Mediterraneansublineage (WM) from Europe, the Atlantic coastof Morocco, and the Black Sea region; and an EastMediterranean sublineage (EM) from southernTurkey, Cyprus, Syria and Lebanon. The mutual rela-tionships between the West Palaearctic clade samplesare also demonstrated through the parsimony haplo-type network (Fig. 3). All the above-mentionedMiniopterus clades/lineages/sublineages were highlysupported by ML bootstrap values (� 80%), NJ boot-strap values (� 85%), and BA posterior probabilities(� 0.98), except for clade A and lineage MO by MLbootstrap (62% and 71%), and sublineage WM by BAposterior probabilities (0.81).

All samples from south-western Arabia and Ethio-pia, border areas of the Palaearctic and Afro-tropicregions, were embedded within clade B, where theyformed two lineages (Fig. 2), one represented by amorphologically distinct Afro-tropic species, M. afri-canus Sanborn, 1936, collected from Ethiopia (andinitially used as an outgroup species); and the otherformed by individuals from Yemen and westernEthiopia [hereafter known as the Yemeni-Ethiopianlineage/group (YE)]. Representatives of the YE

TAXONOMY OF MINIOPTERUS 173

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 10: Hidden diversity in bent-winged bats (Chiroptera ...

Figure 2. Maximum likelihood tree demonstrating phylogeny of Miniopterus as inferred from mitochondrial ND2(based on different haplotypes only). Numbers at the nodes represent bootstrap support or posterior probability values formaximum likelihood (ML), bayesian approach (BA), and neighbour joining (NJ) analyses. An asterisk (*) indicates fullsupport (100 or 1.00) for a particular clade and analysis, 100* indicates full support in all analyses, – = clade not inferredin the respective analysis, // = branch length shortening in respect to outgroup. Capital letters and letters in circles representrespective clade/lineages/sublineage, as discussed in the text. Vertical bars indicate Western Palaearctic species that are thesubject of this study (M. fuliginosus is represented only by sequences originating outside the Western Palaearctic retrievedfrom GenBank). Haplotype codes are identical to those listed in Table 1. Colours correspond to those in Figures 1B and 3.

174 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 11: Hidden diversity in bent-winged bats (Chiroptera ...

lineage morphologically resemble M. cf. schreibersiibut have been recently assigned to M. natalensis(e.g. Simmons, 2005). The latter lineage, however,was differentiated by 11.5% from populations inSouth Africa, where the type locality of M. natalensisis registered. Moreover, the South African haplotypeswere not in sister position to the YE lineage, withother species, such as M. manavi Thomas, 1906; M.inflatus Thomas, 1903; and Miniopterus sp. from Tan-zania, being interspersed.

Genetic distances within and between selectedpopulations/taxa are presented in Table 2; while ageographic representation of the Western Palaearcticand YE lineages/sublineages, and the approximatedistribution of the respective species, is presented inFigure 1B.

MORPHOLOGICAL ANALYSIS

Linear morphometricsAll CS values, and all cranial and dental measure-ments for the nine different groups and their simple

comparisons (Table 3; Tables S2 and S3), indicatedthe same size patterns. Bats from eastern Afghani-stan (Jalalabad area) were markedly larger in com-parison to European and Levantine samples (sizedifferences between the latter two bat groups werevery small). Specimens from Crete, Yemen and Ethio-pia were clearly the smallest; while samples from theMiddle East were slightly smaller than those fromeastern Afghanistan, but markedly larger than batsfrom Europe and the Levant, and similar in size toMoroccan bats. Both skull and dentition shape differ-ences (expressed by ratios of cranial or dental dimen-sions) were much less expressive than differences ingeneral size. This pattern was more pronounced incranial than dental characteristics.

The results of FA and DFA analysis of skull anddental dimensions generally showed similar follow-ing patterns (results of FA not shown; for DFA seeFig. 4A, B; and Fig. S4), as did the comparison of rawskull and tooth dimensions and their ratios: (1)samples from eastern Afghanistan, the YE group and

Figure 3. Graphic illustration of relationships between ND2 haplotypes of M. schreibersii s.str. (green, light blue, purple)and M. pallidus (dark blue), as inferred through the maximum parsimony network approach. Size of circles correspondsto the number of samples within a particular haplotype (1, 2, 4 or 7 samples). Small dots between haplotypes indicatehypothetical haplotypes (or number of substitutions between them). Geographic abbreviations: MO – Morocco, Agadir(coast); MA – Morocco, Atlas Mts.; ES – Spain; SI – Sicily (Italy); SK – Slovakia; RO – Romania; BG – Bulgaria;CR – Crete (Greece); CY – Cyprus; NT – northern Turkey; ST – southern Turkey; GE – Georgia; AZ – Azerbaijan;LB – Lebanon; SY – Syria; JO – Jordan; IR – Iran. Colours correspond to those in Figures 1B and 2. Haplotype codesare identical to those listed in Table 1.

TAXONOMY OF MINIOPTERUS 175

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 12: Hidden diversity in bent-winged bats (Chiroptera ...

Morocco clustered separately from the European,Levantine and Middle Eastern groups, however, incase of Morocco markedly less distinct; (2) samplesfrom the Balkans and Pannonia formed a commoncluster, as did samples from Crete and the Levant; (3)Middle Eastern samples overlapped substantiallywith the West European and Levantine samples, andwere positioned close to the Pannonian and Balkansamples; (4) samples from western Europe weregrouped together with other groups from Europe, theMiddle East and the Levant (based on cranial dimen-sions), and very closely with samples from the Levant(based solely on dental traits). Using factor loadingvalues, we were able to identify the 10 cranial and 13dental dimensions that affected observed variationmost significantly (DFA, P < 0.0001), i.e. LaZ, LaInf,LaM, ACr, ACo, CC, M3M3, I1M3, CM3, M1M3; and LI2,WCsup, WP2, WP4, LiM1, W2M1, LiM2, W3M2, LI2, LI3,LDinf, WDinf and LP2, respectively. For a description ofmorphometric differentiation between the Miniopt-erus groups examined, see Appendix S2.

Results of ANOVA (Table S4) showed significantdifferences in 34 of 85 of the examined characteristics(mainly cranial) between the Balkan (with additionof the genotyped Levantine samples) and MiddleEastern samples.

Geometric morphometrics and non-metric traitsTwenty-two RWs were generated for the lateral skullview, 18 for the ventral view, 14 for the dorsal view,and 14 for the lateral view of the mandible. The firstfour RWs, which together represented more than 50%of total variation for each view, were used in allsubsequent analyses (Table S5).

Results of PCA and DFA demonstrated a number ofdifferences between the sample sets examined, andparticularly in the lateral view of the skull; however,neither PCA nor DFA were able to demonstrate anyclear separation between most of the groups exam-ined (results of PCA not shown; for DFA see Fig. 4C),with the European and Middle Eastern samples inparticular frequently showing a substantial overlap.Nevertheless, distinctive separations were observedin the samples from eastern Afghanistan when plot-ting the first two DFA canonical variables consideringall views of skull (Fig. 4C); the YE group consideringthe dorsal and ventral views of skull; the Moroccansamples in the skull ventral view; and in the Panno-nian samples for the skull lateral view. While therelationships between the groups differed for indi-vidual views, some general patterns were observable:(1) Pannonian and Levantine samples were distinctfrom each other; (2) samples from Crete were mostlysimilar to those from the Levant; and (3) MiddleEastern samples were mostly grouped together withsamples from Western Europe. In general, all analy-T

able

2.U

nco

rrec

ted

p-di

stan

ces

betw

een

and

wit

hin

diff

eren

tsp

ecie

s/(s

ub)

lin

eage

sof

Min

iopt

eru

sba

sed

onth

eh

aplo

type

data

set

(in

perc

enta

ge;

mea

nin

pare

nth

eses

)

M.s

chre

iber

sii,

Wes

tern

-M

edit

erra

nea

nsu

blin

eage

(WM

)

M.s

chre

iber

sii,

Eas

tern

-M

edit

erra

nea

nsu

blin

eage

(EM

)

M.s

chre

iber

sii,

Mor

occa

nli

nea

ge(M

O)

M.p

alli

du

s,M

iddl

eE

aste

rnli

nea

ge(M

E)

M.c

f.ar

enar

ius,

Yem

eni-

Eth

iopi

anli

nea

ge(Y

E)

M.a

fric

anu

s,E

thio

pia

M.n

atal

ensi

s,S

outh

Afr

ica

M.s

chre

iber

sii,

Wes

tern

-Med

iter

ran

ean

subl

inea

ge(W

M)

0.1–

1.4

(0.6

)

M.s

chre

iber

sii,

Eas

tern

-Med

iter

ran

ean

subl

inea

ge(E

M)

0.8–

2.2

(1.2

)0.

1–1.

1(0

.5)

M.s

chre

iber

sii,

Mor

occa

nli

nea

ge(M

O)

2.0–

3.0

(2.4

)2.

2–3.

1(2

.5)

0.3–

0.5

(0.4

)M

.pal

lid

us,

Mid

dle

Eas

tern

lin

eage

(ME

)4.

9–6.

3(5

.4)

4.7–

5.9

(5.3

)3.

9–4–

7(4

.3)

0.1–

1.1

(0.6

)

M.

cf.

aren

ariu

s,Ye

men

i-E

thio

pian

lin

eage

(YE

)14

.1–1

5.1

(14.

6)13

.9–1

5.0

(14.

4)14

.2–1

4.9

(14.

5)14

.8–1

5.8

(15.

2)0.

1–0.

5(0

.4)

M.a

fric

anu

s,E

thio

pia

15.5

–16.

1(1

5.7)

15.5

–16.

0(1

5.8)

15.0

–15.

7(1

5.3)

15.1

–16.

2(1

5.6)

12.8

–13.

4(1

3.1)

1.0

M.n

atal

ensi

s,S

outh

Afr

ica

12.8

–13.

6(1

3.2)

12.8

–13.

9(1

3.2)

12.9

–13.

3(1

3.2)

14.0

–15.

0(1

4.5)

11.2

–11.

8(1

1.5)

10.6

–10.

9(1

0.8)

1.5

176 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 13: Hidden diversity in bent-winged bats (Chiroptera ...

Tab

le3.

Sel

ecte

dcr

ania

lan

dde

nta

ldi

men

sion

s(i

nm

m)

ofM

inio

pter

us

exam

ined

inth

isst

udy

Ch

arac

ter

Mor

occo

(MO

)W

este

rnE

uro

pe(W

M)

Pan

non

ia(W

M)

Bal

kan

s(W

M)

Cre

te(W

M)

NM

min

max

SD

NM

min

max

SD

NM

min

max

SD

NM

min

max

SD

NM

min

max

SD

LC

r18

15.3

6515

.12

15.6

50.

164

3615

.229

14.8

015

.49

0.17

345

15.3

9214

.94

15.8

80.

206

7615

.229

14.5

415

.83

0.21

619

14.9

1614

.48

15.1

90.

185

LaI

183.

777

3.63

3.98

0.08

936

3.71

13.

573.

880.

071

473.

761

3.53

4.02

0.10

882

3.71

03.

523.

930.

087

193.

621

3.48

3.77

0.08

4L

aIn

f18

4.20

24.

024.

320.

086

364.

023

3.74

4.29

0.10

445

4.02

53.

854.

240.

088

803.

974

3.45

4.18

0.13

619

3.89

43.

784.

050.

091

LaM

188.

788

8.64

8.97

0.10

535

8.67

58.

108.

990.

190

468.

757

8.10

9.21

0.18

076

8.74

68.

129.

040.

155

198.

524

8.40

8.67

0.09

1A

Cr

187.

973

7.73

8.34

0.18

530

7.49

76.

668.

010.

420

437.

672

6.79

8.04

0.32

577

7.74

36.

838.

210.

324

197.

765

7.36

7.99

0.15

4L

Md

1810

.977

10.8

011

.28

0.14

436

10.8

5210

.56

11.1

50.

143

4810

.923

10.2

811

.30

0.17

575

10.8

4710

.15

11.0

70.

154

1910

.622

10.3

210

.88

0.11

8A

Co

182.

598

2.48

2.81

0.07

736

2.59

42.

402.

930.

109

482.

533

2.17

2.93

0.12

075

2.50

82.

042.

930.

109

192.

538

2.41

2.69

0.07

6C

S1

1811

.168

10.8

411

.52

0.18

934

11.1

3010

.67

11.9

70.

298

4411

.431

10.9

412

.03

0.27

866

11.1

0310

.64

11.9

00.

261

1910

.730

10.1

511

.02

0.21

1C

S2

1820

.813

20.3

921

.21

0.22

832

20.4

7820

.15

20.8

90.

199

4220

.659

20.0

421

.19

0.27

668

20.5

0219

.87

21.1

10.

261

1920

.163

19.7

220

.59

0.20

5C

S3

1816

.935

16.7

317

.33

0.15

932

16.7

6016

.37

17.0

90.

173

4016

.738

16.3

017

.43

0.25

073

16.7

5616

.23

17.1

90.

186

1916

.394

16.0

516

.75

0.17

3C

S4

1817

.716

17.4

418

.03

0.19

334

17.5

1517

.18

17.9

30.

194

3717

.762

17.1

818

.44

0.26

474

17.5

8017

.14

18.1

00.

204

1917

.179

16.6

417

.51

0.22

1L

Csu

p18

1.05

51.

001.

100.

031

281.

084

1.03

1.13

0.02

644

1.06

20.

981.

150.

036

811.

071

1.00

1.15

0.03

719

1.05

21.

001.

130.

031

WC

sup

180.

883

0.81

0.93

0.03

528

0.89

60.

810.

980.

032

440.

840

0.78

0.90

0.03

081

0.83

30.

760.

930.

033

190.

825

0.78

0.85

0.02

4H

Csu

p4

1.65

31.

631.

710.

041

211.

573

1.45

1.93

0.10

629

1.54

71.

331.

690.

074

561.

550

1.15

1.70

0.09

215

1.52

01.

301.

630.

097

LP

218

0.84

10.

750.

900.

046

360.

816

0.78

0.88

0.02

748

0.82

90.

730.

930.

047

820.

829

0.78

0.94

0.03

619

0.81

80.

780.

880.

025

WP

218

1.13

11.

031.

200.

048

361.

138

1.08

1.19

0.03

148

1.08

70.

901.

160.

051

821.

094

1.00

1.20

0.04

019

1.08

31.

041.

130.

027

HP

24

0.58

40.

550.

630.

031

250.

568

0.48

0.65

0.04

733

0.53

50.

430.

630.

049

580.

561

0.43

0.65

0.05

315

0.52

10.

450.

600.

045

WP

418

1.39

01.

311.

460.

041

361.

444

1.38

1.51

0.03

248

1.32

81.

151.

480.

083

821.

377

1.23

1.50

0.05

319

1.38

91.

261.

450.

046

LP

418

1.22

01.

101.

380.

068

361.

283

1.18

1.35

0.04

248

1.23

11.

131.

380.

066

821.

231

1.13

1.38

0.05

719

1.18

11.

151.

230.

023

HP

44

1.56

91.

481.

650.

072

251.

586

1.44

1.71

0.06

533

1.49

71.

351.

600.

071

581.

543

1.28

1.68

0.07

115

1.40

70.

831.

650.

279

LoM

118

1.43

81.

351.

500.

039

351.

473

1.43

1.55

0.03

448

1.44

71.

351.

530.

039

831.

452

1.24

1.55

0.04

319

1.43

91.

401.

480.

021

LiM

118

0.92

40.

881.

030.

035

350.

983

0.93

1.05

0.03

148

0.94

70.

831.

040.

049

830.

984

0.85

1.09

0.04

119

0.97

00.

901.

030.

036

LC

inf

180.

726

0.70

0.76

0.02

031

0.75

40.

700.

840.

031

450.

736

0.63

0.85

0.04

775

0.72

30.

640.

790.

029

190.

717

0.68

0.78

0.02

1W

Cin

f18

0.82

90.

780.

880.

032

310.

821

0.79

0.86

0.02

245

0.79

90.

740.

860.

024

750.

804

0.68

0.85

0.02

719

0.78

90.

780.

810.

013

HC

inf

41.

503

1.49

1.53

0.01

621

1.39

41.

031.

500.

108

301.

435

1.30

1.56

0.06

351

1.43

51.

251.

630.

064

151.

424

1.30

1.50

0.05

8L

P2

180.

594

0.55

0.64

0.02

328

0.58

70.

550.

630.

021

460.

567

0.53

0.60

0.02

275

0.56

60.

530.

630.

022

190.

551

0.53

0.58

0.02

0W

P2

180.

651

0.63

0.68

0.01

728

0.62

60.

590.

650.

017

460.

645

0.60

0.71

0.02

875

0.64

30.

530.

690.

027

190.

626

0.59

0.68

0.02

0H

P2

40.

575

0.53

0.63

0.04

620

0.51

90.

450.

630.

045

310.

509

0.40

0.61

0.05

151

0.50

40.

450.

600.

028

150.

481

0.43

0.52

0.02

8W

P4

180.

791

0.73

0.85

0.02

934

0.76

20.

700.

850.

030

480.

781

0.68

0.85

0.03

577

0.76

70.

630.

880.

040

190.

759

0.63

0.79

0.03

6L

P4

180.

607

0.55

0.68

0.03

734

0.61

30.

510.

750.

055

480.

639

0.54

0.71

0.04

176

0.60

30.

500.

780.

050

190.

605

0.54

0.68

0.03

9H

P4

40.

925

0.85

0.98

0.06

122

0.87

40.

580.

980.

076

330.

836

0.74

0.98

0.06

252

0.87

20.

731.

000.

050

150.

845

0.75

0.95

0.04

7L

M3

181.

219

1.15

1.29

0.03

636

1.27

31.

191.

350.

032

481.

253

1.19

1.33

0.03

278

1.25

41.

181.

330.

027

191.

235

1.15

1.31

0.03

5W

M3

180.

666

0.60

0.73

0.02

936

0.63

40.

600.

680.

019

480.

659

0.59

0.78

0.03

678

0.64

20.

600.

730.

024

190.

641

0.59

0.70

0.02

4

TAXONOMY OF MINIOPTERUS 177

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 14: Hidden diversity in bent-winged bats (Chiroptera ...

Tab

le3.

Con

tin

ued

Ch

arac

ter

Lev

ant

(EM

)M

iddl

eE

ast

(ME

)E

aste

rnA

fgh

anis

tan

Yem

en&

Eth

iopi

a(Y

E)

NM

min

max

SD

NM

min

max

SD

NM

min

max

SD

NM

min

max

SD

LC

r93

15.1

4814

.71

15.7

40.

217

1415

.497

15.1

115

.84

0.22

228

15.6

3615

.03

16.1

30.

254

1015

.058

14.7

115

.50

0.22

9L

aI93

3.67

53.

413.

970.

084

143.

686

3.55

3.88

0.09

628

3.92

83.

764.

150.

083

113.

711

3.58

3.96

0.10

8L

aIn

f93

3.98

73.

744.

180.

086

144.

039

3.94

4.18

0.08

028

4.12

43.

824.

430.

141

123.

712

3.46

3.87

0.11

5L

aM93

8.69

78.

279.

050.

142

148.

914

8.74

9.09

0.09

228

8.84

08.

519.

210.

168

108.

299

7.97

8.68

0.22

4A

Cr

907.

819

7.14

8.11

0.18

814

8.00

57.

768.

340.

162

287.

779

6.99

8.36

0.43

411

7.50

47.

137.

870.

215

LM

d91

10.7

6310

.32

11.1

70.

155

1411

.072

10.7

411

.23

0.14

928

11.3

0411

.00

11.6

00.

166

1110

.645

10.2

911

.04

0.20

8A

Co

912.

568

2.35

2.93

0.11

314

2.62

12.

482.

730.

074

282.

647

2.44

3.04

0.11

711

2.41

22.

242.

650.

115

CS

185

11.0

0510

.45

11.8

90.

312

1311

.153

10.9

011

.60

0.21

023

11.5

5111

.03

12.2

90.

291

1110

.677

10.3

910

.87

0.15

7C

S2

9120

.437

19.8

521

.37

0.29

114

20.8

3020

.17

21.3

90.

342

2821

.076

20.4

221

.74

0.31

110

20.0

7319

.52

20.7

30.

327

CS

392

16.6

2116

.13

17.3

90.

245

1417

.045

16.6

317

.42

0.24

328

17.2

2716

.80

17.7

00.

243

1016

.548

16.0

217

.06

0.28

5C

S4

9217

.321

16.5

617

.99

0.26

014

17.8

3817

.42

18.3

30.

306

2817

.902

17.2

518

.39

0.29

311

17.2

7816

.79

17.8

90.

302

LC

sup

921.

072

1.00

1.18

0.03

414

1.08

81.

051.

140.

030

261.

114

1.03

1.20

0.04

812

1.05

60.

961.

130.

042

WC

sup

920.

865

0.80

1.15

0.04

114

0.85

80.

810.

900.

025

260.

933

0.85

1.00

0.04

212

0.86

00.

800.

950.

036

HC

sup

571.

579

1.25

1.73

0.08

814

1.56

91.

301.

730.

130

261.

645

1.28

2.00

0.17

83

1.62

91.

601.

660.

031

LP

293

0.83

20.

780.

930.

034

140.

835

0.80

0.89

0.02

727

0.89

50.

791.

000.

055

120.

850

0.75

0.90

0.04

1W

P2

931.

124

0.91

1.25

0.05

114

1.11

81.

061.

160.

031

271.

081

0.90

1.19

0.06

112

1.02

80.

801.

150.

096

HP

258

0.58

00.

450.

700.

052

140.

542

0.25

0.68

0.10

727

0.55

60.

380.

700.

077

30.

596

0.58

0.64

0.03

6W

P4

931.

403

1.30

1.53

0.03

914

1.36

81.

291.

430.

046

271.

413

1.33

1.58

0.05

712

1.35

01.

261.

430.

060

LP

493

1.26

61.

081.

400.

064

141.

196

1.09

1.28

0.05

627

1.28

21.

231.

450.

057

121.

200

1.03

1.28

0.06

9H

P4

581.

514

0.88

1.70

0.15

314

1.41

10.

791.

710.

311

271.

531

1.35

1.75

0.10

43

1.53

31.

501.

600.

058

LoM

193

1.45

51.

311.

560.

035

141.

482

1.43

1.55

0.03

227

1.49

11.

381.

550.

050

121.

447

1.36

1.50

0.04

7L

iM1

930.

957

0.85

1.05

0.04

214

0.99

40.

951.

050.

034

270.

991

0.90

1.10

0.04

412

0.95

10.

881.

030.

040

LC

inf

890.

736

0.68

0.80

0.02

614

0.74

10.

700.

780.

027

260.

787

0.71

0.86

0.04

012

0.74

50.

680.

800.

033

WC

inf

890.

807

0.75

0.86

0.02

514

0.82

10.

780.

850.

027

260.

853

0.75

0.93

0.04

512

0.78

00.

730.

850.

033

HC

inf

551.

452

1.15

1.55

0.08

814

1.43

61.

251.

550.

084

251.

557

1.29

1.80

0.14

83

1.42

51.

381.

530.

087

LP

289

0.56

90.

530.

630.

022

140.

549

0.51

0.58

0.01

726

0.57

50.

530.

630.

032

120.

567

0.53

0.60

0.02

2W

P2

890.

627

0.58

0.68

0.02

114

0.63

40.

600.

660.

018

260.

651

0.61

0.68

0.01

912

0.61

00.

580.

650.

024

HP

255

0.49

00.

430.

550.

025

130.

468

0.25

0.55

0.07

926

0.47

20.

360.

550.

056

30.

463

0.45

0.48

0.01

3W

P4

900.

761

0.68

0.85

0.03

014

0.78

10.

700.

830.

035

270.

767

0.73

0.83

0.02

712

0.75

10.

710.

800.

022

LP

490

0.60

10.

500.

680.

037

140.

634

0.55

0.70

0.03

727

0.66

80.

580.

760.

058

120.

633

0.53

0.70

0.04

9H

P4

550.

883

0.75

0.95

0.05

014

0.91

80.

781.

000.

056

270.

879

0.75

1.03

0.07

63

0.90

00.

850.

980.

066

LM

390

1.24

91.

151.

330.

031

141.

257

1.20

1.31

0.03

327

1.26

81.

201.

310.

029

121.

221

1.15

1.28

0.03

4W

M3

900.

638

0.58

0.88

0.03

414

0.66

50.

630.

700.

023

270.

688

0.64

0.75

0.03

212

0.66

50.

600.

730.

034

Cod

esin

brac

kets

stan

dfo

rth

ere

spec

tive

gen

etic

lin

eage

orsu

blin

eage

(see

text

).S

eeA

ppen

dix

S1

for

expl

anat

ion

ofdi

men

sion

abbr

evia

tion

s.D

ata

for

all

dim

ensi

ons

are

pres

ente

din

Tabl

esS

2an

dS

3.M

=m

ean

,m

in=

min

imu

mva

lue,

max

=m

axim

um

valu

e,an

dS

D=

stan

dard

devi

atio

n.

178 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 15: Hidden diversity in bent-winged bats (Chiroptera ...

ses indicated that the most distinct groups were thoseoriginating from eastern Afghanistan, Yemen andEthiopia; and from the Moroccan Atlas Mts.

Both bivariate plots of the main shape variable(RW1) and the CS for the respective view showeddifferences between the groups for all views; however,

these tended to be related to shifts in size rather thanshape. This pattern was especially applicable withinthe eastern Afghanistan samples, and was most pro-nounced in results for the ventral and dorsal views ofthe skull. The shape-size plots provided very similarresults for all views (see Fig. S5 for the skull lateral

Figure 4. A, B. Results of discriminant function analysis based on linear morphometric data of skull dimensions – firsttwo canonical axes. Polygons follow marginal points of particular groups, with coloured dots as centroids. A – allspecimens; B – separate analysis excluding individuals from marginal areas (i.e. Eastern Afghanistan, Arabia andEthiopia). C. Results of discriminant function analysis based on relative warp scores obtained from geometric morpho-metric analysis of 11 landmarks on the ventral view of the skull – first two canonical axes. Polygons and coloured dotsare as in Figure 4A. D. Polygon plot of the first and second axes from factor analysis of all non-metric traits. Polygonsand coloured dots are as in Figure 4A.

TAXONOMY OF MINIOPTERUS 179

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 16: Hidden diversity in bent-winged bats (Chiroptera ...

view) and may be summarised as follows: (1) the EastAfghanistan samples were generally the most distinc-tive in both shape and size; (2) the YE group waspositioned close to the Cretan group, and both weremost distant from the eastern Afghanistan group bysize dimension; (3) the Levantine samples were besidethose from eastern Afghanistan the most distinctiveto Pannonian samples by shape dimension; (4) theMoroccan group was positioned close to the MiddleEastern group, and both overlapped substantiallywith the Balkan and West European groups, espe-cially by shape dimension; and (5) the Balkan and

West European samples were grouped very close toeach other and were positioned centrally in the mor-phospace; for this reason they partially overlappedwith all the other groups. In general, all the geomet-ric morphometric results conformed well to theresults of linear morphometric analyses.

Results of ANOVA (Table S4) showed four of 16characteristics to be statistically different betweenthe Balkan (with addition of the genotyped Levantinesamples) and Middle Eastern samples.

The 49 non-metric cranial and dental traits (TableS6) examined through FA and DFA demonstrated

Figure 4. Continued

180 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 17: Hidden diversity in bent-winged bats (Chiroptera ...

pronounced differentiation of the eastern Afghanistangroup from the other groups. Similar differentiationwas noted for the YE group, while all other groupsformed a cluster of broadly overlapping samples(for FA see Fig. 4D; results of DFA not shown).These analyses also enabled selection of maxilla char-acteristics that most affected observed variationin the non-metric traits (P < 0.0001 in DFAs). For adescription of non-metric differentiation between theMiniopterus groups see Appendix S2.

DISCUSSION

Revision of particularly Western Palaearctic bent-winged bat populations over their whole range (i.e.from the Maghreb to Afghanistan, and from CentralEurope to Arabia) revealed unexpected hidden diver-sity, even in the light of recent discoveries by Furmanet al. (2009, 2010c). Synthesis of the results from twodifferent analytical approaches suggests that M. sch-reibersii s.l. (sensu, e.g. Corbet, 1978), a traditionallypolytypic species, should be split into several allopat-ric or parapatric population groups, differing fromeach other in genetic and morphological traits. Thesegroups can be delimited geographically as follows: (1)Europe, northern Turkey and Georgia; (2) the Levant,including southern Turkey and Cyprus; (3) the moun-tains of Morocco; (4) the Middle East (except for theLevant and Turkish coastal areas); (5) south-westernArabia and Ethiopia; and (6) eastern Afghanistan(Jalalabad area). This order mirrors the degree ofrelatedness of the respective populations to those ofEurope (i.e. group two is closer related to the Euro-pean population than group three). Although the geo-graphical groupings may, at first, appear surprising,the findings are in general accordance with the opin-ions of earlier authors (namely Tate, 1941 and Maeda,1982) who stressed morphological similarities amongindividual species of the genus Miniopterus and pre-sumed the existence of more species, rather than asingle universal morphotype. These conclusions havealso recently gained support through several molecu-lar studies (Appleton et al., 2004; Tian et al., 2004;Miller-Butterworth et al., 2005; Furman et al., 2009,2010b, c), and we supplement these findings withadditional molecular phylogeny and new morphologi-cal evidence.

Our results indicate that, though the populationsdiffer only slightly in skull size, these differences weremore pronounced than differences in skull shape.These findings are in accordance with those of previ-ous authors (Tate, 1941; Maeda, 1982). Differences incranial measurements were also more expressivethan differences in dental measurements. Levels ofsignificance for differentiation between populationswere then followed by the results of non-metric

cranial and dental characteristics. Genetic differencesbetween populations were markedly more expressivefor some groups (i.e. the Middle East, Morocco, Yemenand Ethiopia) than differences observed for morpho-logical traits. No clinal shift in size or other morpho-logical data was found between populations, contraryto morphometric analysis results for other bat speciesoccurring in the Western Palaearctic (Hanák &Horácek, 1984; Bogdanowicz, 1990; Benda & Horácek,1995; Benda et al., 2006).

EUROPE AND EASTERN MEDITERRANEAN

European, Black Sea region and eastern Mediterra-nean Miniopterus populations evidently representidentical taxa that can be co-identified with thespecies M. schreibersii s.str. (sensu Furman et al.,2010c). Our results support the opinions of mostprevious authors (e.g. Spitzenberger, 1981; Crucitti,1989; Fernandez & Ibañez, 1989; Appleton et al.,2004; Boye, 2004; Gazaryan, 2005; Furman et al.,2009, 2010b, c) who suggest that all European popu-lations of M. schreibersii (in its traditional concept)belong to the nominotypical form.

Samples of the WM sublineage (that includessamples from Europe, coastal Morocco, coastal areasof northern Turkey and Georgia) showed relativelylow genetic variation (0.1–1.4%). Only one samplefrom Spain and two from the Atlantic coast of Moroccoshowed more differentiation from the cluster ofother European haplotypes (0.8–1.3%). This diver-gence could correspond to the ‘isolation by distance’model suggested for other bat species in the region(e.g. Pipistrellus – Hulva et al., 2004, 2007a, 2010). Inorder to confirm this genetic pattern, however, addi-tional samples from less distant localities of WesternEurope (e.g. France, the Italian peninsular, otherIberian samples) need to be studied. Morphometricdata did not show any clinal pattern, and onlyshallow morphological variation. Bent-winged batsfrom Crete represented the only exception, thesebeing significantly smaller. Ondrias (1978) andIliopoulou-Georgudaki (1986), who studied bats fromthe Greek islands, including Crete, found similarmorphological evidence and suggested that smallersize in island Miniopterus populations could haveresulted from climatic influence, i.e. strong winds.These authors, however, did not take account ofthe general ecological factors associated with islandbiogeography (MacArthur & Wilson, 1967), whichwe consider a more likely explanation for this mor-phological effect. Interestingly, genetic divergencebetween Cretan and mainland populations is minutecompared to morphometric divergence. Morphometricdifferentiation, however, appears to relate to skullsize rather than skull shape. This suggests that

TAXONOMY OF MINIOPTERUS 181

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 18: Hidden diversity in bent-winged bats (Chiroptera ...

size-based morphological evidence does not correlatewith genetic evidence in Miniopterus bats, as hasbeen demonstrated for other bat groups (e.g. Hulva,Horácek & Benda, 2007b; Benda, Vallo & Reiter,2011).

Levantine populations (including Cyprus), forwhich taxonomic position has hitherto been unclear,belong to the same taxon as European populations,i.e. M. schreibersii s.str. However, they formed adistinct clade under mtDNA genealogy, the EM sub-lineage, which diverged by 0.8–2.2% from the Euro-pean and Black Sea region samples that formedtheir sister clade. Our genetic results thus supportthe opinions of Horácek et al. (2000) and Karatas &Sözen (2004), i.e. that the Mediterranean parts ofthe Levant are inhabited by the European form.When comparing Levantine bent-winged bats tothe population more to the east, i.e. M. pallidus (seebelow), there was a substantial divergence in genetictraits (5.3%) but, interestingly, almost no distinctionin cranial or dental morphology. It appears, there-fore, that both M. schreibersii and M. pallidus areconservative in their morphology, and especiallyin skull shape. A further interesting point is thatMiller-Butterworth et al. (2005) uncovered, andFurman et al. (2010b) consequently re-analysed,another genetic lineage from northern Israel(Alma Cave), based on the mitochondrial cytochromeb gene of the only sample. This was, however, com-pletely outside the species ranks of both M. schreib-ersii s.str. and M. pallidus (c. 6–8% genetic distance;cf. Miller-Butterworth et al., 2005; Furman et al.,2010b; see also the phylogenetic tree topology in thelatter paper). This lineage was most closely relatedto an Afro-tropical species, M. natalensis, and thussuggests the possible presence of the Arabian speciesM. cf. arenarius (see below) in southern Levant [ifthe sequence (AY614736) is correct – several ambi-guity codes are present]. A similar disjunct distri-bution can be seen in the Arabian tree frog, Hylafelixarabica (Gvoždík et al., 2010). Considering thehigh systematic and biogeographic importance ofthis possible Israeli lineage, it is necessary toconfirm the finding with more numerous samples infuture analyses. [Considering the apparent absenceof this lineage in our rich dataset, which coverssurrounding areas of the Levant (Lebanon, south-western Syria, north-western Jordan), a mislabellingof the sample would appear to be a more probableexplanation of this curiosity.]

MOROCCO

Our results show that a unique evolutionary lineageof M. schreibersii s.str. inhabits the Atlas Mountainsof Morocco. The inland Moroccan samples formed

a clade that diverged by 2.4–2.5% from the M lineage.Similar evidence was also provided by the morpho-metric analysis results. On the other hand, a pub-lished haplotype from Agadir (Atlantic coast ofsouth-west Morocco; Appleton et al., 2004) repre-sented part of the M lineage (WM sublineage). Thehaplotype most similar to this was one detected fromSpain and published by the same author (Appletonet al., 2004). Unfortunately, we were unable to obtainsamples from the Atlantic coast in order to investi-gate their morphological characteristics. Moroccansamples that separated into two genealogical lineageswere also found by Furman et al. (2010b), based onmitochondrial cytochrome b sequences taken fromGarcía-Mudarra, Ibáñez & Juste (2009), althoughexact locations of the samples were, unfortunately,not published. The available results, however, clearlysuggest that there are two distinct lineages presentin Morocco, the West Mediterranean M. schreibersii,occurring along the Atlantic coast, and an unnamedMoroccan form of M. schreibersii s.str., occurring ininland areas of the Atlas Mts. A similar geographicpattern of haplotype distribution was also docu-mented in Morocco for the vespertilionid bats Myotismystacinus (García-Mudarra et al., 2009) and Pipist-rellus pipistrellus (Hulva et al., 2010), as well as forthe freshwater terrapin Mauremys leprosa (Fritzet al., 2005). Miniopterus populations from the AtlasMts. may thus represent a separate taxon. This sug-gestion contradicts the traditional view on taxonomicaffiliation of Maghrebian populations, which are con-sidered to represent the nominotypical form by mostauthors (e.g. Ellerman & Morrison-Scott, 1951; Aellen& Strinati, 1970; Qumsiyeh & Schlitter, 1982; Gaisler,1983; Kowalski & Rzebik-Kowalska, 1991; Boye,2004). An in-depth study of the North African Mini-opterus population is necessary in order to reveal thephylogenetic and taxonomic position of the respectivesub-populations.

MIDDLE EAST

Miniopterus populations of the Middle East, includingthose of southern Afghanistan, Iran, Azerbaijan,inland plateau areas of central and eastern Turkey,and north-western Jordan, represent a further dis-tinct evolutionary lineage. This ME lineage, tradition-ally considered a subspecies M. schreibersii pallidus(e.g. Corbet, 1978; Koopman, 1994), displayed markedgenetic divergence (5.4% distance to the M lineageand 4.3% distance to the MO lineage). The 5% valueset as a species level indicator according to thegenetic species concept in mammals, and particularlyin bats, was, therefore, exceeded [the 5% value wasoriginally suggested for mitochondrial markerswith similar mutation rates, i.e. genes for cytochrome

182 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 19: Hidden diversity in bent-winged bats (Chiroptera ...

b (Baker & Bradley, 2006) and ND1 (Mayer, Dietz &Kiefer, 2007)]. Cranial and dental morphologicaltraits investigated in this study as well as performedanalyses (FA, DFA, ANOVA), however, indicated thatindividuals of this group were in shape almost iden-tical to those from Europe and the Levant, whereas insize were slightly bigger. ANOVA results otherwiseshoved many significant mainly cranial size charac-teristics (in shape minimum) between the Balkan(with addition of genotyped samples of the Levant;M lineage; representing M. schreibersii species) andMiddle Eastern samples (ME lineage; representingpossible M. pallidus species), nevertheless, these dif-ferences were at the same level or even smaller thandifferences between populations of M. schreibersii (seeTable S4). Found significant morphological differencesbetween representative samples of M. schreibersiiand possible M. pallidus species in a way correspondto those found by Furman et al. (2010c) (and partlyby Bilgin et al., [2012]) between the Turkish inland(ME lineage) and Turkish coastal (M lineage) popu-lations, based on forearm length, body mass and wingshape. Any of these three characteristics (particularlyforearm length data – a possible important diagno-stic character [see Furman et al., 2010c]) were notanalysed in our study thus comparison with dataobtained by Furman et al. (2010c) and Bilgin et al.(2012) was not possible. Following a series of molecu-lar studies (Bilgin et al., 2006, 2008; Furman et al.,2009, 2010b), Furman et al. (2010c) suggested theraising of Middle Eastern bent-winged bats to specieslevel. Support for this came from Maraci et al. (2010)and Bilgin et al. (2012), who found the two taxa insympatry, and even in syntopy, in the same roosts.Considering all these and ours findings, we agree thatthe ME lineage represents a separate species, M. pal-lidus, a sister species to M. schreibersii s.str., thoughthis remains rather cryptic morphologically (i.e. noteasily distinguishable in the field).

Genetic comparison of the Al Wardeh Cave popula-tion from north-western Jordan indicates thatthis population belongs to M. pallidus. Up to now,however, representatives of this taxon are known onlyfrom the belt of mountainous habitats that stretchfrom central Turkey to Afghanistan. The record fromJordan, therefore, represents a significant extensionof this taxon’s range southward to the Levant. Unfor-tunately, we had an insufficient number of specimensto provide a well-founded morphological analysis ofthe Jordanian population. The Jordanian site is geo-graphically very close (c. 55 km) to Talsh’hab, south-west Syria, where an individual of M. schreibersii wasfound. A transition zone between M. schreibersiiand M. pallidus may run along the Great Rift in thenorth-south transect of the Levant, therefore, andboth taxa may be present there in sympatry [simi-

larly as in Turkey (Maraci et al., 2010; Bilgin et al.,2012)] or in close parapatry, as in the case of treefrogs or geckos (Gvoždík et al., 2010; Moravec et al.,2011).

EASTERN AFGHANISTAN

The Jalalabad (Nangarhar Province of Afghanistan)population, usually considered as representing M. s.fuliginosus (e.g. Ellerman & Morrison-Scott, 1951;Gaisler, 1970; Hill, 1983; Yoshiyuki, 1989; Corbet &Hill, 1992; Koopman, 1994; Bates & Harrison, 1997;Simmons, 2005), differed strongly from all otherWestern Palaearctic populations in both linear andgeometric morphometrics, as well as in non-metrictraits. These findings, therefore, support a hypothesispreviously put forward by Maeda (1982), i.e. that thissubspecies should be regarded as a separate species,M. fuliginosus. Regrettably, there were no geneticsamples available to us to back-up the morphologicalfindings through molecular analysis. Nevertheless,according to the published phylogenetic analyses ofChinese and Japanese populations affiliated to M.fuliginosus (Appleton et al., 2004; Furman et al.,2010b), the species status of this form appears to havebeen demonstrated sufficiently as it has been shownto be genetically very distant from species of the C(West Palaearctic) clade (Fig. 2). A complex morpho-logical and molecular genetic analysis of Indiansubcontinent Miniopterus populations is needed,however, to confirm taxonomic assignation of EastAfghanistan and other Oriental region populationsformerly co-identified with M. schreibersii s.l. (cf.Gaisler, 1970; Bates & Harrison, 1997). Here, wetentatively suggest using the name M. cf. fuliginosusfor the Jalalabad populations, in accordance withprevious authors, but as a full species.

SOUTH-WESTERN ARABIA AND ETHIOPIA

Of the Western Palaearctic Miniopterus populationsexamined, that of south-western Arabia (Yemen) wasone of the most distinct. These bats demonstratedsubstantial similarities to African populations, andyet genetically were very close to the samples exam-ined from Ethiopia. Yemeni and Ethiopian samplesappear to represent an identical taxon with regard toboth genetic data (a low distance of 0.1–0.5%) andmorphology. Previously assigned to M. schreibersii s.l.(Nader & Kock, 1987; Harrison & Bates, 1991), thesepopulations have more recently been regarded as partof M. natalensis (Simmons, 2005). The separation ofAfrican populations from M. schreibersii, suggestedpreviously by Koopman (1994), has been confirmedthrough molecular analysis (Appleton et al., 2004;Miller-Butterworth et al., 2005), and our results

TAXONOMY OF MINIOPTERUS 183

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 20: Hidden diversity in bent-winged bats (Chiroptera ...

further support this conclusion. M. natalensis,however, is a species described as from South Africa,and bats of that origin represent a genetic lineagesubstantially distant from the YE lineage (11.5%). Asthe level of genetic differentiation clearly exceeds the5% level recommended for species recognition accord-ing to the genetic species concept (Baker & Bradley,2006; Mayer et al., 2007), and the two lineages(natalensis s.str. and YE) are clearly not in a sisterphylogenetic relationship, it may be appropriate toconsider the YE lineage as a species distinct from theSouth African M. natalensis. Nader & Kock (1987),the first to attempt taxonomic determination of south-west Arabian Miniopterus populations, identifiedthese bats as M. schreibersii arenarius, based on mor-phological and parasitological evidence. Accordingto earlier classification, and in the light of our newresults, we regard south-west Arabian and EthiopianMiniopterus bats, formerly assigned to M. schreibersiiarenarius or M. natalensis arenarius (see Harrison& Bates, 1991; Koopman, 1994), as representing aseparate species tentatively named M. cf. arenariusHeller, 1912. As the name originates from Kenya, agenetic and/or morphologic comparison with type/topotypic material is needed to confirm this.

HISTORICAL BIOGEOGRAPHY OF

MINIOPTERUS SCHREIBERSII

Observed genetic variation in M. schreibersii s.str.also brings new insights into the species’ phylogeog-raphy. Furman et al. (2010a) suggested that shallowgenetic differentiation between the western andeastern European colonies, and the relatively highgenetic diversity observed in the eastern colonies,may indicate a re-colonisation of Europe from a singleglacial refugium located in north-western Anatolia.Alternatively, Bilgin et al. (2008) localised such apossible refugium in Turkish Thrace, while Pereiraet al. (2009) suggested either southern Iberia or NorthAfrica. Furman et al. (2010a) further speculated onthe existence of another glacial refugium in Italy. Ourresults, however, do not support such a hypothesis asa widely distributed haplotype was detected in south-ern Italy (Sicily; WM sublineage). To confirm such ahypothesis, an in-depth analysis of both Italian andsurrounding populations is needed. Moreover, accord-ing to the available evidence, M. schreibersii fossilsare absent in Pleistocene-Holocene transition cave-deposits in Italy (Tata & Kotsakis, 2005). Taking allthe intraspecific genetic data available (Bilgin et al.,2008; Pereira et al., 2009; Furman et al., 2010a; thisstudy) into consideration, it would appear that, inaddition to the apparent existence of a refugium inthe Atlas Mts. of Morocco (see above) dating from theMiddle Pleistocene (cf. molecular clock by Furman

et al., 2010b), the presence of three or four additionalglacial refugia can also be detected within the Mlineage. Based on the genetic structure observed inthis study (e.g. Fig. 3), we hypothesise, in accordancewith Furman et al. (2010a), that the main refugium ofthe WM sublineage was in the east in the Black Searegion. However, as the Spanish and coastal Moro-ccan samples form a distinct clade within the WMsublineage, we cannot exclude the possibility of afurther, western refugium in south-western Europeor lowland North Africa (cf. Pereira et al., 2009). Twodistinct haplotype clusters observed within the EMsublineage, comprising southern Turkish and Levan-tine samples (including Cyprus), appear to correspondwith the locations of glacial refugia in southernTurkey and the Levant (western Syria, Lebanon). Thehaplotypes of the Cypriot population do not form amonophyletic lineage, which suggests that colonisa-tion of Cyprus from the adjacent mainland probablyoccurred recently and through repeated episodes (asalso suggested for some other Cypriot bats; see Bendaet al., 2007). Considering the supposed migratorynature of M. schreibersii (cf. Rodrigues & Palmeirim,2008; Pereira et al., 2009), and the fact that geo-graphic barriers do not appear to have a substantialeffect on the evolutionary history of the species(Dobson, 1998; Appleton et al., 2004; Ibáñez et al.,2006; Bilgin et al., 2008; García-Mudarra et al., 2009;Furman et al., 2010c), one could also speculate on theexistence of additional Miniopterus refugia. It wouldappear, therefore, that the genetic structure of M. sch-reibersii is a result of complex ecological-evolutionarycausalities that may be diverse in different regions ofthe Western Palaearctic.

ACKNOWLEDGEMENTS

We thank Rainer Hutterer (Bonn) and Riyad Sadek(Beirut) for access to the museum specimens undertheir care, and Ivan Horácek and Pavel Hulva (Prague)for providing tissue samples. We are obliged to IvanHorácek for valuable comments regarding the researchtopic and previous versions of the manuscript. Thisstudy was supported by the Czech Science Foundation(# 206/09/0888) and the Ministry of Culture of theCzech Republic (#DKRVO 00023272).

REFERENCES

Aellen V, Strinati P. 1970. Chauves-souris cavernicoles deTunisie [Cave bats of Tunisia]. Mammalia 34: 228–236.

Albayrak I, Coskun S. 2000. Geographic variations andtaxonomic status of Miniopterus schreibersii (Kuhl, 1819)in Turkey (Chiroptera: Vespertilionidae). Turkish Journal ofZoology 24: 125–133.

184 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 21: Hidden diversity in bent-winged bats (Chiroptera ...

Ansell WFH, Topál G. 1976. The type locality of Miniopterusschreibersii (KUHL) (Mammalia: Chiroptera). VertebrataHungarica 17: 15–17.

Appleton BR, McKenzie JA, Christidis L. 2004. Molecularsystematics and biogeography of the bent-wing bat complexMiniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vesper-tilionidae). Molecular Phylogenetics and Evolution 31: 431–439.

Baker RJ, Bradley RD. 2006. Speciation in mammals andthe genetic species concept. Journal of Mammaliology 87:643–662.

Bates PJJ, Harrison DL. 1997. Bats of the Indian Subcon-tinent. Sevenoaks: Harrison Zoological Museum.

Benda P, Andreas M, Kock D, Lucan RK, Munclinger P,Nová P, Obuch J, Ochman K, Reiter A, Uhrin M,Weinfurtová D. 2006. Bats (Mammalia: Chiroptera) ofthe Eastern Mediterranean. Part 4. Bat fauna of Syria:distribution, systematics, ecology. Acta Societatis ZoologicaeBohemicae 70: 1–329.

Benda P, Hanák V, Horácek I, Hulva P, Lucan R,Ruedi M. 2007. Bats (Mammalia: Chiroptera) of theEastern Mediterranean. Part 5. Bat fauna of Cyprus: reviewof records with confirmation of six species new for the islandand description of a new subspecies. Acta Societatis Zoo-logicae Bohemicae 71: 71–130.

Benda P, Horácek I. 1995. Geographic variation in threespecies of Myotis (Mammalia: Chiroptera) in South of theWestern Palaearctics. Acta Societatis Zoologicae Bohemicae59: 17–39.

Benda P, Vallo P, Reiter A. 2011. Taxonomic revision of thegenus Asellia (Chiroptera: Hipposideridae) with a descrip-tion of a new species from southern Arabia. Acta Chirop-terologica 13: 245–270.

Bilgin IR. 2012. The conservation genetics of three cave-dwelling bat species in southeastern Europe and Anatolia.Turkish Journal of Zoology 36: 275–282.

Bilgin R. 2011. Back to the suture: the distribution ofintraspecific genetic diversity in and around Anatolia.International Journal of Molecular Sciences 12: 4080–4103.

Bilgin R, Gürün K, Maracı Ö, Furman A, Hulva P,Çoraman E, Lucan RK, Bartonicka T, Horácek I. 2012.Syntopic occurrence in Turkey supports separate speciesstatus for Miniopterus schreibersii schreibersii and Miniopt-erus schreibersii pallidus (Mammalia: Chiroptera). ActaChiropterologica 14. In press.

Bilgin R, Karatas A, Çoraman E, Disotell T, Morales JC.2008. Regionally and climatically restricted patterns of dis-tribution and genetic diversity in a migratory bat species,Miniopterus schreibersii (Chiroptera: Vespertilionidae).BMC Evolutionary Biology 8: 209.

Bilgin R, Karatas A, Çoraman E, Pandurski I,Papadatou E, Morales JC. 2006. Molecular taxonomyand phylogeography of Miniopterus schreibersii (Kuhl, 1817)(Chiroptera: Vespertilionidae), in the Eurasian transi-tion. Biological Journal of the Linnean Society 87: 577–582.

Bogdanowicz W. 1990. Geographic variation of the taxonomy

of Daubenton’s bat, Myotis daubentoni, in Europe. Journal ofMammalogy 71: 205–218.

Boye P. 2004. Miniopterus schreibersii Natterer in Kuhl, 1819– Langflügelfledermaus. In: Krapp F, ed. Handbuch derSäugetiere Europas. Band 4: Fledertiere. Teil II: ChiropteraII. Vespertilionidae 2. Molossidae, Nycteridae [Handbook ofMammals of Europe. Volume 4: Bats. No. II: Chiroptera II.Vespertilionidae 2. Molossidae, Nycteridae]. Wiebelsheim:Aula-Verlag, 1093–1122.

Clement M, Posada D, Crandall KA. 2000. TCS: a computerprogram to estimate gene genealogies. Molecular Ecology 9:1657–1659.

Corbet GB. 1978. The mammals of the Palearctic region: ataxonomic review. London and Ithaca: British Museum(Natural History) and Cornell University Press.

Corbet GB, Hill JE. 1992. The mammals of the Indomalayanregion: a systematic review. London: Oxford UniversityPress.

Crucitti P. 1989. Distribution, diversity and abundance ofcave bats in Latium (Central Italy). In: Hanák V, HorácekI, Gaisler J, eds. European bat research 1987. Prague:Charles University Press, 381–388.

Dobson M. 1998. Mammal distributions in the western Medi-terranean: the role of human intervention. Mammal Review28: 77–88.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evo-lutionary analysis by sampling trees. BMC EvolutionaryBiology 7: 214.

Ellerman JR, Morrison-Scott TCS. 1951. Checklist ofPalearctic and Indian mammals 1758 to 1946. London:British Museum (Natural History).

Ferguson WW. 2002. The mammals of Israel. Jerusalem:Gefen Publishing House.

Fernandez R, Ibañez C. 1989. Patterns of distribution ofbats in the Iberian Peninsula. In: Hanák V, Horácek I,Gaisler J, eds. European bat research 1987. Prague: CharlesUniversity Press, 357–361.

Fritz U, Fritzsch G, Lehr E, Ducotterd J-M, Müller A.2005. The Atlas Mountains, not the Straits of Gibraltar, asa biogeographic barrier for Mauremys leprosa. Salamandra41: 97–106.

Furman A, Çoraman E, Bilgin R, Karatas A. 2009.Molecular ecology and phylogeography of the bent-wing batcomplex (Miniopterus schreibersii) (Chiroptera: Vespertilio-nidae) in Asia Minor and adjacent regions. Zoologica Scripta38: 129–141.

Furman A, Öztunç T, Postawa T, Çoraman E. 2010a.Shallow genetic differentiation in Miniopterus schreibersii(Chiroptera: Vespertilionidae) indicates a relatively recentre-colonization of Europe from a single glacial refugium.Acta Chiroperologica 12: 51–59.

Furman A, Öztunç T, Çoraman E. 2010b. On the phylog-eny of Miniopterus schreibersii schreibersii and Miniopterusschreibersii pallidus from Asia Minor in reference to otherMiniopterus taxa (Chiroptera: Vespertilionidae). Acta Chi-ropterologica 12: 61–72.

Furman A, Postawa T, Öztunç T, Çoraman E. 2010c.Cryptic diversity of the bent-wing bat, Miniopterus schreib-

TAXONOMY OF MINIOPTERUS 185

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 22: Hidden diversity in bent-winged bats (Chiroptera ...

ersii (Chiroptera: Vespertilionidae), in Asia Minor. BMCEvolutionary Biology 10: 121–133.

Gaisler J. 1970. The bats (Chiroptera) collected in Afghanistanby the Czechoslovak Expedition of 1965–67. Acta Scien-tiarum Naturalium Academiae Scientiarum BohemoslovacaeBrno, Series Nova 4: 1–56.

Gaisler J. 1983. Nouvelles donées sur les chiroptères du nordalgérien. Mammalia 47: 359–369.

García-Mudarra JL, Ibáñez C, Juste J. 2009. The Straitsof Gibraltar: barrier or bridge to Ibero-Moroccan bat diver-sity? Biological Journal of the Linnean Society 96: 434–450.

Gazaryan SV. 2005. Geograficeskaâ izmencivost dlinnokry-lov Miniopterus schreibersii (Chiroptera) na territorii vos-tocnoj Evropy i severo-zapadnoj Azii [Geographical variationof Schreibers’ bat Miniopterus schreibersii (Chiroptera)in the territory of eastern Europe and northwestern Asia].Zoologicheskiy Zhurnal 84: 1136–1143. (in Russian, with anabstract in English).

Guindon S, Dufayard JF, Lefort V, Anisimova M, HordijkW, Gascuel O. 2010. New algorithms and methods toestimate maximum-likelihood phylogenies: assessing theperformance of PhyML 3.0. Systematic Biology 59: 307–321.

Gvoždík V, Moravec J, Klütsch C, Kotlík P. 2010. Phylo-geography of the Middle Eastern tree frogs (Hyla, Hylidae,Amphibia) as inferred from nuclear and mitochondrial DNAvariation, with a description of a new species. MolecularPhylogenetics and Evolution 55: 1146–1166.

Hall TA. 1999. BioEdit: a user-friendly biological sequencealignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hanák V, Horácek I. 1984. Some comments of the taxonomyof Myotis daubentoni (Kuhl, 1819) (Chiroptera, Mammalia).Myotis 21–22: 7–19.

Harrison DL, Bates PJJ. 1991. The mammals of Arabia.Second Edition. Sevenoaks: Harrison Zoological Museum.

Hayman RW, Hill JE. 1971. Part 2. Order Chiroptera. In:Meester J, Setzer HW, eds. The mammals of Africa: anidentification manual. Washington: Smithsonian InstitutionPress, 1–73.

Heller E. 1912. New races of insectivores, bats, and lemursfrom British East Africa. Smithsonian Miscellaneous Col-lections 60: 1–13.

Hill JE. 1983. Bats from Indo-Australia (Mammalia: Chirop-tera). Bulletin of the British Museum of Natural History 45:103–208.

Horácek I, Hanák V, Gaisler J. 2000. Bats of the Palearcticregion: a taxonomic and biogeographic review. In: WoloszynBW, ed. Proceedings of the VIIIth European Bat ResearchSymposium. Vol. 1. Approaches to Biogeography and Ecologyof Bats. Kraków: Chiropterological Information Center, Insti-tute of Systematics and Evolution of Animals PAS, 11–157.

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesianinference of phylogeny. Bioinformatics 17: 754–755.

Hulva P, Benda P, Hanák V, Evin A, Horácek I.2007a. New mitochondrial lineages within the Pipistrelluspipistrellus complex from Mediterranean Europe. Folia Zoo-logica 56: 378–388.

Hulva P, Horácek I, Benda P. 2007b. Molecules,

morphometrics and new fossils provide an integrated viewof the evolutionary history of Rhinopomatidae (Mammalia:Chiroptera). BMC Evolutionary Biology 7: 165–180.

Hulva P, Fornusková A, Chudárková A, Evin A,Allegrini B, Benda P, Bryja J. 2010. Mechanisms ofradiation in a bat group from the genus Pipistrellus inferredby phylogeography, demography and population genetics.Molecular Ecology 19: 5417–5431.

Hulva P, Horácek I, Strelkov PP, Benda P. 2004. Molecu-lar architecture of Pipistrellus pipistrellus / P. pygmaeuscomplex (Chiroptera: Vespertilionidae): further crypticspecies and Mediterranean origin of the divergence. Molecu-lar Phylogenetics and Evolution 32: 1023–1035.

Ibanez C, García-Mudarra JL, Ruedi M, Stadelmann B,Juste J. 2006. The Iberian contribution to cryptic diversityin European bats. Acta Chiropterologica 8: 277–297.

Iliopoulou-Georgudaki J. 1986. The relationship betweenclimatic factors and forearm length of bats: evidence fromthe chiropterofauna of Lesbos island (Greece – EastAegean). Mammalia 50: 475–482.

Karatas A, Sözen M. 2004. Contribution to karyology, dis-tribution and taxonomic status of the Long-winged Bat,Miniopterus schreibersii (Chiroptera: Vespertilionidae), inTurkey. Zoology in the Middle East 33: 51–64.

Kirchman JJ, Hackett SH, Goodman SM, Bates JM.2001. Phylogeny and systematics of ground rollers (Brach-ypteraciidae) of Madagaskar. The Auk 118: 849–863.

Koopman KF. 1993. Order Chiroptera. In: Wilson DE,Reeder DM, eds. Mammal species of the world. A taxonomicand geographic reference. Washington and London: Smith-sonian Institution Press, 137–241.

Koopman KF. 1994. Chiroptera: systematics. In: Nietham-mer J, Schliemann H, Starck D, eds. Handbuch der Zoolo-gie. Band VIII. Mammalia. Teilband 60. Berlin and NewYork: Walter de Gruyter, 1–217.

Kowalski K, Rzebik-Kowalska B. 1991. Mammals ofAlgeria. Kraków: Zakład Narodowy im. Ossolinskich –Wydawnictwo.

Kuzâkin AP. 1950. Letucie myši (Sistematika, obraz žizni ipol’za dlâ sel’skogo i lesnogo hozâjstva) [Bats (Systematic,Life History and Utility in Agriculture and Forestry)].Moskva: Sovetskaja Nauka, (in Russian).

Kuzâkin AP. 1965. Otrjad Rukokrylye. Ordo Chiroptera[Order Bats. Ordo Chiroptera]. In: Bobrinskij NA, KuznecovBA, Kuzâkin AP, eds. Opredelitel’ mlekopitaûsih SSSR [Keyto identification of Mammals of the USSR]. Moskva: Pros-vešcenije, 79–116. (in Russian).

Lay DM. 1967. A study of the mammals of Iran. Resultingfrom the Street Expedition of 1962–63. Fieldiana: Zoology54: 1–282.

Librado P, Rozas J. 2009. DnaSP v5: a software for com-prehensive analysis of DNA polymorphism data. Bioinfor-matics 25: 1451–1452.

Lin Y-H, Penny D. 2001. Implications for bat evolution fromtwo new complete mitochondrial genomes. MolecularBiology and Evolution 18: 684–688.

MacArthur RH, Wilson EO. 1967. The theory of islandbiogeography. Princeton, NJ: Princeton University Press.

186 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 23: Hidden diversity in bent-winged bats (Chiroptera ...

Maeda K. 1982. Studies on the classification of Miniopterusin Eurasia, Australia and Melanesia. Honyurui Kagaku(Mammalian Science), Supplement 1: 1–176.

Maraci Ö, Bilgin R, Lucan RK, Bartonicka P, Hulva P,Horácek I. 2010. The sympatry of Miniopterus schreibersiischreibersii and Miniopterus s. pallidus in three caves: thesmoking gun for their elevation to full species status. In:Horácek I, Benda P, eds. 15th IBRC – the ConferenceManual: Programme, Abstracts, List of Participants. Volumeof Abstracts of the 15th International Bat Research Confer-ence, held in Prague, 23–27 August 2010. Kostelec nadCernými lesy: Lesnická práce s.r.o., 220–221.

Mayer F, Dietz C, Kiefer A. 2007. Molecular species iden-tification boosts bat diversity. Frontiers in Zoology 4: 1–5.

Miller-Butterworth CM, Eick G, Jacobs DS, SchoemanMC, Halley EH. 2005. Genetic and phenotypic differencesbetween South African long-fingered bats, with a globalminiopterinae phylogeny. Journal of Mammalogy 86: 1121–1135.

Moravec J, Kratochvíl L, Amr ZS, Jandzik D, Šmíd J,Gvoždík V. 2011. High genetic differentiation within theHemidactylus turcicus complex (Reptilia: Gekkonidae) inthe Levant, with comments on the phylogeny and system-atics of the genus. Zootaxa 2894: 21–38.

Nader IA, Kock D. 1987. First record of Miniopterus sch-reibersii (Kuhl 1819) (Mammalia: Chiroptera) from NorthYemen with zoogeographical relationship evidenced by wingmites (Acarina: Spinturnicidae). Senckenbergiana Biologica67: 225–229.

Ognev SI. 1927. A synopsis of the Russian bats. Journal ofMammalogy 8: 140–157.

Ognev SI. 1928. Zveri vostocnoj Evropy i severnoj Azii.Tom I. [The Mammals of the Eastern Europe and of theNorthern Asia. Vol.I]. Moskva & Leningrad: Gosudarstven-noe Izdatel’stvo, (in Russian).

Ondrias JC. 1978. Population variation in Miniopterusschreibersii from Greece. Biologia Gallo-Hellenica 7: 223–232.

Osborne MJ, Christidis L. 2001. Molecular Phylogenetics ofAustralo-Papuan Possums and Gliders (Family Petauridae).Molecular Phylogenetics and Evolution 20: 211–224.

Pereira MJR, Salgueiro P, Rodrigues L, Coelho MM,Palmeirim JM. 2009. Population structure of a cave dwell-ing bat, Miniopterus schreibersii: does it reflect history andsocial organization? Journal of Heredity 100: 533–544.

Posada D. 2008. JModelTest: phylogenetic model averaging.Molecular Biology and Evolution 25: 1253–1256.

Qumsiyeh MB, Schlitter DA. 1982. The bat fauna of JabalAl Akhdar, northeast Libya. Annals of Carnegie Museum 51:377–389.

Rahmatulina IK. 2005. Rukokrylye Azerbajdžana (fauna,ekologiâ, zoogeografiâ) [Bats of Azerbaijan (Fauna, Ecology,Zoogeography)]. Baku: Nacional’naâ Akademiâ NaukAzerbajdžana, (in Russian).

Rodrigues L, Palmeirim JM. 2008. Migratory behaviour ofthe Schreiber’s bat: when, where and why do cave batsmigrate in a Mediterranean region? Journal of Zoology 264:116–125.

Rohlf FJ. 1998. On applications of geometrics to studiesof ontogeny and phylogeny. Systematic Biology 47: 147–158.

Rohlf FJ. 2004. Tpsdig. Version 1.40. Stony Brook: StateUniversity of New York at Stony Brook, Department ofEcology and Evolution.

Rohlf FJ. 2008. Relative warps. Version 1.46. Stony Brook:State University of New York at Stony Brook, Departmentof Ecology and Evolution.

Rohlf FJ. 2009. Tpsregr. Version 1.36. Stony Brook: StateUniversity of New York at Stony Brook, Department ofEcology and Evolution.

Rohlf FJ. 2010. Tps Utility program. Version 1.46. StonyBrook: State University of New York at Stony Brook,Department of Ecology and Evolution.

Rohlf FJ, Loy A, Corti M. 1996. Morphometric analysis ofOld World Talpidae (Mammalia, Insectivora) using partial-warps scores. Systematic Biology 45: 344–362.

Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesianphylogenetic inference under mixed models. Bioinformatics19: 1572–1574.

Simmons NB. 2005. Order Chiroptera. In: Wilson DE,Reeder DM, eds. Mammal species of the world. A taxonomicand geographic reference. Third Edition. Volume 1. Balti-more: The John Hopkins University Press, 312–529.

Spitzenberger F. 1981. Die Langflügelfledermaus (Miniopt-erus schreibersii Kuhl, 1819) in Österreich – Mammaliaaustriaca 5. Mitteilungen der Abteilung für Zoologie amLandesmuseum Joanneum 2: 139–156.

Strelkov PP, Sosnovcena VP, Babaev NV. 1978. Letuciemyši (Chiroptera) Turkmenii [The bats of Turkmenia].Trudy Zoologiceskogo Instituta Akademii Nauk SSSR 79:3–71. (in Russian, with a subtitle in English).

Swofford DL. 2003. PAUP*. Phylogenetic Analysis UsingParsimony (* and other methods). Version 4. Sinauer Asso-ciates, Sunderland.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) softwareversion 4.0. Molecular Biology and Evolution 24: 1596–1599.

Tata C, Kotsakis T. 2005. Italian fossil chiropteran assem-blages: a preliminary report. Geologia Delle Alpi 2: 53–60.

Tate GHH. 1941. Results of the Archbold Expeditions.No. 40. Notes on vespertilionid bats of the subfamiliesMiniopterinae, Murininae, Kerivoulinae, and Nyctophilinae.Bulletin of the American Museum of Natural History 78:567–597.

Tian L, Liang B, Maeda K, Metzner W, Zhang S. 2004.Molecular studies on the classification of Miniopterusschreibersii (Chiroptera: Vespertilionidae) inferred frommitochondrial cytochrome b sequences. Folia Zoologica 53:303–311.

Velazco PM, Gardner AL, Patterson BD. 2010. Systemat-ics of the Platyrrhinus helleri species complex (Chiroptera:Phyllostomidae), with descriptions of two new species. Zoo-logical Journal of the Linnean Society 159: 785–812.

Yoshiyuki M. 1989. A systematic study of the Japanese Chi-roptera. Tokyo: The National Science Museum.

TAXONOMY OF MINIOPTERUS 187

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 24: Hidden diversity in bent-winged bats (Chiroptera ...

Zelditch ML, Fink WL, Swiderski DL. 1995. Morphomet-rics, homology, and phylogenetics: quantified characters assynapomorphies. Systematic Biology 44: 179–189.

APPENDIX 1

Specimens examined morphologically. Abbreviations:NMP = National Museum in Prague, Czech Republic;ZFMK = Zoological Research Museum AlexanderKoenig in Bonn, Germany; AUB = American Univer-sity of Beirut, Lebanon. Mare = Miniopterus cf. are-narius; Mful = M. cf. fuliginous; Msch = M. schreibersiis.str.; Mpal = M. pallidus; Msp = unidentified taxonof M. cf. schreibersii; f = female; m = male; x =unidentified sex.

GROUP 1: MOROCCO

Morocco: Azigza Cave (Tazouguerte) 6f (NMP:pb3910, pb3912–pb3914, pb3916, pb3917 – 26. 4.2008), 4m (pb3907–pb3909, pb3911 – 26. 4. 2008),Msch, leg.: P. Benda; Oued Tessaout Valley (Talkout)3f (NMP: 90046, 90049, 90054 – 30. 8. 2003), 4m(NMP: 90050–90052, 90055 – 30. 8. 2003), Msch, leg.:P. Benda; Oued El-Ammar River (Sebt-des-Ait-Serhrouchen) 1f (NMP: 90103 – 9. 9. 2003), Msch,leg.: P. Benda.

GROUP 2: WESTERN EUROPE

Spain: Bei Tremp (Pyrenees) 3f (ZFMK: 56.735,56.737, 56.738 – 28. 5. 1955), 4 m (ZFMK: 56.1068,56.733, 56.734, 56.736 – 28. 5. 1955), Msch, leg.: J.Niethammer; Ramales de la Victoria 1m (ZFMK:97.246 – 19. 4. 1963), Msch, leg.: J. Niethammer.France: Grotte de Povade (Banyuls) 9f (ZFMK:59.120, 59.124, 59.127-59.131, 59.133, 59.134 – 8. 4.1959), 7m (NMP: 59.121-59.123, 59.125, 59.126,59.132 – 8. 4. 1959, 59.350 – 23. 5. 1959), Msch, leg.:A. Heymer; Chateau de Collioure (Banuyls) 2f(ZFMK: 59.348, 59.349 – 11. 5. 1959), 1m (ZFMK:59.347 – 11. 5. 1959), Msch, leg.: A. Heymer; St. Remy3f (ZFMK: 59.531b, 59.531c, 59.531d – 5. 11. 1959),1m (ZFMK: 59.531a – 5. 11. 1959), Msch, leg.: H.Roer. Italy: Gargano 2f (ZFMK: 66.338 – 2. 8. 1961,66.360 – 4. 8. 1961), 2x (ZFMK: 66.359 – 2. 8. 1961,66.357 – date unspecified), Msch, leg.: G’. Witte.Country not stated: Kaiserstuhl 1x (ZFMK: 84.529– 27. 3. 1952), Msch, leg.: Eisentraut.

GROUP 3: PANNONIA

Slovakia: Certova diera Cave (Dornica) 16f (NMP:70/58, 76/58, 85/58, 89/58, 92/58, 94/58, 96/58, 100/58– 3. 2. 1958; J – 114, J – 117, J – 118, J – 123, J – 176,J – 177, J – 178, J – 180 – 10. 12. 1956), 4m (NMP:93/58, 99/58 – 3. 2. 1958; J – 174, J – 181 – 10. 12.

1956), 9x (NMP: 80/66 – date unspecified; CD, CD 1,CD 2, CD 3, CD 4, CD 5, CD 6, CD-NX – 5. 11. 1958),Msch, leg.: V. Hanák; Drienovecká vyvieracka Cave(Drienovec) 6f (NMP: 150/58, 155/58 – 6. 2. 1958;246/61 – 17. 2. 1961; 613/59 – 1. 6. 1959; pb4260,pb4261 – 17. 7. 2009), 2m (NMP: 156/58 – 6. 2. 1958;570/59 – 31. 5. 1959), Msch, leg.: V. Hanák; P. Benda.Romania: Betfia Cave (Betfia) 11f (NMP: pb4247–pb4254, pb4256–pb4258 – 13. 7. 2009), Msch, leg.:P. Benda.

GROUP 4: BALKANS

Bulgaria: Maslen nos (Primorsko) 21f (NMP: 49191,49198, 49205, 49206, 49214, 49220, 49222, 49227,49228, 49341 – 5. 6. 1957; 49686 – 27. 8. 1961; 49688– 7. 8. 1961; 49690, 49692–49698, 49700 – 27. 8.1961), 12m (NMP: 49186, 49192, 49197, 49207,49226, 49229, 49231, 49232 – 5. 6. 1957; 49691,49699, 49703 – 27. 8. 1961), Msch, leg.: V. Hanák;Zmejovi Dupki Cave (Sliven) 7f (NMP: 49148, 49151,49152, 49165 – 25. 5. 1957; 49177, 49178, 49180 – 27.5. 1957), 4m (NMP: 49150, 49166 – 25. 5. 1957;49179, 49181 – 27. 5. 1957), Msch, leg.: V. Hanák;Karlukovo 5f (NMP: 49351 – 3. 7. 1976; 49356, 49361,49362 – 5. 7. 1976; 49367 – 6. 7. 1976), 1m (NMP:49357 – 5. 7. 1976), Msch, leg.: M. Braniš et al.;Gardina Dupka Cave (Mostovo) 3f (NMP: 50059,50061, 50062 – 22. 8. 1987), 3m (NMP: 50040 – 22. 6.1984; 50058, 50060 – 22. 8. 1987), Msch, leg.: P.Musil; Hajduška Peštera Cave (Devenci) 3f (NMP:49647–49649 – 14. 6. 1977), Msch, leg.: V. Bejceket al.; Nirica Peštera Cave (Kotel) 1f (NMP: 49799 –15. 7. 1979), 1m (NMP: 49798 – 15. 7. 1979), Msch,leg.: P.Donát et al.; Kamen Brjag 2f (NMP: 50049,50050 – 12. 7. 1986), Msch, leg.: V. Hanzal et al.;Ivanova voda Cave (Dobrostan) 1m (NMP: 49806 –23. 7. 1979), Msch, leg.: P. Donát et al.; RažiškataCave (Lakatnik) 1m (NMP: 50143 – 21.12. 1956),Msch, leg.: J. Figala et al. Greece: Didimotichon(Thrakia) 1x (ZFMK: 97.247 – 3. 8. 1971), Msch, leg.:J. Niethammer; Xánthi (Kimmeria) 3f (NMP: 48622–48624 – 16. 6. 1989), 1m (NMP: 48625 – 16. 6. 1989),Msch, leg.: V. Hanák & V. Vohrálík; Evros Cave (Didi-motiho) 2f (NMP: 48665, 48667 – 22. 6. 1989), 1m(NMP: 48666 – 22. 6. 1989), Msch, leg.: V. Hanák & V.Vohrálík; Polyphemos (Maronia) 2f (NMP: 48632,48633 – 18. 6. 1989), 1m (NMP: 48642 – 19. 6. 1989),Msch, leg.: V. Hanák & V. Vohrálík; Petralona 1f(NMP: 48611 – 28. 9. 1988), 1m (NMP: 48610 – 28. 9.1988), leg.: V. Hanák & V. Vohrálík et al., 1x (ZFMK:77.51 – 25. 5. 1962), leg.: Wolf, Msch; Ioánnina Cave(Papigo) 2f (NMP: 48578, 48579 – 26. 9. 1988), Msch,leg.: V. Hanák & V. Vohrálík et al.; Avas 1m (NMP:48657 – 20. 6. 1989), Msch, leg.: V. Hanák & V.Vohrálík.

188 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 25: Hidden diversity in bent-winged bats (Chiroptera ...

GROUP 5: CRETE

Greece – Crete: Spilion Tsanis Cave (Omalos) 1f(NMP: 91055 – 1. 10. 2006), 11m (NMP: 91054,91056–91064, 91069 – 1. 10. 2006), Msch, leg.: P.Benda; Spilia Milatou Cave (Milatos) 2f (NMP: 91115,91118 – 7. 10.), 3m (NMP: 91112–91114 – 7. 10. 2006),Msch, leg.: P. Benda; Vreikos Cave (Crete) 1f (NMP:92316 – 12. 10. 2007), Msch, leg.: unspecified; MoniKato Preveli (Lefkogia) 1m (NMP: 92311 – 11. 10.2007), Msch, leg.: unspecified.

GROUP 6: LEVANT

Syria: Safita (Hama) 4f (NMP: 48880–48883 – 29. 5.2001), Msp, leg.: P. Benda; Qala’ et al. Hosn (Hama) 2f(NMP: 49989 – 10. 5. 2001, pb1904 – 29. 5. 2001),Msp, leg.: R. Lucan, P. Benda; Talsh’hab (Der’a) 1m(NMP: 48861 – 25. 5. 2001), Msp, leg.: P. Benda.Lebanon: Er Rouais Cave (Aaqura) 3f (NMP: 91778,91779 – 22. 1. 2007; LE 86 – 26. 6. 2006), 7f (NMP:91776, 91777 – 22. 1. 2007; LE 87–LE 91 – 26. 6.2006), Msp, leg.: P. Benda et al.; I. Horácek et al.;Saleh Cave (Amchite) 22f (NMP: LE 77 – 25. 6. 2006,91808 – 28. 1. 2007; AUB: M – 085–M – 089 – 13. 10.1960; M – 091 – 14. 8. 1960; M – 108–M – 111 – 13.10. 1960; M – 113 – 13. 10. 1960; M – 1162, M – 1165– 17. 4. 1960; M – 119, M – 124, M – 127, M – 129,M – 133, M – 139, M – 140 – 18. 3. 1961), 31m (NMP:LE 78 – 25. 6. 2006; AUB: M – 084 – 13. 10. 1960; M– 092–M – 094 – 14. 8. 1960; M – 097 – 13. 10. 1960;M – 101–M – 105, M – 112 – 13. 10. 1960; M – 115 –18. 3. 1961; M – 1163, M – 1164 – 17. 4. 1965; M –120–M – 123, M – 125, M – 126, M – 128, M – 130–M– 132, M – 134–M – 138, M – 142 – 18. 3. 1961), Msp,leg.: I. Horácek et al.; P. Benda, R. E. Lewis. Turkey:Indigu Majarasi Cave (Antalya) 1f (ZFMK: 66.626 –11. 4. 1966), 6m (ZFMK: 66.619 – 20. 4. 1966, 66.625,66.627–630 – 11. 4. 1966), Msch, leg.: K. Dobat; Haru-niye 2x (ZFMK: 58.282, 58.283 – 1953 (unspecified),Msch, leg.: unspecified. Cyprus: Smigies Trail(Akamas Peninsula) 5f (NMP: CH 32, CH 33, CH 35,CH 38 – 27. 3. 2005; CH 129 – 12. 10. 2005), 3m(NMP: CH 34, CH 36, CH 39 – 27. 3. 2005), Msp, leg.:I. Horácek et al.; Troodos forest – valley N of Kako-

petria (Kakopetria) 5m (NMP: pb2805–pb2807 – 11.4. 2005), Msp, leg.: P. Benda; Troodos Forest – valley4 km SW of Kakopetria (Kakopetria) 2m (NMP: CH45, CH 46 – 29. 3. 2005), Msp, leg.: I. Horácek et al.;Kalavasos 1m (pb2836 – 19. 4. 2005), Msp, leg.: P.Benda.

GROUP 7: MIDDLE EAST

Afghanistan: Samphshir Ghor (Kala bust) 1f(ZFMK: 97.237 – 29. 3. 1972), 2m (ZFMK: 97.235,97.236 – 29. 3. 1972), Mpal, leg.: J. Niethammer;Kandahar 1f (ZFMK: 97.245 – 28. 2. 1965), Mpal, leg.:J. Niethammer. Iran: Mina 7m (NMP: 90825 – 90830– 22. 5. 2006), Mpal, leg.: P. Benda; Bisotun (Kerman-shah) 1f (NMP: 48150 – 10. 8. 1998), 2m (NMP:48149, 48151 – 10. 8. 1998), Mpal, leg.: P. Benda;Dorud (Lorestan) 1m (48154 – 10. 8. 1998), Mpal, leg.:P. Benda.

GROUP 8: EASTERN AFGHANISTAN

(JALALABAD AREA)

Afghanistan: Jalalabad 9f (ZFMK: 97.226, 97.227,97.228, 97.229, 97.232, 97.234 – 1. 3. 1966; 97.238 –14. 5. 1965; 97.243, 97.243 – 4. 3. 1966), 16m (ZFMK:97.215, 97.216, 97.218, 97.220, 97.221, 97.222, 97.224,97.225, two samples without number – 14. 5. 1965;97.231, 97.233 – 1. 3. 1966; 97.239, 97.240, 97.241 –14. 5. 1965; 97.244 – 4. 3. 1966), 1x (ZFMK: 97.230 –1. 3. 1966), Mful, leg.: J. Niethammer.

GROUP 9: YEMEN AND ETHIOPIA

Yemen: Jebel Bura (Riqab) 1f (NMP: pb3129 – 30. 10.2005), 5m (NMP: pb3126–pb3128, pb3130, pb3131 –30. 10. 2005), Mare, leg.: P. Benda; At Tur (Hajjah) 1m(ZFMK: 85.64 – 1. 3. 1985), 1x (ZFMK: 85.63 – 1. 3.1985), Mare, leg.: F. Schutte, H.P. Fritéz; Halhal(Haja) 1m (NMP: pb3747 – 2. 11. 2007), Mare, leg.: P.Benda. Ethiopia: Baro River (Masha) 2f (NMP:92177, 92178 – 5. 9. 2003), Mare, leg.: P. Benda.Sudan: (unspecified) 1x (ZFMK: 212 – date unspeci-fied), Mare, leg.: unspecified.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1. Cranio-dental measurements and landmarks used in the linear and geometric morphometricanalyses.Figure S2. Dental measurements used in the linear morphometric analyses.Figure S3. Non-metric dental and cranial characters.Figure S4. Results of the discriminant function analyses based on the linear morphometric data of dentaldimensions.

TAXONOMY OF MINIOPTERUS 189

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 26: Hidden diversity in bent-winged bats (Chiroptera ...

Figure S5. The main shape variable (RW1) plotted against the centroid size (CS2) of the lateral view of skull.Table S1. Non-metric dental and cranial characters. Letter codes are associated to those in Fig. S3.Table S2. Skull dimensions of the examined Miniopterus.Table S3. Dental dimensions of the examined Miniopterus.Table S4. Results of ANOVA analyses of Middle Eastern (representing M. pallidus) and Balkan (containingsequenced samples from the Levant) (representing M. schreibersii) sample sets.Table S5. Percentage share-values of the total variation of the first four relative warps of the examined samplesets for the respective view of skull and mandible.Table S6. Non-metric dental and cranial characters of the examined Miniopterus.Appendix S1. Supporting information to the methods. List of cranio-dental measurements. List of dentalmeasurements. Landmark definitions for respective views of skull and mandible.Appendix S2. Supporting information to the results. Description of morphometric cranial and dental differ-entiation among the examined groups of Miniopterus. Description of non-metric dental and cranial differen-tiation among the examined groups of Miniopterus.

190 J. ŠRÁMEK ET AL.

© 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 167, 165–190

Page 27: Hidden diversity in bent-winged bats (Chiroptera ...

1

SUPPORTING INFORMATION

Appendix S1: Supporting information to the methods

- List of cranio-dental measurements.

- List of dental measurements.

- Landmark definitions for respective views of skull and mandible.

- Table S1. Non-metric dental and cranial characters.

- Figure S1. Cranio-dental measurements and landmarks used in the linear and

geometric morphometric analyses.

- Figure S2. Dental measurements used in the linear morphometric analyses.

- Figure S3. Non-metric dental and cranial characters.

Appendix S2: Supporting information to the results

- Description of morphometric cranial and dental differentiation among the examined

groups of Miniopterus.

- Description of non-metric dental and cranial differentiation among the examined

groups of Miniopterus.

- Table S2. Skull dimensions of the examined Miniopterus.

- Table S3. Dental dimensions of the examined Miniopterus.

- Table S4. Results of ANOVA analyses of Middle Eastern (representing M. pallidus)

and Balkan (containing sequenced samples from the Levant) (representing M.

schreibersii) sample sets.

- Table S5. Percentage share-values of the total variation of the first four relative warps

of the examined sample sets for the respective view of skull and mandible.

- Table S6. Non-metric dental and cranial characters of the examined Miniopterus.

- Figure S4. Results of the discriminant function analyses based on the linear

morphometric data of dental dimensions.

- Figure S5. The main shape variable (RW1) plotted against the centroid size (CS2) of

the lateral view of skull.

Page 28: Hidden diversity in bent-winged bats (Chiroptera ...

2

Appendix S1

SUPPORTING INFORMATION TO THE METHODS

List of cranio-dental measurements:

Skull length (LCr); condylobasal length (LCb); zygomatic width (LaZ); interorbital

constriction width (LaI); rostral width – between infraorbital foramens (LaInf); neurocranium

width (LaN); mastoidal width (LaM); neurocranium height (ANc); skull height (incl.

tympanic bullae) (ACr); mandible length – condylar (LMd); coronoid process height (ACo);

rostral width across the upper canines (CC); rostral width across the upper premolars (P4P4);

rostral width across the third upper molars (M3M3); upper tooth-row length – between the first

incisor and third molar (I1M3), – between the canine and third molar (CM3), – between the

second (larger) premolar and third molar (P4M3); upper molar-row length (M1M3); upper

tooth-row length – between the canine and second premolar (CP4). The last five

measurements were taken also on mandible (I1M3, CM3, P4M3, M1M3, CP4). See Figure S1

below.

List of dental measurements:

First and second incisor length (LI1, LI2), canine length (LCsup), first and second premolar

length (LP2, LP4), third molar length (LM3) – in the upper tooth-row; first, second and third

incisor length (LI1, LI2, LI3), canine length (LCinf), first, second and third premolar length

(LP2, LP3, LP4), first, second and third molar length (LM1, LM2, LM3) – in the lower tooth-

row; first and second incisor width (WI1, WI2), canine width (WCsup), first and second

premolar width (WP2, WP4), third molar width (WM3) – in the upper tooth-row; first, second

and third incisor width (WI1, WI2, WI3), canine width (WCinf), first, second and third

premolar width (WP2, WP3, WP4) – in the lower tooth-row; first and second molar diagonal

width (W1M1, W1M2); first and second molar largest (external) length (LoM1, LoM2); first

and second molar smallest (internal) length (LiM1, LiM2); first and second molar width (in

central part) (W2M1, W2M2); first and second molar largest width (in the distal half) (W3M1,

W3M2); first and second molar width (in central part of the mesial half) (W1M1, W1M2); first

and second molar width (in central part of the distal half) (W2M1, W2M2); first molar

diagonal width (W3M1); third molar smallest width (WM3); coronal height of all teeth except

molars (HI1, HI2, Csup, HP2, HP4, HI1, HI2, HI3, Cinf, HP2, HP3, HP4). See Figure S2 below.

Page 29: Hidden diversity in bent-winged bats (Chiroptera ...

3

Landmark definitions for respective views of skull and mandible:

Lateral view of mandible (Fig. S1A) – (1) mandible anterior extremity, on the level of the first

incisor; (2) third molar posterior extremity; (3) lateral extremity of the mesial margin of

ramus mandibulae; (4) top point of the processus coronoideus; (5) top point of the processus

condylaris; (6) convex extremity on the level of incisura mandibulae inferior; (7) convex

extremity at the base of processus angularius ; (8) convex extremity of the ventral margin of

corpus mandibulae, in its distal half; (9) ventral extremity on the level of the contact of left

and right corpora mandibulae.

Lateral view of skull (Fig. S1B) – (1) skull anterior extremity, on the level of the first

incisor; (2) nasal fossa dorsal extremity; (3) rostrum/skull congruent point; (4) skull anterior

lateral extremity; (5) concave extremity of dorsal neurocranium; (6) intersection between

interparietal and supraoccipital bone; (7) supraoccipital basis; (8) convex extremity of the

occipital condyle; (9) top point of the processus mastoideus; (10) latero-anterior border of

ocular orbit; (11) third molar posterior extremity; (12) alveolar limit between second premolar

and first molar; (13) alveolar limit between canine and first premolar.

Ventral view of skull (Fig. S1C) – (1) premaxillar incisura; (2) skull anterior

extremity, on the level of the first incisor; (3) alveolar limit between canine and first

premolar; (4) anterior extremity of the first molar; (5) lateral extremity of the third molar; (6)

mandibular arcade incisura; (7) right lateral extremity of lacerated foramen; (8) left lateral

extremity of articular fossa; (9) lateral extremity of processus mastoideus; (10) occipital

condyle posterior extremity; (11) foramen magnum incisura.

Dorsal view of skull (Fig. S1D) – (1) premaxillar incisura; (2) skull anterior extremity,

on the level of the first incisor; (3) rostrum lateral extremity, on the level of canine; (4) largest

rostrum lateral extremity; (5) interorbital most convex extremity; (6) neurocranial lateral

extremity; (7) lateral mastoidal extremity; (8) lateral margin of squama occipitalis; (9) skull

occipital posterior extremity.

Page 30: Hidden diversity in bent-winged bats (Chiroptera ...

4

Table S1. Non-metric dental and cranial characters. Letter codes are associated to those in

Fig. S3.

Variable Sign Description

P4inf A The slant of the third lower premolar (P4)

P4inf2 B The shape of the third lower premolar cingulum (P4)

P3inf C The shape of the second lower premolar cingulum (P3)

P3inf2 D The rate of extension of latero-distal arch of the second lower premolar (P3)

P3inf3 E The slant of the second lower premolar (P3)

P2P4inf F Relative distance between tips of the first (P2) and third (P4) lower premolars

P2P4inf2 G Relative high of the first lower premolar (P2) to the third lower premolar (P4)

P3P4inf H Relative high of the second lower premolar (P3) to the third lower premolar (P4)

FmenP2inf I Position of foramen mentale to the first lower premolar (P2)

Fmen J Absolute size of foramen mentale

Cinf K The shape of the lower canine cingulum on the occlusal side

CingM1inf L The rate of the first lower molar (M1) protocingulum convexity (in ventral direction)

CingM1inf2 M The rate of the first lower molar (M1) protocingulum progression to postcingulum progresion (in ventral direction)

CingM1inf3 O Position of the top point of the first lower molar (M1) cingulum concavity

CingM1inf4 P The rate of deflection of the first lower molar (M1) postcingulum

CingM2inf Q The rate of the second lower molar (M2) protocingulum convexity (in ventral direction)

CingM2inf2 R The rate of the second lower molar (M2) protocingulum progression to postcingulum progresion (in ventral direction)

CingM2inf3 S Position of the top point of the second lower molar (M2) cingulum concavity

M3sup T The rate of the third lower molar (M3) metacone progression (in ventral direction)

M3sup2 U The rate of the third upper molar (M3) palatal side progression

M2sup V The slant of the second upper molar (M2) occlusal cant

M2sup2 W The rate of the second upper molar (M2) deflection on mesial side

M2sup3 X The greatest rate of the second upper molar (M2) depression on distal side

M2Sup4 Y The rate of the second upper molar (M2) distal side progression (in lateral half)

CingM2sup Z The rate of the second upper molar (M2) cingulum extremity progression on occluso-distal arch

M1sup AA The slant of the first upper molar (M1) occlusal cant

M1sup2 AB The greatest rate of the first upper molar (M1) depression on distal side

M1sup3 AC The rate of the first upper molar (M1) distal side progression (in lateral half)

M1sup4 AD The rate of the first upper molar (M1) occlusal side depression

M1sup5 AE Position of the first upper molar (M1) palatal side depression

P4sup AF The rate of the second upper premolar (P4) mesio-occlusal arch progression

P4sup2 AG The rate of the second upper premolar (P4) depression on mesial side

P4sup3 AH The rate of the second upper premolar (P4) depression on distal side

P4sup4 AI The rate of the extremity progression on mesio-occlusal side of the second upper premolar (P4)

P4sup5 AJ The rate of the second upper premolar (P4) mesio-lateral arch progression

P4sup6 AK The rate of the second upper premolar (P4) deflection on lateral side (in mesial half of cingulum)

P4sup7 AL The rate of the second upper premolar (P4) deflection on lateral side (in distal half of cingulum)

P4sup8 AM Central position of the second upper premolar (P4) lateral side depression (in distal half of cingulum)

P2sup AN Relative width of mesial arch of the first upper premolar (P2)

P2sup2 AO The rate of depression on the first upper premolar (P2) distal side

P2sup3 AP The rate of depression on the first upper premolar (P2) occlusal side

P2sup4 AQ The rate of depression on the first upper premolar (P2) mesio-lateral side

CingCsup AR The rate of upper canine cingular extremity progression

ZygW AS The rate of zygomatic arch intension

InfO AT Position of infraorbital foramen to first upper premolar (P2)

I2supCsup AU Depth of depression between second upper incisor (I2) and upper canine

ProcCW AV Relative width of procesus coronoideus

RmanW AW Relative size of ramus mandibulae extremity before processus coronoideus

Isup AX The slant of upper incisives

Page 31: Hidden diversity in bent-winged bats (Chiroptera ...

5

Figure S1. Cranio-dental measurements and landmarks used in the linear and geometric

morphometric analyses. A – Lateral view of mandible, B – lateral, C – ventral and D – dorsal

views of the skull. .

Page 32: Hidden diversity in bent-winged bats (Chiroptera ...

6

Figure S2. Dental measurements used in the linear morphometric analyses. View of A – right

upper, B – left lower tooth-row, C – lower incisives, D – upper incisives, E – lower canine, F

– from left to right: upper canine, 2nd premolar, 4th premolar; G – lower premolar-row, from

left to right: 2nd, 3rd and 4th premolar.

Page 33: Hidden diversity in bent-winged bats (Chiroptera ...

7

Figure S3. Non-metric dental and cranial characters and the gradient scale system 1–5. Letter codes are explained in Table S1.

Page 34: Hidden diversity in bent-winged bats (Chiroptera ...

8

Figure S3. (continued)

Page 35: Hidden diversity in bent-winged bats (Chiroptera ...

9

Figure S3. (continued)

Page 36: Hidden diversity in bent-winged bats (Chiroptera ...

10

Figure S3. (continued)

Page 37: Hidden diversity in bent-winged bats (Chiroptera ...

11

Figure S3. (continued)

Page 38: Hidden diversity in bent-winged bats (Chiroptera ...

12

Figure S3. (continued)

Page 39: Hidden diversity in bent-winged bats (Chiroptera ...

13

Appendix S2

SUPPORTING INFORMATION TO THE RESULTS

Description of morphometric cranial and dental differentiation among the examined

groups of Miniopterus:

Morphometric differences among the examined groups as described below represent

distinctions related to the material from Pannonia, which contains samples originating from

the region of type locality of M. schreibersii in Romania (unless otherwise stated).

The bats from the Moroccan inland were characterized by relatively wider rostrum in

comparison to other examined samples, particularly at the level of infraorbital foramens (see

LaInf, LCr/LaInf in Table S2), their skulls were relatively very high and short. Mandibles of

the Moroccan bats were, among the all examined groups, the most distinct – the coronoid

processes were relatively very high, molar-rows quite short (M1M3; LMd/M1M3 in table S2).

Lower canines were relatively high, second upper premolars (P4) wide. The lower premolars

(P2 and P3) were markedly high and generally large, lower molariform teeth (P4 and M3) wide,

third lower premolar (P4) generally small.

The bats from Western Europe possessed skulls with relatively wide rostrum and

markedly long upper molar-row (M1M3; M3M3/M1M3 in table S2). Their coronoid processes

were very high (ACo; LMd/ACo in table S2), second upper premolars (P4) were markedly

high and generally large, first upper molars (M1) were large. First lower incisors (I1) were

relatively wide; lower canines low but large; lower molariforms P2, P3, M1 and M3 long (in

the mesiodistal direction); lower premolars (P3 and P4) were high; all three lower premolars

were generally small, canines large.

The bent-winged bats from the Balkans showed their skulls to be relatively high

(ACr) and their upper molar-rows (M1M3) relatively long. The second upper incisors (I2) were

relatively long, second upper premolars (P4) low and wide, first upper molars (M1) were –

relatively to the largest length of the tooth – large in the smallest length of the tooth. First

lower incisors (I1) were relatively wide; first lower molars (M1) were generally large.

The samples from Crete were characterized by their relatively high skulls and very

high coronoid processes and long lower molariform tooth-rows (P4M3). These bats showed

relatively long second lower incisors (I2), while their second upper premolars (P4) were low

and wide, first upper molars (M1) – in comparison to the largest length of the tooth –

Page 40: Hidden diversity in bent-winged bats (Chiroptera ...

14

relatively large in the smallest length of the tooth. The first lower incisors (I1) were relatively

wide, the first lower molars (M1) large.

The bats from the Levant showed high skulls, similarly as the Cretan bats and very

high coronoid processes. The Levantine bats possessed generally large second upper

premolars (P4), relatively wide first lower incisors (I1), markedly low first lower premolars

(P2), long lower molars (M1 and M3), small lower premolars (especially P4) and large lower

canines.

The bats from the Middle East were characterized by relatively markedly narrow

width of interorbital constriction (LaI, LCr/LaI in Table S2) and high skulls, mandibles with

relatively high coronoid processes, in upper tooth-row relatively wide and low second (large)

premolars (P4) and generally smaller second incisors (I2), premolars (P2, P3) and third molars

(M3); in lower tooth-row relatively wide third incisors (I3), long first molars (M1), markedly

low second premolars (P2), but very high third and fourth premolars (P3, P4), very small

canines and all premolars.

The samples from Eastern Afghanistan (Jalalabad) showed relatively high coronoid

processes, short mandibular molar-rows, relatively small and long second upper incisors (I2),

long first upper premolars (P2), high second upper premolars (P4), large and markedly high

upper canines, but the first upper incisors (I1) markedly small, relatively long second upper

molars (M2) in their smallest length of the tooth. In the mandibles, the first incisors (I1) were

relatively wide, second incisors (I2), third and fourth premolars (P3, P4) long, second and third

premolars (P2, P3) low, canines markedly large (especially in their high), but premolars rather

small, as well as the third molars (M3) that were moreover relatively wide.

The material of the M. schreibersii-like form from Yemen and Ethiopia were

particularly distinct from other examined samples, particularly in their width dimensions –

skulls were relatively narrow (LaM; LCr/LaM in Table S2), rostra generally very narrow

(LaInf); mandibles had the coronoid processes relatively low; lower canines were relatively

high, first upper premolars (P2) high and long, but generally small. Upper molars (M2 and M3)

were generally small, second upper incisors (I2) markedly. In the lower dentition, incisors (I1,

I3) and the last molars (M3) were relatively wide, first premolars (P2) low and markedly small,

second premolars (P3) very high – as well as the third premolars (P4) – and very markedly

small. For details concerning the skull sizes and other cranial and dental dimensions see

Tables S2 and S3.

Page 41: Hidden diversity in bent-winged bats (Chiroptera ...

15

Description of non-metric dental and cranial differentiation among the examined groups

of Miniopterus:

Observed values of non-metric characters showed that the most distinct samples, in

comparison to those from Pannonia, were samples from Eastern Afghanistan (Jalalabad), such

a trend was less apparent concerning the group of the Afro-Arabian samples, Moroccan and

the Middle Eastern samples. Differences among all other examined groups were rather

minute. Distinctions of the above mentioned mostly differentiated groups were as follows:

Moroccan samples had cingulum of canine palatal side without any extremity (Cinf),

first upper molar occlusal side deflection quite expressive (M1sup4) and relatively expressive

extremity on ramus mandibulae before processus coronoideus (RmanW). Samples from the

Middle East possesed with first upper molar occlusal side deflection relatively expressive

(M1sup4) and strong zygomatic arch intension (ZygW).

Samples from Eastern Afghanistan (Jalalabad) were characterized by relatively

small slant of the third lower premolar (P4inf), markedly relatively low first and second lower

premolars in comparison to third lower premolar (P2P4inf2, P3P4inf), less expressive

protocingulum in comparison to postcingulum of the first and second lower molars

(CingM1inf2, CingM2inf2), mesial position of the top point of the second lower molar

cingulum concavity (CingM2inf3), small rate of the third upper molar palatal side progression

(M3sup2), small depression on the mesial side and small progression on the distal side of the

second upper molar (M2sup2, M2sup4), small rate of the second upper premolar deflection on

lateral side (in mesial half of cingulum) (P4sup6), small rate of deflection of the first upper

molar mesio-lateral side (P2sup4) and small depth of depression between second upper

incisor and upper canine (I2supCsup).

Samples of the M. schreibersii-like form from Yemen and Ethiopia had mesial

position of the top point of the first lower molar cingulum concavity (CingM1inf3), small rate

of the third upper molar palatal side progression (M3sup2), distal slant of the second upper

molar occlusal cant (M2sup) and its cingulum extremity of distal-occlusal arch markedly

relatively small (CingM2sup), distal slant of the first upper molar occlusal cant (M1sup),

strong rate of the second upper premolar mesio-occlusal arch extremity progression (P4sup4),

relatively small rate of depression of the first upper premolar distal side (P2sup2), distal

position of infraorbital foramen in comparison to the first upper premolar (InfO). For details

concerning the non-metric traits see Table S5.

Page 42: Hidden diversity in bent-winged bats (Chiroptera ...

16

Table S2. Skull dimensions (in mm) of Miniopterus examined in this study. Codes in brackets stand for the respective genetic lineage or

sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. M= mean, min = minimum value, max = maximum value,

and SD = standard deviation.

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

LCr 18 15.365 15.12 15.65 0.164 36 15.229 14.80 15.49 0.173 45 15.392 14.94 15.88 0.206 76 15.229 14.54 15.83 0.216 19 14.916 14.48 15.19 0.185

LCb 18 14.953 14.74 15.24 0.146 35 14.777 14.42 15.02 0.159 45 14.928 14.07 15.58 0.263 76 14.765 14.25 15.18 0.190 19 14.423 14.05 14.66 0.149

LaZ 18 8.688 8.39 9.00 0.137 35 8.566 8.25 8.88 0.137 46 8.609 8.10 9.00 0.208 74 8.551 8.13 8.85 0.139 19 8.478 8.15 8.74 0.129

LaI 18 3.777 3.63 3.98 0.089 36 3.711 3.57 3.88 0.071 47 3.761 3.53 4.02 0.108 82 3.710 3.52 3.93 0.087 19 3.621 3.48 3.77 0.084

LaInf 18 4.202 4.02 4.32 0.086 36 4.023 3.74 4.29 0.104 45 4.025 3.85 4.24 0.088 80 3.974 3.45 4.18 0.136 19 3.894 3.78 4.05 0.091

LaN 18 8.098 7.92 8.28 0.117 36 8.082 7.89 8.96 0.200 48 8.104 7.63 8.40 0.129 79 8.087 7.76 8.47 0.123 19 7.855 7.73 7.97 0.076

LaM 18 8.788 8.64 8.97 0.105 35 8.675 8.10 8.99 0.190 46 8.757 8.10 9.21 0.180 76 8.746 8.12 9.04 0.155 19 8.524 8.40 8.67 0.091

ANc 18 6.357 6.18 6.57 0.109 35 6.330 6.12 6.50 0.096 46 6.321 6.09 6.53 0.109 78 6.288 6.00 6.53 0.107 19 6.217 6.09 6.38 0.089

ACr 18 7.973 7.73 8.34 0.185 30 7.497 6.66 8.01 0.420 43 7.672 6.79 8.04 0.325 77 7.743 6.83 8.21 0.324 19 7.765 7.36 7.99 0.154

LMd 18 10.977 10.80 11.28 0.144 36 10.852 10.56 11.15 0.143 48 10.923 10.28 11.30 0.175 75 10.847 10.15 11.07 0.154 19 10.622 10.32 10.88 0.118

ACo 18 2.598 2.48 2.81 0.077 36 2.594 2.40 2.93 0.109 48 2.533 2.17 2.93 0.120 75 2.508 2.04 2.93 0.109 19 2.538 2.41 2.69 0.076

CC 18 4.656 4.38 4.83 0.119 27 4.504 4.27 4.74 0.121 44 4.549 4.34 4.77 0.103 74 4.484 4.14 4.72 0.112 18 4.477 4.33 4.64 0.086

P4P

4 18 5.542 5.43 5.77 0.090 36 5.442 5.17 5.74 0.138 47 5.580 5.35 5.82 0.105 77 5.525 5.06 5.71 0.117 19 5.423 5.28 5.56 0.077

M3M

3 18 6.398 6.23 6.60 0.099 32 6.264 5.78 6.47 0.133 46 6.327 5.89 6.61 0.134 76 6.334 6.00 6.53 0.093 19 6.212 6.08 6.35 0.074

I1M

3 18 6.946 6.75 7.12 0.095 34 6.947 6.59 7.20 0.120 47 6.975 6.73 7.16 0.093 80 6.919 6.56 7.10 0.095 19 6.802 6.54 6.95 0.081

CM3 18 5.902 5.64 6.09 0.133 33 5.853 5.58 6.13 0.122 47 5.898 5.71 6.08 0.083 80 5.874 5.68 6.04 0.077 19 5.810 5.64 5.95 0.072

P4M

3 18 4.302 4.17 4.45 0.076 35 4.275 4.06 4.43 0.086 48 4.291 4.01 4.44 0.087 80 4.306 4.06 4.47 0.065 19 4.268 4.11 4.37 0.063

M1M

3 18 3.253 3.13 3.43 0.077 36 3.236 3.10 3.38 0.076 48 3.278 3.08 3.45 0.076 81 3.307 3.16 3.49 0.077 19 3.255 3.09 3.44 0.089

CP4 18 2.877 2.78 3.01 0.082 26 2.911 2.66 3.28 0.136 47 2.907 2.75 3.05 0.071 81 2.847 2.68 3.01 0.068 19 2.832 2.73 2.97 0.071

I1M3 18 7.285 7.10 7.56 0.108 35 7.203 6.87 7.41 0.121 48 7.317 7.02 7.54 0.124 75 7.333 6.98 7.60 0.130 19 7.056 6.96 7.21 0.073

CM3 18 6.193 6.03 6.38 0.098 35 6.185 5.90 6.35 0.097 48 6.215 6.07 6.36 0.072 74 6.177 5.98 6.38 0.075 19 6.090 6.00 6.26 0.069

P4M3 18 4.386 4.30 4.52 0.062 35 4.447 4.25 4.72 0.100 48 4.456 4.28 4.65 0.079 76 4.463 4.27 4.58 0.067 19 4.401 4.30 4.51 0.065

M1M3 18 3.606 3.52 3.73 0.059 36 3.720 3.54 4.00 0.103 48 3.764 3.57 3.97 0.102 77 3.768 3.49 3.95 0.099 19 3.691 3.55 3.81 0.077

CP4 18 2.369 2.23 2.47 0.070 30 2.371 2.22 2.55 0.081 48 2.406 2.24 2.56 0.065 74 2.345 2.19 2.50 0.071 19 2.283 2.20 2.38 0.049

M3M

3/M

1M

3 18 1.968 1.88 2.04 0.047 35 1.768 0.00 2.00 0.551 46 1.931 1.80 2.05 0.055 77 1.890 0.00 2.00 0.223 19 1.910 1.77 2.01 0.057

M3M

3/P

4M

3 18 1.487 1.45 1.53 0.022 32 1.464 1.40 1.53 0.030 46 1.475 1.40 1.56 0.034 76 1.471 1.42 1.54 0.025 19 1.456 1.41 1.51 0.024

M3M

3/CM

3 18 1.085 1.05 1.12 0.022 29 1.068 1.01 1.11 0.024 45 1.073 0.99 1.13 0.026 76 1.078 1.05 1.12 0.016 19 1.069 1.04 1.10 0.016

M3M

3/I

1M

3 18 0.921 0.90 0.95 0.011 32 0.901 0.86 0.93 0.019 45 0.908 0.85 0.94 0.020 76 0.916 0.88 0.95 0.015 19 0.913 0.89 0.95 0.012

M3M

3/P

4P

4 18 1.155 1.13 1.18 0.014 32 1.148 1.11 1.21 0.022 46 1.135 1.07 1.19 0.024 76 1.147 1.10 1.26 0.023 19 1.146 1.12 1.16 0.013

M3M

3/CC 18 1.375 1.34 1.43 0.024 26 1.391 1.31 1.46 0.035 43 1.392 1.33 1.47 0.032 72 1.413 1.36 1.52 0.033 18 1.387 1.34 1.43 0.024

P4P

4/CC 18 1.191 1.14 1.24 0.025 27 1.212 1.14 1.25 0.024 44 1.227 1.18 1.28 0.028 73 1.231 1.10 1.31 0.028 18 1.210 1.17 1.25 0.024

I1M

3/I1M3 18 0.954 0.93 0.97 0.011 33 0.964 0.93 1.02 0.021 47 0.953 0.91 0.99 0.018 74 0.943 0.90 0.98 0.015 19 0.964 0.94 0.98 0.009

LMd/Aco 18 4.228 3.97 4.38 0.112 36 4.190 3.76 4.50 0.158 48 4.320 3.77 4.95 0.200 72 4.333 3.77 5.20 0.188 19 4.189 3.87 4.39 0.127

LMd/I1M3 18 1.507 1.47 1.53 0.018 35 1.508 1.46 1.57 0.020 48 1.493 1.44 1.57 0.026 75 1.480 1.37 1.55 0.027 19 1.505 1.48 1.53 0.013

LMd/CM3 18 1.773 1.74 1.80 0.016 35 1.756 1.71 1.83 0.026 48 1.758 1.69 1.81 0.025 74 1.756 1.65 1.82 0.022 19 1.744 1.72 1.77 0.016

LMd/P4M3 18 2.503 2.45 2.56 0.028 35 2.441 2.35 2.57 0.053 48 2.452 2.30 2.57 0.052 75 2.431 2.26 2.55 0.043 19 2.414 2.36 2.47 0.030

LMd/M1M3 18 3.044 2.93 3.11 0.046 36 2.919 2.69 3.06 0.081 48 2.904 2.68 3.10 0.095 75 2.880 2.68 3.12 0.081 19 2.879 2.78 3.03 0.065

Page 43: Hidden diversity in bent-winged bats (Chiroptera ...

17

Table S2. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

LCr/LaM 18 1.748 1.72 1.78 0.018 35 1.756 1.70 1.85 0.033 43 1.756 1.71 1.91 0.032 72 1.743 1.70 1.83 0.026 19 1.750 1.70 1.78 0.019

LCr/LaZ 18 1.769 1.74 1.82 0.020 35 1.778 1.72 1.86 0.028 43 1.785 1.72 1.92 0.040 71 1.782 1.72 1.85 0.026 19 1.760 1.70 1.85 0.032

LCr/LaI 18 4.069 3.93 4.19 0.072 36 4.105 3.93 4.32 0.084 44 4.094 3.87 4.44 0.119 75 4.111 3.88 4.32 0.086 19 4.121 3.84 4.28 0.106

LCr/LaInf 18 3.658 3.57 3.80 0.069 36 3.788 3.56 4.05 0.090 44 3.825 3.59 3.99 0.080 75 3.836 3.61 4.48 0.136 19 3.832 3.60 3.99 0.097

LCr/ANc 18 2.417 2.37 2.47 0.030 35 2.407 2.35 2.47 0.032 43 2.433 2.34 2.50 0.041 75 2.424 2.34 2.51 0.036 19 2.399 2.32 2.44 0.032

LCr/ACr 18 1.928 1.87 2.01 0.037 30 2.040 1.88 2.25 0.115 41 2.010 1.91 2.26 0.093 74 1.974 1.87 2.23 0.091 19 1.921 1.84 2.00 0.040

LCr/LMd 18 1.400 1.38 1.42 0.009 36 1.403 1.37 1.45 0.015 45 1.409 1.39 1.47 0.015 72 1.403 1.33 1.44 0.016 19 1.404 1.39 1.42 0.009

LaM/LaZ 18 1.012 0.98 1.04 0.012 34 1.013 0.94 1.05 0.019 45 1.017 0.94 1.08 0.024 71 1.023 0.96 1.06 0.017 19 1.006 0.98 1.05 0.016

LaM/LaInf 18 2.092 2.03 2.16 0.045 35 2.159 2.00 2.34 0.062 43 2.181 1.97 2.28 0.060 73 2.202 2.06 2.54 0.075 19 2.190 2.12 2.26 0.042

LaM/ACr 18 1.103 1.06 1.13 0.020 29 1.163 1.08 1.29 0.069 42 1.142 1.06 1.29 0.048 74 1.131 1.07 1.27 0.046 19 1.098 1.06 1.15 0.019

LaM/ANc 18 1.383 1.35 1.41 0.018 34 1.373 1.31 1.41 0.021 45 1.388 1.33 1.44 0.023 75 1.391 1.29 1.45 0.027 19 1.371 1.32 1.41 0.019

ACr/ANc 18 1.254 1.21 1.28 0.019 29 1.183 1.05 1.27 0.069 41 1.218 1.09 1.28 0.048 77 1.231 1.09 1.30 0.050 19 1.249 1.21 1.28 0.019

ACr/LaI 18 2.111 2.04 2.17 0.040 30 2.021 1.82 2.17 0.107 42 2.041 1.78 2.23 0.102 76 2.087 1.84 2.21 0.086 19 2.145 1.99 2.27 0.056

ACr/LaZ 18 0.918 0.88 0.95 0.018 29 0.874 0.78 0.95 0.052 42 0.891 0.80 0.95 0.037 72 0.904 0.81 0.95 0.037 19 0.916 0.88 0.96 0.018

LaZ/LCb 18 0.581 0.56 0.59 0.007 34 0.580 0.56 0.59 0.008 43 0.578 0.52 0.60 0.015 72 0.579 0.56 0.60 0.007 19 0.586 0.55 0.61 0.012

LCr/LCb 18 1.028 1.02 1.03 0.004 35 1.031 1.02 1.05 0.007 43 1.030 0.97 1.07 0.013 75 1.032 1.01 1.05 0.007 19 1.031 0.97 1.05 0.016

ANc/LaZ 18 0.732 0.72 0.75 0.009 34 0.738 0.72 0.77 0.013 44 0.733 0.71 0.77 0.013 73 0.736 0.70 0.76 0.013 19 0.733 0.71 0.78 0.014

ANc/LaI 18 1.683 1.65 1.73 0.024 35 1.705 1.62 1.78 0.035 45 1.682 1.57 1.78 0.046 77 1.696 1.57 1.79 0.038 19 1.718 1.65 1.78 0.040

(M3M

3/P

4M

3)/(M

3M

3/M

1M

3) 18 0.756 0.74 0.78 0.010 32 0.757 0.73 0.79 0.014 46 0.764 0.72 0.81 0.017 76 0.769 0.74 0.82 0.015 19 0.763 0.75 0.80 0.018

(M3M

3/I

1M

3)/(M

3M

3/CC) 18 0.670 0.64 0.69 0.014 26 0.650 0.62 0.68 0.016 43 0.652 0.62 0.68 0.014 72 0.648 0.60 0.67 0.014 18 0.659 0.64 0.70 0.015

(M3M

3/I

1M

3)/(M

3M

3/P

4P

4) 18 0.798 0.78 0.83 0.015 32 0.785 0.74 0.82 0.023 45 0.800 0.76 0.85 0.018 76 0.799 0.72 0.84 0.017 19 0.797 0.78 0.84 0.015

(M3M

3/I

1M

3)/(P

4P

4/CC) 18 0.774 0.74 0.81 0.018 26 0.746 0.72 0.77 0.014 43 0.739 0.69 0.79 0.023 72 0.743 0.69 0.83 0.020 18 0.755 0.73 0.79 0.017

(LMd/ACo)/(LMd/I1M3) 18 2.806 2.63 2.92 0.079 35 2.774 2.50 2.98 0.102 48 2.895 2.48 3.39 0.150 72 2.929 2.44 3.61 0.145 19 2.782 2.61 2.93 0.085

(LMd/ACo)/(LMd/CM3) 18 2.385 2.25 2.51 0.063 35 2.383 2.11 2.54 0.089 48 2.459 2.09 2.85 0.121 71 2.469 2.07 2.97 0.109 19 2.402 2.25 2.56 0.076

(LMd/ACo)/(LMd/P4M3) 18 1.689 1.58 1.76 0.045 35 1.717 1.51 1.85 0.077 48 1.763 1.51 2.05 0.093 72 1.782 1.49 2.20 0.084 19 1.735 1.62 1.84 0.058

(LMd/ACo)/(LMd/M1M3) 18 1.389 1.32 1.43 0.031 36 1.436 1.24 1.55 0.060 48 1.489 1.29 1.75 0.089 72 1.504 1.21 1.88 0.080 19 1.456 1.32 1.56 0.059

(LMd/ACo)/(LCr/ACr) 18 2.194 2.06 2.28 0.070 30 2.058 1.82 2.34 0.146 41 2.150 1.83 2.37 0.128 67 2.207 1.91 2.70 0.129 19 2.180 2.04 2.24 0.054

(M3M

3/I

1M

3)/(LCr/LaM) 18 0.527 0.51 0.54 0.009 31 0.514 0.47 0.54 0.015 42 0.517 0.48 0.55 0.015 68 0.526 0.50 0.56 0.012 19 0.522 0.51 0.56 0.011

(M3M

3/CC)/(LaM/LaZ) 18 1.359 1.32 1.39 0.021 25 1.368 1.29 1.43 0.039 42 1.370 1.29 1.48 0.041 65 1.379 1.29 1.51 0.040 18 1.379 1.31 1.44 0.037

(LaM/LaInf)/(ACr/ANc) 18 1.669 1.58 1.74 0.043 28 1.838 1.67 2.05 0.107 38 1.801 1.66 2.06 0.086 71 1.789 1.65 2.07 0.096 19 1.754 1.67 1.83 0.049

(LaM/LaZ)/(ACr/ANc) 18 0.807 0.77 0.83 0.014 27 0.864 0.80 0.95 0.053 40 0.839 0.79 0.93 0.037 69 0.833 0.77 0.94 0.039 19 0.805 0.78 0.85 0.019

(LaM/LaInf)/(LCr/LaM) 18 1.197 1.14 1.25 0.034 35 1.231 1.08 1.36 0.051 42 1.242 1.03 1.32 0.051 71 1.264 1.14 1.45 0.050 19 1.251 1.21 1.30 0.023

(LaM/ANc)/(LCr/ANc) 18 0.717 0.68 0.74 0.014 28 0.677 0.60 0.74 0.041 39 0.695 0.63 0.73 0.031 71 0.707 0.61 0.75 0.034 19 0.714 0.68 0.75 0.016

(LCr/LaInf)/(LCr/ANc) 18 1.513 1.45 1.55 0.028 35 1.575 1.49 1.69 0.042 42 1.573 1.52 1.66 0.032 74 1.584 1.44 1.86 0.059 19 1.597 1.52 1.68 0.037

(LCr/LaZ)/(LCr//ANc) 18 0.732 0.72 0.75 0.009 34 0.738 0.72 0.77 0.013 41 0.732 0.71 0.77 0.013 71 0.736 0.70 0.76 0.012 19 0.733 0.71 0.78 0.014

(LCr/ANc)/(LaZ/LCb) 18 4.161 4.02 4.38 0.085 34 4.148 3.96 4.33 0.098 40 4.207 3.93 4.63 0.152 71 4.183 3.97 4.37 0.093 19 4.083 3.84 4.22 0.093

(LCr/LCb)/(ACr/ANc) 18 0.820 0.80 0.85 0.013 29 0.876 0.81 0.99 0.051 38 0.846 0.79 0.95 0.036 74 0.841 0.80 0.95 0.038 19 0.828 0.80 0.86 0.013

(LCr/LaM)/(M3M

3/I

1M

3) 18 1.898 1.84 1.97 0.034 31 1.949 1.86 2.11 0.060 42 1.937 1.83 2.08 0.057 68 1.900 1.79 1.99 0.043 19 1.916 1.79 1.96 0.038

(LCr/LaM)/(LCr/ANc) 18 0.723 0.71 0.74 0.010 34 0.729 0.71 0.76 0.011 42 0.720 0.70 0.75 0.012 72 0.720 0.69 0.77 0.014 19 0.729 0.71 0.76 0.010

Page 44: Hidden diversity in bent-winged bats (Chiroptera ...

18

Table S2. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

(LCr/LaM)/(LCr/LMd) 18 1.249 1.23 1.28 0.015 35 1.251 1.22 1.33 0.024 43 1.246 1.21 1.33 0.023 68 1.241 1.21 1.33 0.021 19 1.246 1.21 1.26 0.014

(LCr/LaZ)/(LCr/LaM) 18 1.012 0.98 1.04 0.012 34 1.013 0.94 1.05 0.019 42 1.015 0.94 1.08 0.024 68 1.023 0.96 1.06 0.018 19 1.006 0.98 1.05 0.016

(ANc/LaZ)/(ANc/LaI) 18 0.435 0.42 0.45 0.006 34 0.433 0.42 0.45 0.009 43 0.436 0.40 0.46 0.013 73 0.434 0.42 0.46 0.009 19 0.427 0.41 0.44 0.010

CS1 18 11.168 10.84 11.52 0.189 34 11.130 10.67 11.97 0.298 44 11.431 10.94 12.03 0.278 66 11.103 10.64 11.90 0.261 19 10.730 10.15 11.02 0.211

CS2 18 20.813 20.39 21.21 0.228 32 20.478 20.15 20.89 0.199 42 20.659 20.04 21.19 0.276 68 20.502 19.87 21.11 0.261 19 20.163 19.72 20.59 0.205

CS3 18 16.935 16.73 17.33 0.159 32 16.760 16.37 17.09 0.173 40 16.738 16.30 17.43 0.250 73 16.756 16.23 17.19 0.186 19 16.394 16.05 16.75 0.173

CS4 18 17.716 17.44 18.03 0.193 34 17.515 17.18 17.93 0.194 37 17.762 17.18 18.44 0.264 74 17.580 17.14 18.10 0.204 19 17.179 16.64 17.51 0.221

CS2/CS1 18 1.864 1.83 1.92 0.025 30 1.844 1.73 1.93 0.050 41 1.808 1.72 1.87 0.045 57 1.853 1.74 1.94 0.042 19 1.880 1.82 1.98 0.037

CS3/CS4 18 0.956 0.94 0.97 0.006 32 0.957 0.94 0.97 0.006 34 0.946 0.93 0.96 0.007 71 0.953 0.93 0.97 0.007 19 0.954 0.94 0.97 0.005

CS2/CS3 18 1.229 1.22 1.24 0.008 32 1.222 1.21 1.24 0.008 39 1.234 1.21 1.26 0.010 67 1.224 1.20 1.25 0.010 19 1.230 1.21 1.25 0.009

CS2/CS4 18 1.175 1.16 1.19 0.008 32 1.169 1.16 1.18 0.005 35 1.166 1.14 1.18 0.010 67 1.166 1.14 1.18 0.009 19 1.174 1.16 1.21 0.011

CS3/CS1 18 1.517 1.48 1.56 0.022 30 1.509 1.42 1.57 0.039 39 1.468 1.38 1.52 0.038 61 1.513 1.42 1.59 0.034 19 1.528 1.48 1.60 0.031

(CS2/CS1)/(CS3/CS4) 18 1.950 1.91 2.00 0.027 30 1.928 1.81 2.04 0.056 33 1.921 1.83 1.99 0.041 55 1.944 1.81 2.03 0.047 19 1.970 1.90 2.07 0.041

(CS2/CS4)/(CS3/CS1) 18 0.775 0.76 0.80 0.012 30 0.776 0.74 0.83 0.021 33 0.792 0.76 0.84 0.020 55 0.770 0.73 0.82 0.019 19 0.768 0.74 0.81 0.018

Page 45: Hidden diversity in bent-winged bats (Chiroptera ...

19

Table S2. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD

LCr 93 15.148 14.71 15.74 0.217 14 15.497 15.11 15.84 0.222 28 15.636 15.03 16.13 0.254 10 15.058 14.71 15.50 0.229

LCb 93 14.653 14.25 15.29 0.223 14 15.049 14.69 15.33 0.211 28 15.296 14.86 15.65 0.213 10 14.493 13.93 15.01 0.293

LaZ 92 8.531 8.11 8.88 0.145 14 8.806 8.60 9.15 0.143 28 8.919 8.57 9.30 0.184 10 8.412 8.18 8.58 0.145

LaI 93 3.675 3.41 3.97 0.084 14 3.686 3.55 3.88 0.096 28 3.928 3.76 4.15 0.083 11 3.711 3.58 3.96 0.108

LaInf 93 3.987 3.74 4.18 0.086 14 4.039 3.94 4.18 0.080 28 4.124 3.82 4.43 0.141 12 3.712 3.46 3.87 0.115

LaN 93 7.986 7.70 8.30 0.126 14 8.129 7.95 8.32 0.125 28 8.178 7.75 8.51 0.159 11 7.719 7.58 8.13 0.162

LaM 93 8.697 8.27 9.05 0.142 14 8.914 8.74 9.09 0.092 28 8.840 8.51 9.21 0.168 10 8.299 7.97 8.68 0.224

ANc 93 6.292 6.02 6.57 0.112 14 6.400 6.21 6.91 0.179 28 6.491 5.97 6.77 0.177 10 6.149 6.01 6.36 0.121

ACr 90 7.819 7.14 8.11 0.188 14 8.005 7.76 8.34 0.162 28 7.779 6.99 8.36 0.434 11 7.504 7.13 7.87 0.215

LMd 91 10.763 10.32 11.17 0.155 14 11.072 10.74 11.23 0.149 28 11.304 11.00 11.60 0.166 11 10.645 10.29 11.04 0.208

ACo 91 2.568 2.35 2.93 0.113 14 2.621 2.48 2.73 0.074 28 2.647 2.44 3.04 0.117 11 2.412 2.24 2.65 0.115

CC 91 4.555 4.28 4.81 0.100 14 4.624 4.41 4.78 0.135 27 4.720 4.45 4.91 0.118 12 4.280 3.69 4.51 0.220

P4P

4 91 5.508 5.18 5.80 0.103 14 5.610 5.38 5.77 0.108 28 5.782 5.23 6.03 0.148 12 5.327 4.79 5.52 0.197

M3M

3 92 6.294 6.02 6.63 0.108 14 6.443 6.16 6.59 0.123 28 6.713 6.34 6.96 0.135 12 6.241 5.80 6.52 0.229

I1M

3 92 6.884 6.65 7.10 0.097 14 7.025 6.82 7.23 0.105 28 7.243 6.85 7.45 0.137 12 6.812 6.50 7.09 0.182

CM3 93 5.851 5.68 6.06 0.096 14 6.001 5.85 6.08 0.077 28 6.117 5.89 6.34 0.107 12 5.793 5.55 6.03 0.154

P4M

3 93 4.293 4.08 4.45 0.076 14 4.387 4.26 4.47 0.067 28 4.423 4.15 4.55 0.094 12 4.197 3.95 4.34 0.138

M1M

3 93 3.264 3.07 3.49 0.082 14 3.360 3.20 3.45 0.090 28 3.373 3.26 3.51 0.073 12 3.199 3.02 3.34 0.094

CP4 92 2.887 2.71 3.08 0.077 14 2.889 2.74 3.02 0.094 28 3.031 2.84 3.15 0.087 12 2.826 2.56 2.98 0.113

I1M3 90 7.174 6.95 7.39 0.103 14 7.353 7.04 7.60 0.139 28 7.569 7.34 7.93 0.145 12 7.123 6.91 7.32 0.147

CM3 89 6.159 6.01 6.41 0.079 14 6.286 6.11 6.46 0.092 28 6.507 6.31 6.74 0.113 12 6.119 5.81 6.39 0.158

P4M3 90 4.408 4.18 4.57 0.070 14 4.538 4.43 4.72 0.082 28 4.581 4.33 4.75 0.107 12 4.372 4.14 4.55 0.112

M1M3 90 3.670 3.54 3.84 0.070 14 3.800 3.68 3.94 0.069 28 3.793 3.58 3.99 0.105 12 3.597 3.47 3.84 0.101

CP4 89 2.384 2.23 2.55 0.080 14 2.344 2.23 2.44 0.060 28 2.570 2.41 2.96 0.109 12 2.333 2.20 2.48 0.091

M3M

3/M

1M

3 92 1.929 1.81 2.04 0.047 14 1.918 1.87 1.97 0.033 28 1.991 1.93 2.05 0.034 12 1.951 1.85 2.06 0.060

M3M

3/P

4M

3 92 1.466 1.40 1.51 0.025 14 1.469 1.42 1.52 0.023 28 1.518 1.46 1.60 0.029 12 1.487 1.43 1.58 0.039

M3M

3/CM

3 92 1.076 1.04 1.11 0.019 14 1.074 1.02 1.09 0.020 28 1.098 1.05 1.13 0.020 12 1.077 1.02 1.12 0.029

M3M

3/I

1M

3 91 0.915 0.89 0.95 0.014 14 0.917 0.89 0.93 0.013 28 0.927 0.88 0.99 0.020 12 0.916 0.88 0.96 0.025

M3M

3/P

4P

4 91 1.143 1.09 1.18 0.020 14 1.149 1.11 1.18 0.018 28 1.161 1.11 1.21 0.020 12 1.172 1.12 1.22 0.027

M3M

3/CC 91 1.383 1.33 1.45 0.027 14 1.394 1.36 1.44 0.022 27 1.423 1.37 1.52 0.030 12 1.460 1.39 1.58 0.051

P4P

4/CC 90 1.210 1.15 1.26 0.022 14 1.214 1.18 1.30 0.034 27 1.226 1.17 1.29 0.029 12 1.246 1.20 1.30 0.028

I1M

3/I1M3 89 0.959 0.93 1.00 0.014 14 0.956 0.93 0.98 0.015 28 0.957 0.91 1.00 0.022 12 0.956 0.93 0.98 0.015

LMd/Aco 91 4.197 3.72 4.47 0.157 14 4.226 4.07 4.47 0.117 28 4.278 3.80 4.70 0.181 11 4.421 4.03 4.69 0.200

LMd/I1M3 90 1.501 1.42 1.55 0.019 14 1.506 1.48 1.53 0.015 28 1.494 1.44 1.53 0.024 11 1.491 1.46 1.52 0.020

LMd/CM3 89 1.748 1.66 1.80 0.023 14 1.761 1.73 1.79 0.016 28 1.737 1.66 1.78 0.024 11 1.735 1.69 1.77 0.024

LMd/P4M3 90 2.443 2.29 2.55 0.046 14 2.440 2.34 2.49 0.042 28 2.468 2.35 2.59 0.054 11 2.431 2.39 2.49 0.034

LMd/M1M3 90 2.934 2.77 3.04 0.063 14 2.914 2.80 2.98 0.051 28 2.982 2.79 3.18 0.081 11 2.957 2.88 3.04 0.056

Page 46: Hidden diversity in bent-winged bats (Chiroptera ...

20

Table S2. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD

LCr/LaM 93 1.742 1.69 1.80 0.020 14 1.738 1.71 1.78 0.020 28 1.769 1.72 1.85 0.031 10 1.815 1.77 1.87 0.034

LCr/LaZ 92 1.776 1.71 1.84 0.027 14 1.760 1.73 1.82 0.024 28 1.754 1.69 1.82 0.030 10 1.790 1.76 1.83 0.028

LCr/LaI 93 4.124 3.74 4.37 0.098 14 4.207 4.04 4.42 0.105 28 3.982 3.78 4.18 0.103 10 4.056 3.91 4.20 0.084

LCr/LaInf 93 3.801 3.58 3.98 0.079 14 3.838 3.73 3.96 0.070 28 3.794 3.58 3.93 0.096 10 4.028 3.90 4.22 0.097

LCr/ANc 93 2.408 2.33 2.50 0.035 14 2.423 2.25 2.50 0.061 28 2.410 2.33 2.53 0.050 10 2.449 2.40 2.51 0.039

LCr/ACr 90 1.939 1.85 2.13 0.051 14 1.936 1.88 1.97 0.034 28 2.017 1.87 2.26 0.126 10 1.997 1.97 2.09 0.038

LCr/LMd 91 1.407 1.38 1.47 0.018 14 1.400 1.38 1.42 0.014 28 1.383 1.36 1.42 0.015 10 1.410 1.40 1.42 0.009

LaM/LaZ 92 1.019 0.99 1.05 0.014 14 1.012 0.97 1.04 0.016 28 0.991 0.95 1.03 0.019 10 0.987 0.96 1.03 0.022

LaM/LaInf 93 2.182 2.07 2.29 0.047 14 2.208 2.13 2.28 0.045 28 2.145 2.02 2.26 0.068 10 2.220 2.15 2.37 0.062

LaM/ACr 90 1.113 1.07 1.22 0.029 14 1.114 1.08 1.15 0.025 28 1.140 1.07 1.29 0.063 10 1.101 1.08 1.13 0.019

LaM/ANc 93 1.382 1.33 1.43 0.020 14 1.394 1.30 1.45 0.037 28 1.362 1.30 1.43 0.035 10 1.350 1.33 1.37 0.015

ACr/ANc 90 1.242 1.14 1.29 0.029 14 1.251 1.15 1.30 0.035 28 1.199 1.07 1.29 0.067 10 1.226 1.19 1.25 0.018

ACr/LaI 90 2.128 1.95 2.30 0.058 14 2.173 2.10 2.28 0.057 28 1.981 1.75 2.15 0.112 11 2.023 1.94 2.10 0.049

ACr/LaZ 89 0.917 0.85 0.97 0.022 14 0.909 0.88 0.94 0.017 28 0.872 0.79 0.93 0.047 10 0.896 0.87 0.93 0.016

LaZ/LCb 92 0.582 0.56 0.60 0.008 14 0.585 0.57 0.60 0.008 28 0.583 0.56 0.61 0.010 10 0.581 0.56 0.60 0.012

LCr/LCb 93 1.034 1.00 1.05 0.007 14 1.030 1.02 1.04 0.005 28 1.022 1.01 1.04 0.008 10 1.039 1.02 1.06 0.008

ANc/LaZ 92 0.738 0.71 0.77 0.014 14 0.727 0.70 0.80 0.023 28 0.728 0.69 0.76 0.017 10 0.731 0.71 0.75 0.013

ANc/LaI 93 1.713 1.55 1.81 0.039 14 1.737 1.67 1.86 0.051 28 1.653 1.53 1.72 0.049 10 1.656 1.61 1.71 0.034

(M3M

3/P

4M

3)/(M

3M

3/M

1M

3) 92 0.760 0.72 0.82 0.017 14 0.766 0.74 0.79 0.015 28 0.763 0.73 0.79 0.014 12 0.762 0.75 0.79 0.012

(M3M

3/I

1M

3)/(M

3M

3/CC) 90 0.662 0.63 0.69 0.014 14 0.658 0.64 0.67 0.014 27 0.652 0.62 0.67 0.011 12 0.628 0.55 0.66 0.030

(M3M

3/I

1M

3)/(M

3M

3/P

4P

4) 90 0.801 0.76 0.83 0.014 14 0.799 0.78 0.84 0.014 28 0.798 0.74 0.84 0.018 12 0.782 0.72 0.81 0.025

(M3M

3/I

1M

3)/(P

4P

4/CC) 89 0.756 0.71 0.80 0.018 14 0.756 0.71 0.79 0.025 27 0.757 0.71 0.78 0.020 12 0.736 0.68 0.79 0.033

(LMd/ACo)/(LMd/I1M3) 90 2.797 2.44 3.01 0.112 14 2.806 2.68 2.96 0.076 28 2.864 2.50 3.15 0.124 11 2.966 2.68 3.21 0.162

(LMd/ACo)/(LMd/CM3) 89 2.400 2.10 2.60 0.098 14 2.400 2.31 2.54 0.066 28 2.463 2.18 2.69 0.104 11 2.550 2.32 2.76 0.130

(LMd/ACo)/(LMd/P4M3) 90 1.719 1.48 1.88 0.076 14 1.732 1.67 1.84 0.052 28 1.734 1.53 1.86 0.073 11 1.819 1.62 1.96 0.094

(LMd/ACo)/(LMd/M1M3) 90 1.431 1.23 1.59 0.067 14 1.451 1.39 1.56 0.054 28 1.435 1.26 1.54 0.060 11 1.496 1.34 1.63 0.082

(LMd/ACo)/(LCr/ACr) 89 2.165 1.85 2.40 0.102 14 2.184 2.07 2.36 0.085 28 2.126 1.95 2.32 0.112 10 2.220 2.02 2.34 0.100

(M3M

3/I

1M

3)/(LCr/LaM) 91 0.525 0.50 0.55 0.011 14 0.528 0.51 0.54 0.011 28 0.524 0.49 0.56 0.015 10 0.508 0.49 0.53 0.013

(M3M

3/CC)/(LaM/LaZ) 90 1.356 1.29 1.45 0.029 14 1.377 1.32 1.42 0.029 27 1.436 1.36 1.54 0.043 10 1.475 1.42 1.53 0.037

(LaM/LaInf)/(ACr/ANc) 90 1.758 1.63 1.97 0.059 14 1.766 1.70 1.98 0.074 28 1.794 1.65 1.98 0.097 10 1.810 1.74 1.91 0.059

(LaM/LaZ)/(ACr/ANc) 89 0.821 0.77 0.91 0.024 14 0.810 0.77 0.90 0.032 28 0.830 0.77 0.94 0.049 10 0.805 0.77 0.84 0.025

(LaM/LaInf)/(LCr/LaM) 93 1.253 1.16 1.34 0.035 14 1.270 1.20 1.32 0.035 28 1.213 1.11 1.30 0.053 10 1.224 1.18 1.32 0.051

(LaM/ANc)/(LCr/ANc) 90 0.713 0.66 0.75 0.019 14 0.720 0.66 0.75 0.020 28 0.678 0.59 0.74 0.045 10 0.676 0.65 0.69 0.015

(LCr/LaInf)/(LCr/ANc) 93 1.579 1.49 1.67 0.037 14 1.585 1.54 1.75 0.053 28 1.575 1.48 1.65 0.042 10 1.645 1.59 1.73 0.045

(LCr/LaZ)/(LCr//ANc) 92 0.738 0.71 0.77 0.014 14 0.727 0.70 0.80 0.023 28 0.728 0.69 0.76 0.017 10 0.731 0.71 0.75 0.013

(LCr/ANc)/(LaZ/LCb) 92 4.135 3.90 4.34 0.093 14 4.141 3.91 4.35 0.122 28 4.135 3.80 4.40 0.129 10 4.221 4.07 4.47 0.133

(LCr/LCb)/(ACr/ANc) 90 0.833 0.80 0.91 0.021 14 0.824 0.78 0.90 0.026 28 0.856 0.78 0.95 0.051 10 0.847 0.83 0.87 0.013

(LCr/LaM)/(M3M

3/I

1M

3) 91 1.904 1.82 1.99 0.042 14 1.896 1.84 1.96 0.038 28 1.909 1.79 2.04 0.053 10 1.968 1.90 2.06 0.052

(LCr/LaM)/(LCr/ANc) 93 0.724 0.70 0.75 0.011 14 0.718 0.69 0.77 0.020 28 0.734 0.70 0.77 0.019 10 0.741 0.73 0.75 0.008

Page 47: Hidden diversity in bent-winged bats (Chiroptera ...

21

Table S2. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD

(LCr/LaM)/(LCr/LMd) 91 1.238 1.18 1.29 0.016 14 1.242 1.21 1.26 0.014 28 1.279 1.24 1.34 0.024 10 1.287 1.25 1.32 0.024

(LCr/LaZ)/(LCr/LaM) 92 1.019 0.99 1.05 0.014 14 1.012 0.97 1.04 0.016 28 0.991 0.95 1.03 0.019 10 0.987 0.96 1.03 0.022

(ANc/LaZ)/(ANc/LaI) 92 0.431 0.41 0.46 0.009 14 0.419 0.40 0.43 0.008 28 0.441 0.41 0.46 0.010 10 0.442 0.42 0.47 0.013

CS1 85 11.005 10.45 11.89 0.312 13 11.153 10.90 11.60 0.210 23 11.551 11.03 12.29 0.291 11 10.677 10.39 10.87 0.157

CS2 91 20.437 19.85 21.37 0.291 14 20.830 20.17 21.39 0.342 28 21.076 20.42 21.74 0.311 10 20.073 19.52 20.73 0.327

CS3 92 16.621 16.13 17.39 0.245 14 17.045 16.63 17.42 0.243 28 17.227 16.80 17.70 0.243 10 16.548 16.02 17.06 0.285

CS4 92 17.321 16.56 17.99 0.260 14 17.838 17.42 18.33 0.306 28 17.902 17.25 18.39 0.293 11 17.278 16.79 17.89 0.302

CS2/CS1 84 1.859 1.73 1.95 0.049 13 1.870 1.80 1.96 0.037 23 1.827 1.70 1.91 0.046 10 1.876 1.85 1.92 0.023

CS3/CS4 92 0.960 0.94 0.98 0.007 14 0.956 0.94 0.97 0.008 28 0.962 0.95 0.97 0.008 10 0.956 0.94 0.97 0.008

CS2/CS3 91 1.230 1.21 1.25 0.010 14 1.222 1.21 1.24 0.009 28 1.223 1.21 1.24 0.010 10 1.213 1.20 1.24 0.011

CS2/CS4 91 1.180 1.15 1.21 0.012 14 1.168 1.15 1.19 0.010 28 1.177 1.16 1.19 0.011 10 1.159 1.14 1.17 0.007

CS3/CS1 85 1.511 1.42 1.58 0.038 13 1.529 1.47 1.58 0.026 23 1.492 1.38 1.58 0.039 10 1.547 1.50 1.58 0.025

(CS2/CS1)/(CS3/CS4) 84 1.937 1.79 2.04 0.056 13 1.958 1.86 2.08 0.052 23 1.898 1.79 1.97 0.049 10 1.963 1.94 2.01 0.023

(CS2/CS4)/(CS3/CS1) 84 0.782 0.75 0.84 0.023 13 0.764 0.74 0.80 0.017 23 0.790 0.74 0.84 0.022 10 0.750 0.73 0.78 0.014

Page 48: Hidden diversity in bent-winged bats (Chiroptera ...

22

Table S3. Dental dimensions (in mm) of Miniopterus examined in this study. Codes in brackets stand for the respective genetic lineage or

sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. M= mean, min = minimum value, max = maximum value,

and SD = standard deviation.

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

LI1 18 0.490 0.44 0.53 0.026 27 0.511 0.45 0.63 0.040 45 0.499 0.40 0.58 0.031 80 0.495 0.40 0.55 0.031 19 0.478 0.43 0.50 0.021

LI2 18 0.615 0.48 0.73 0.059 27 0.624 0.55 0.65 0.034 45 0.604 0.43 0.70 0.059 81 0.619 0.53 0.70 0.037 19 0.650 0.65 0.65 0.000

WI1 18 0.447 0.43 0.48 0.021 27 0.451 0.41 0.55 0.028 45 0.449 0.38 0.53 0.033 80 0.442 0.40 0.51 0.023 19 0.432 0.41 0.48 0.017

WI2 18 0.575 0.48 0.66 0.042 27 0.592 0.53 0.64 0.028 45 0.595 0.55 0.66 0.025 81 0.578 0.45 0.65 0.029 19 0.567 0.51 0.63 0.026

LCsup 18 1.055 1.00 1.10 0.031 28 1.084 1.03 1.13 0.026 44 1.062 0.98 1.15 0.036 81 1.071 1.00 1.15 0.037 19 1.052 1.00 1.13 0.031

WCsup 18 0.883 0.81 0.93 0.035 28 0.896 0.81 0.98 0.032 44 0.840 0.78 0.90 0.030 81 0.833 0.76 0.93 0.033 19 0.825 0.78 0.85 0.024

LP2 18 0.841 0.75 0.90 0.046 36 0.816 0.78 0.88 0.027 48 0.829 0.73 0.93 0.047 82 0.829 0.78 0.94 0.036 19 0.818 0.78 0.88 0.025

WP2 18 1.131 1.03 1.20 0.048 36 1.138 1.08 1.19 0.031 48 1.087 0.90 1.16 0.051 82 1.094 1.00 1.20 0.040 19 1.083 1.04 1.13 0.027

WP4 18 1.390 1.31 1.46 0.041 36 1.444 1.38 1.51 0.032 48 1.328 1.15 1.48 0.083 82 1.377 1.23 1.50 0.053 19 1.389 1.26 1.45 0.046

LP4 18 1.220 1.10 1.38 0.068 36 1.283 1.18 1.35 0.042 48 1.231 1.13 1.38 0.066 82 1.231 1.13 1.38 0.057 19 1.181 1.15 1.23 0.023

LoM1 18 1.438 1.35 1.50 0.039 35 1.473 1.43 1.55 0.034 48 1.447 1.35 1.53 0.039 83 1.452 1.24 1.55 0.043 19 1.439 1.40 1.48 0.021

LiM1 18 0.924 0.88 1.03 0.035 35 0.983 0.93 1.05 0.031 48 0.947 0.83 1.04 0.049 83 0.984 0.85 1.09 0.041 19 0.970 0.90 1.03 0.036

W1M1 18 1.976 1.88 2.10 0.059 35 2.050 1.96 2.18 0.044 48 1.996 1.83 2.09 0.065 83 2.020 1.78 2.19 0.057 19 1.974 1.93 2.10 0.044

W2M1 18 1.631 1.58 1.71 0.046 35 1.689 1.63 1.78 0.032 48 1.619 1.49 1.83 0.060 83 1.648 1.55 1.74 0.041 19 1.614 1.55 1.70 0.048

W3M1 18 1.796 1.65 1.88 0.054 35 1.822 1.75 1.93 0.039 48 1.766 1.60 2.00 0.071 83 1.783 1.68 1.90 0.046 19 1.741 1.65 1.85 0.052

LoM2 18 1.440 1.39 1.48 0.028 36 1.429 1.38 1.50 0.033 48 1.426 1.35 1.50 0.035 82 1.422 1.29 1.58 0.040 19 1.399 1.35 1.48 0.031

LiM2 18 0.900 0.85 0.95 0.027 36 0.889 0.83 0.98 0.036 48 0.888 0.83 0.93 0.029 82 0.889 0.79 0.96 0.030 19 0.889 0.85 0.98 0.031

W1M2 18 1.972 1.93 2.04 0.035 36 1.981 1.90 2.06 0.037 48 1.948 1.88 2.03 0.040 82 1.950 1.85 2.04 0.042 19 1.912 1.85 1.95 0.027

W2M2 18 1.812 1.75 1.88 0.038 36 1.825 1.78 1.88 0.028 48 1.796 1.61 2.04 0.059 82 1.802 1.74 1.89 0.034 19 1.741 1.69 1.79 0.032

W3M3 18 1.930 1.83 2.03 0.057 36 1.951 1.88 2.05 0.041 48 1.910 1.80 2.00 0.047 82 1.916 1.78 2.03 0.045 19 1.870 1.80 2.03 0.050

WM3 18 1.748 1.65 1.83 0.048 36 1.758 1.70 1.81 0.024 48 1.742 1.65 1.83 0.039 81 1.754 1.66 1.83 0.032 19 1.707 1.65 1.76 0.026

LM3 18 0.803 0.78 0.83 0.015 36 0.795 0.76 0.85 0.018 48 0.790 0.75 0.85 0.019 81 0.793 0.75 0.89 0.021 19 0.778 0.75 0.80 0.014

LI1 18 0.400 0.36 0.45 0.023 23 0.399 0.35 0.48 0.027 41 0.413 0.38 0.60 0.041 75 0.397 0.35 0.48 0.020 19 0.397 0.38 0.44 0.019

LI2 18 0.428 0.35 0.45 0.026 28 0.404 0.35 0.48 0.024 45 0.407 0.38 0.45 0.018 75 0.403 0.38 0.43 0.016 19 0.389 0.35 0.41 0.016

LI3 18 0.531 0.36 0.58 0.047 30 0.545 0.38 0.58 0.037 45 0.555 0.50 0.60 0.027 75 0.555 0.51 0.63 0.020 19 0.527 0.49 0.55 0.017

WI1 18 0.236 0.20 0.26 0.021 24 0.255 0.23 0.30 0.022 41 0.242 0.20 0.29 0.019 75 0.246 0.21 0.28 0.016 19 0.241 0.23 0.28 0.017

WI2 18 0.393 0.35 0.43 0.021 28 0.400 0.35 0.55 0.034 45 0.396 0.35 0.43 0.020 75 0.397 0.25 0.48 0.025 19 0.385 0.35 0.40 0.019

WI3 18 0.530 0.50 0.55 0.019 30 0.529 0.50 0.60 0.023 45 0.536 0.38 0.63 0.032 75 0.539 0.45 0.58 0.019 19 0.519 0.49 0.55 0.016

LCinf 18 0.726 0.70 0.76 0.020 31 0.754 0.70 0.84 0.031 45 0.736 0.63 0.85 0.047 75 0.723 0.64 0.79 0.029 19 0.717 0.68 0.78 0.021

WCinf 18 0.829 0.78 0.88 0.032 31 0.821 0.79 0.86 0.022 45 0.799 0.74 0.86 0.024 75 0.804 0.68 0.85 0.027 19 0.789 0.78 0.81 0.013

LP2 18 0.594 0.55 0.64 0.023 28 0.587 0.55 0.63 0.021 46 0.567 0.53 0.60 0.022 75 0.566 0.53 0.63 0.022 19 0.551 0.53 0.58 0.020

WP2 18 0.651 0.63 0.68 0.017 28 0.626 0.59 0.65 0.017 46 0.645 0.60 0.71 0.028 75 0.643 0.53 0.69 0.027 19 0.626 0.59 0.68 0.020

LP3 18 0.643 0.60 0.70 0.025 32 0.627 0.58 0.68 0.028 47 0.625 0.55 0.68 0.025 77 0.614 0.48 0.71 0.033 19 0.595 0.53 0.68 0.032

WP3 18 0.673 0.60 0.73 0.034 31 0.628 0.55 0.68 0.029 47 0.661 0.59 0.75 0.035 77 0.650 0.45 0.73 0.041 19 0.641 0.60 0.68 0.020

WP4 18 0.791 0.73 0.85 0.029 34 0.762 0.70 0.85 0.030 48 0.781 0.68 0.85 0.035 77 0.767 0.63 0.88 0.040 19 0.759 0.63 0.79 0.036

LP4 18 0.607 0.55 0.68 0.037 34 0.613 0.51 0.75 0.055 48 0.639 0.54 0.71 0.041 76 0.603 0.50 0.78 0.050 19 0.605 0.54 0.68 0.039

LM1 18 1.433 1.40 1.48 0.026 36 1.475 1.40 1.56 0.032 48 1.445 1.33 1.53 0.044 78 1.467 1.35 1.53 0.031 19 1.468 1.44 1.50 0.020

Page 49: Hidden diversity in bent-winged bats (Chiroptera ...

23

Table S3. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

W1M118 0.892 0.85 0.95 0.031 36 0.857 0.79 0.91 0.032 48 0.889 0.83 1.00 0.031 78 0.862 0.79 0.91 0.027 19 0.866 0.83 0.91 0.028

W2M1 18 0.897 0.85 0.95 0.026 36 0.868 0.80 0.93 0.029 48 0.902 0.83 1.00 0.034 78 0.879 0.78 0.98 0.030 19 0.884 0.85 0.95 0.025

W3M1 18 0.974 0.93 1.05 0.033 36 0.958 0.90 1.13 0.035 48 0.986 0.91 1.13 0.045 78 0.975 0.85 1.31 0.051 19 0.964 0.93 1.00 0.024

LM2 18 1.396 1.35 1.45 0.025 36 1.408 1.34 1.48 0.028 48 1.387 1.30 1.56 0.047 78 1.396 1.30 1.48 0.032 19 1.372 1.30 1.40 0.025

W1M2 18 0.856 0.80 0.90 0.025 36 0.815 0.78 0.88 0.027 48 0.850 0.75 0.93 0.041 78 0.834 0.75 0.89 0.031 19 0.831 0.78 0.89 0.026

W2M2 18 0.847 0.80 0.88 0.023 36 0.822 0.78 0.88 0.021 48 0.845 0.73 0.93 0.041 78 0.838 0.75 0.90 0.029 19 0.841 0.80 0.88 0.019

LM3 18 1.219 1.15 1.29 0.036 36 1.273 1.19 1.35 0.032 48 1.253 1.19 1.33 0.032 78 1.254 1.18 1.33 0.027 19 1.235 1.15 1.31 0.035

WM3 18 0.666 0.60 0.73 0.029 36 0.634 0.60 0.68 0.019 48 0.659 0.59 0.78 0.036 78 0.642 0.60 0.73 0.024 19 0.641 0.59 0.70 0.024

WI1/LI

1 18 0.913 0.83 1.00 0.044 27 0.888 0.72 1.10 0.084 45 0.905 0.70 1.27 0.094 80 0.897 0.76 1.19 0.077 19 0.905 0.83 1.00 0.052

WI2/LI

2 18 0.939 0.84 1.07 0.071 27 0.950 0.88 1.16 0.062 45 0.996 0.82 1.47 0.118 81 0.936 0.72 1.14 0.064 19 0.872 0.79 0.96 0.040

WCsup

/LCsup 18 0.837 0.79 0.90 0.029 28 0.826 0.74 0.89 0.031 44 0.792 0.70 0.85 0.033 81 0.778 0.68 0.88 0.032 19 0.785 0.73 0.83 0.025

HCsup

/WCsup

/LCsup 4 1.841 1.69 2.11 0.189 19 1.609 1.38 1.92 0.112 29 1.753 1.57 2.00 0.097 57 1.726 0.00 2.06 0.267 15 1.764 1.40 2.01 0.165

WP2/LP

2 18 1.346 1.26 1.45 0.049 36 1.395 1.31 1.48 0.045 48 1.317 1.03 1.57 0.109 82 1.321 1.17 1.46 0.057 19 1.324 1.26 1.43 0.052

HP2/WP

2/LP

2 4 0.647 0.57 0.72 0.061 25 0.610 0.51 0.68 0.055 33 0.601 0.49 0.73 0.065 58 0.629 0.43 0.79 0.076 15 0.592 0.49 0.70 0.053

WP4/LP

4 18 1.142 1.05 1.23 0.049 36 1.127 1.04 1.23 0.046 48 1.080 0.92 1.18 0.056 82 1.120 1.00 1.29 0.054 19 1.176 1.07 1.26 0.045

HP4/WP

4/LP

4 4 0.945 0.92 0.97 0.024 25 0.851 0.77 0.93 0.044 33 0.912 0.79 1.03 0.071 58 0.913 0.70 1.08 0.071 15 0.860 0.49 1.06 0.171

LoM1/LiM

1 18 1.559 1.44 1.69 0.064 35 1.500 1.38 1.61 0.054 48 1.533 1.36 1.79 0.086 83 1.478 1.32 1.75 0.070 19 1.485 1.39 1.57 0.059

LoM2/LiM

2 18 1.601 1.50 1.71 0.055 36 1.610 1.44 1.74 0.063 48 1.607 1.46 1.79 0.064 82 1.601 1.45 1.75 0.065 19 1.575 1.44 1.69 0.056

WM3/LM

3 18 2.178 2.05 2.29 0.066 36 2.211 2.04 2.30 0.052 48 2.206 2.06 2.33 0.052 81 2.212 1.92 2.33 0.063 19 2.193 2.13 2.27 0.041

W2M1/LoM

1 18 1.134 1.07 1.21 0.039 35 1.147 1.08 1.19 0.027 48 1.119 1.04 1.23 0.042 83 1.135 1.04 1.30 0.038 19 1.122 1.06 1.21 0.040

W2M2/LoM

2 18 1.259 1.20 1.30 0.029 36 1.278 1.22 1.35 0.033 48 1.260 1.14 1.36 0.038 82 1.268 1.16 1.40 0.036 19 1.245 1.17 1.30 0.035

HCsup

/HP2 4 2.835 2.60 2.98 0.174 21 2.808 2.46 3.45 0.294 29 2.888 2.52 3.32 0.206 56 2.779 2.09 3.53 0.264 15 2.933 2.36 3.33 0.246

HCsup

/HP4 4 1.055 1.00 1.10 0.048 21 0.995 0.94 1.13 0.042 29 1.036 0.90 1.15 0.059 56 1.006 0.74 1.14 0.059 15 1.137 0.84 1.83 0.317

(HCsup

/WCsup

/LCsup

)/(HP2/WP

2/LP

2) 4 2.856 2.57 3.24 0.311 19 2.648 2.02 3.10 0.306 29 2.944 2.26 3.48 0.300 56 2.822 1.98 3.65 0.345 15 2.989 2.50 3.44 0.234

(HP4/WP

4/LP

4)/(HP

2/WP

2/LP

2) 4 1.472 1.29 1.68 0.163 25 1.404 1.23 1.58 0.108 33 1.535 1.18 2.10 0.214 58 1.466 1.15 1.80 0.160 15 1.462 0.83 1.79 0.304

(W2M1/LoM

1)/(WM

3/LM

3) 18 0.521 0.49 0.57 0.019 35 0.519 0.49 0.56 0.015 48 0.508 0.46 0.58 0.023 81 0.514 0.47 0.60 0.023 19 0.512 0.48 0.55 0.019

(W2M1/LoM

1)/(WP

4/LP

4) 18 0.995 0.91 1.06 0.044 35 1.021 0.92 1.12 0.047 48 1.039 0.93 1.23 0.067 82 1.015 0.89 1.18 0.052 19 0.955 0.88 1.03 0.047

(W2M1/LoM

1)/(WP

2/LP

2) 18 0.844 0.76 0.95 0.053 35 0.823 0.75 0.90 0.034 48 0.855 0.70 1.02 0.069 82 0.861 0.77 0.98 0.047 19 0.849 0.77 0.97 0.053

(W2M1/LoM

1)/(WC

sup/LC

sup) 18 1.357 1.27 1.51 0.063 27 1.394 1.31 1.56 0.063 44 1.413 1.26 1.60 0.074 81 1.461 1.29 1.78 0.081 19 1.432 1.33 1.57 0.063

(WI1LI

1)/(WI

2LI

2) 18 0.630 0.51 1.08 0.123 26 0.617 0.52 0.87 0.074 45 0.630 0.37 0.89 0.092 80 0.613 0.43 0.81 0.062 19 0.560 0.47 0.63 0.038

(WCsup

LCsup

)/(WP2LP

2) 18 0.983 0.90 1.15 0.073 28 1.050 0.86 1.22 0.087 44 0.989 0.85 1.23 0.074 81 0.985 0.80 1.11 0.072 19 0.980 0.90 1.05 0.048

(WP4LP

4)/(WP

2LP

2) 18 1.794 1.54 2.20 0.188 36 1.999 1.74 2.25 0.118 48 1.828 1.34 2.32 0.231 82 1.874 1.55 2.29 0.166 19 1.852 1.67 2.00 0.084

(W2M1LiM

1)/(WM

3LM

3) 18 1.073 1.02 1.14 0.039 35 1.187 1.09 1.28 0.051 48 1.114 0.97 1.28 0.077 81 1.168 1.02 1.38 0.067 19 1.180 1.09 1.31 0.054

(W2M1LiM

1)/(W2M

2LiM

2) 18 0.923 0.89 0.96 0.020 35 1.022 0.88 1.12 0.054 48 0.961 0.83 1.07 0.056 82 1.012 0.85 1.18 0.054 19 1.012 0.90 1.09 0.049

(W2M1LiM

1)/(WC

supLC

sup) 18 1.620 1.53 1.83 0.079 27 1.713 1.54 1.98 0.104 44 1.723 1.42 1.99 0.144 81 1.827 1.58 2.11 0.120 19 1.807 1.66 2.01 0.086

(W2M1LiM

1)/(WP

4LP

4) 18 0.890 0.79 1.00 0.056 35 0.897 0.83 0.97 0.044 48 0.944 0.70 1.21 0.105 82 0.961 0.82 1.10 0.068 19 0.956 0.85 1.01 0.046

(W2M1LiM

1)/(WP

2LP

2) 18 1.590 1.38 1.81 0.123 35 1.788 1.58 2.07 0.098 48 1.706 1.41 1.99 0.127 82 1.795 1.42 2.10 0.136 19 1.770 1.56 1.90 0.099

Page 50: Hidden diversity in bent-winged bats (Chiroptera ...

24

Table S3. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

(W2M1LiM

1)/(WI

2LI

2) 18 4.344 3.45 7.16 0.832 27 4.526 4.02 5.74 0.381 45 4.307 3.34 5.43 0.406 81 4.574 3.79 5.90 0.427 19 4.261 3.59 5.00 0.320

LI1/WI1 18 1.707 1.43 2.00 0.175 23 1.569 1.33 1.78 0.136 41 1.713 1.36 2.40 0.205 75 1.616 1.36 2.00 0.126 19 1.654 1.45 1.94 0.154

LI2/WI2 18 1.093 0.88 1.29 0.089 28 1.014 0.73 1.21 0.096 45 1.029 0.88 1.18 0.061 75 1.019 0.87 1.60 0.084 19 1.014 0.88 1.14 0.064

LI3/WI3 18 1.002 0.71 1.15 0.090 30 1.033 0.70 1.15 0.090 45 1.041 0.80 1.50 0.100 75 1.030 0.95 1.39 0.057 19 1.016 0.89 1.07 0.047

WCsup/LCsup 18 1.142 1.05 1.21 0.051 31 1.091 0.98 1.21 0.049 45 1.089 0.98 1.32 0.074 75 1.114 0.87 1.27 0.059 19 1.102 1.00 1.19 0.040

HCinf/WCinf/LCinf 4 2.432 2.33 2.50 0.073 21 2.231 1.55 2.48 0.231 30 2.414 1.90 2.82 0.193 51 2.475 2.12 2.99 0.157 15 2.517 2.31 2.66 0.111

WP2/LP2 18 1.096 1.02 1.18 0.043 28 1.068 1.00 1.18 0.046 46 1.137 1.00 1.33 0.062 75 1.137 0.84 1.29 0.067 19 1.139 1.04 1.29 0.063

HP2/WP2/LP2 4 1.480 1.40 1.53 0.057 19 1.425 1.25 1.89 0.155 31 1.395 1.03 1.82 0.199 51 1.399 1.20 1.79 0.112 15 1.391 1.23 1.51 0.093

WP3/LP3 18 1.047 0.96 1.16 0.050 32 0.974 0.00 1.13 0.188 47 1.058 0.91 1.18 0.065 77 1.059 0.83 1.21 0.069 19 1.081 0.96 1.24 0.074

HP3/WP3/LP3 4 1.499 1.44 1.54 0.046 19 1.472 1.20 1.66 0.119 31 1.341 1.20 1.67 0.123 51 1.426 1.14 1.67 0.129 15 1.382 1.24 1.59 0.114

WP4/LP4 18 1.307 1.17 1.50 0.088 34 1.254 1.03 1.62 0.134 48 1.230 1.00 1.52 0.113 76 1.279 0.81 1.55 0.126 19 1.260 1.00 1.44 0.106

W2M1/W1M1 18 1.005 0.95 1.06 0.030 36 1.014 0.94 1.11 0.043 48 1.014 0.95 1.10 0.032 78 1.020 0.91 1.11 0.031 19 1.022 0.97 1.12 0.039

LM1/W2M1 18 1.599 1.50 1.68 0.051 36 1.701 1.51 1.88 0.079 48 1.604 1.50 1.76 0.065 78 1.669 1.51 1.87 0.062 19 1.661 1.53 1.74 0.050

W2M2/W1M2 18 0.990 0.97 1.00 0.013 36 1.009 0.96 1.10 0.026 48 0.995 0.86 1.07 0.041 78 1.005 0.94 1.11 0.028 19 1.013 0.96 1.13 0.034

LM2/W2M2 18 1.650 1.57 1.75 0.050 36 1.713 1.54 1.82 0.047 48 1.644 1.50 1.86 0.080 78 1.668 1.49 1.80 0.065 19 1.631 1.53 1.75 0.052

LM3/WM3 18 1.834 1.64 2.04 0.103 36 2.009 1.85 2.25 0.074 48 1.908 1.55 2.17 0.123 78 1.956 1.74 2.10 0.078 19 1.929 1.73 2.10 0.085

HCinf/HP2 4 2.627 2.40 2.90 0.224 20 2.699 1.91 3.31 0.335 30 2.847 2.26 3.68 0.338 51 2.854 2.42 3.39 0.175 15 2.971 2.67 3.38 0.220

HCinf/HP3 4 2.438 2.22 2.59 0.164 21 2.414 1.71 2.65 0.223 30 2.687 2.17 3.10 0.203 51 2.557 2.17 2.98 0.189 15 2.767 2.39 3.11 0.217

HCinf/HP4 4 1.631 1.53 1.79 0.126 20 1.617 1.05 2.59 0.275 30 1.723 1.53 2.05 0.138 51 1.648 1.43 1.90 0.100 15 1.692 1.37 1.88 0.143

(WP4/LP4)/(WP2/LP2) 18 1.194 1.05 1.31 0.082 27 1.191 0.95 1.49 0.145 46 1.086 0.83 1.35 0.102 74 1.126 0.94 1.33 0.098 19 1.106 0.96 1.26 0.072

(WCinf/LCinf)/(WP2/LP2) 18 1.043 0.96 1.12 0.041 28 1.026 0.91 1.12 0.056 45 0.961 0.74 1.17 0.088 75 0.983 0.81 1.12 0.070 19 0.970 0.86 1.14 0.069

(WCinf/LCinf)/(WP3/LP3) 18 1.093 0.99 1.20 0.062 30 1.089 0.93 1.31 0.081 45 1.032 0.86 1.27 0.088 75 1.057 0.87 1.38 0.086 19 1.024 0.88 1.15 0.080

(HCinf/WCinf/LCinf)/(HP2/WP2/LP2) 4 1.646 1.52 1.79 0.110 19 1.573 1.04 1.84 0.213 30 1.761 1.33 2.36 0.281 51 1.776 1.40 2.08 0.140 15 1.818 1.59 2.16 0.158

(HCinf/WCinf/LCinf)/(HP3/WP3/LP3) 4 1.622 1.61 1.64 0.014 19 1.517 1.05 1.94 0.197 30 1.815 1.34 2.20 0.227 51 1.746 1.42 2.12 0.160 15 1.834 1.51 2.08 0.170

(LM1/W2M1)/(LM3/WM3) 18 0.874 0.82 0.99 0.047 36 0.848 0.73 0.96 0.051 48 0.843 0.70 0.97 0.046 78 0.854 0.78 0.93 0.033 19 0.862 0.80 0.92 0.034

(LM1/W2M1)/(WP4/LP4) 18 1.228 1.08 1.35 0.080 34 1.368 0.98 1.71 0.166 48 1.315 1.04 1.63 0.133 76 1.319 1.06 1.97 0.151 19 1.328 1.15 1.71 0.129

(WI1LI1)/(WI2LI2) 18 0.564 0.47 0.69 0.070 23 0.635 0.45 0.79 0.082 41 0.627 0.50 1.00 0.088 75 0.614 0.50 1.03 0.077 19 0.642 0.51 0.73 0.060

(WI2LI2)/(WI3LI3) 18 0.604 0.48 0.80 0.073 28 0.572 0.45 1.09 0.113 45 0.545 0.45 0.76 0.063 75 0.536 0.36 0.71 0.049 19 0.549 0.47 0.61 0.042

(WCinfLCinf)/(WP2LP2) 18 1.561 1.41 1.82 0.118 28 1.686 1.50 2.01 0.102 45 1.616 1.28 2.01 0.152 75 1.600 1.35 1.83 0.101 19 1.644 1.48 1.79 0.082

(WCinfLCinf)/(WP3LP3) 18 1.398 1.19 1.63 0.123 30 1.574 1.32 1.88 0.112 45 1.432 1.18 1.75 0.140 75 1.469 1.25 2.45 0.161 19 1.489 1.37 1.65 0.077

(WCinfLCinf)/(WP4LP4) 18 1.261 1.07 1.53 0.117 30 1.350 0.96 1.69 0.157 45 1.190 0.96 1.48 0.116 74 1.267 0.97 1.59 0.133 19 1.242 1.08 1.44 0.108

(WP2LP2)/(WP4LP4) 18 0.810 0.71 0.95 0.074 27 0.799 0.58 0.98 0.092 46 0.739 0.59 0.88 0.073 74 0.793 0.66 1.00 0.082 19 0.756 0.66 0.88 0.061

(W1M1LM1)/(WCinfLCinf) 18 2.128 1.84 2.37 0.143 31 2.051 1.72 2.31 0.133 45 2.196 1.89 2.48 0.142 75 2.182 1.78 2.66 0.142 19 2.247 2.03 2.41 0.116

(W1M1LM1)/(WP2LP2) 18 3.311 3.01 3.69 0.183 28 3.451 3.05 3.82 0.196 46 3.531 3.04 4.17 0.220 75 3.483 3.02 3.94 0.201 19 3.692 3.36 4.09 0.215

(W1M1LM1)/(WP3LP3) 18 2.963 2.46 3.29 0.180 31 3.230 2.87 4.01 0.264 47 3.121 2.68 3.65 0.199 77 3.194 2.72 5.05 0.338 19 3.346 2.77 3.81 0.228

(W1M1LM1)/(WP4LP4) 18 2.675 2.30 3.11 0.207 34 2.730 2.16 3.24 0.249 48 2.588 2.27 3.18 0.202 76 2.759 2.23 3.65 0.271 19 2.789 2.33 3.28 0.254

(W1M1LM1)/(W1M2LM2) 18 1.071 0.97 1.14 0.049 36 1.103 0.97 1.19 0.059 48 1.093 0.93 1.21 0.057 78 1.087 0.96 1.22 0.048 19 1.116 1.04 1.23 0.049

Page 51: Hidden diversity in bent-winged bats (Chiroptera ...

25

Table S3. (continued)

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

(W1M1LM1)/(WM3LM3) 18 1.580 1.41 1.80 0.110 36 1.569 1.40 1.77 0.085 48 1.560 1.42 1.78 0.071 78 1.574 1.38 1.72 0.079 19 1.611 1.43 1.86 0.123

HI2 4 0.638 0.60 0.68 0.043 19 0.649 0.63 0.73 0.028 30 0.616 0.50 0.69 0.047 57 0.646 0.55 0.73 0.039 15 0.571 0.50 0.64 0.047

HI1 4 0.597 0.55 0.65 0.054 19 0.579 0.38 0.70 0.069 30 0.549 0.45 0.65 0.058 56 0.602 0.45 0.70 0.056 15 0.574 0.50 0.63 0.037

HCsup 4 1.653 1.63 1.71 0.041 21 1.573 1.45 1.93 0.106 29 1.547 1.33 1.69 0.074 56 1.550 1.15 1.70 0.092 15 1.520 1.30 1.63 0.097

HP3 4 0.584 0.55 0.63 0.031 25 0.568 0.48 0.65 0.047 33 0.535 0.43 0.63 0.049 58 0.561 0.43 0.65 0.053 15 0.521 0.45 0.60 0.045

HP4 4 1.569 1.48 1.65 0.072 25 1.586 1.44 1.71 0.065 33 1.497 1.35 1.60 0.071 58 1.543 1.28 1.68 0.071 15 1.407 0.83 1.65 0.279

HI1 4 0.294 0.28 0.33 0.024 15 0.287 0.25 0.31 0.017 28 0.275 0.23 0.30 0.018 51 0.296 0.25 0.63 0.050 15 0.268 0.25 0.30 0.016

HI2 4 0.316 0.30 0.35 0.024 17 0.313 0.28 0.35 0.020 30 0.288 0.24 0.33 0.020 51 0.306 0.25 0.63 0.049 15 0.295 0.28 0.34 0.016

HI3 4 0.319 0.30 0.35 0.024 20 0.347 0.28 0.38 0.023 30 0.330 0.30 0.39 0.025 51 0.342 0.25 0.38 0.025 15 0.316 0.26 0.35 0.021

HCinf 4 1.503 1.49 1.53 0.016 21 1.394 1.03 1.50 0.108 30 1.435 1.30 1.56 0.063 51 1.435 1.25 1.63 0.064 15 1.424 1.30 1.50 0.058

HP2 4 0.575 0.53 0.63 0.046 20 0.519 0.45 0.63 0.045 31 0.509 0.40 0.61 0.051 51 0.504 0.45 0.60 0.028 15 0.481 0.43 0.52 0.028

HP3 4 0.619 0.58 0.68 0.043 21 0.579 0.53 0.65 0.032 32 0.538 0.48 0.60 0.032 52 0.563 0.46 0.68 0.037 15 0.517 0.48 0.58 0.032

HP4 4 0.925 0.85 0.98 0.061 22 0.874 0.58 0.98 0.076 33 0.836 0.74 0.98 0.062 52 0.872 0.73 1.00 0.050 15 0.845 0.75 0.95 0.047

I1M

3/LoM

1 18 4.833 4.65 5.15 0.156 34 4.719 4.48 4.93 0.116 47 4.820 4.58 5.21 0.137 80 4.766 4.47 5.64 0.157 19 4.728 4.59 4.86 0.075

M3M

3/WM

3 18 3.662 3.56 3.85 0.075 32 3.563 3.33 3.73 0.079 46 3.634 3.35 3.89 0.118 76 3.612 3.38 3.75 0.065 19 3.641 3.57 3.76 0.052

P4P

4/WP

4 18 3.988 3.83 4.24 0.104 36 3.770 3.46 4.03 0.139 47 4.219 3.73 5.01 0.305 77 4.026 3.57 4.49 0.152 19 3.909 3.72 4.33 0.135

M1M

3/LoM

1 18 2.263 2.19 2.45 0.072 35 2.199 2.11 2.37 0.059 48 2.266 2.16 2.40 0.062 81 2.280 2.15 2.75 0.080 19 2.263 2.19 2.46 0.072

M1M

3/LoM

2 18 2.260 2.17 2.33 0.051 36 2.266 2.12 2.36 0.060 48 2.300 2.15 2.44 0.063 81 2.326 2.11 2.63 0.074 19 2.327 2.18 2.46 0.079

CCsup

/WCsup 18 5.279 5.06 5.50 0.130 27 5.038 4.57 5.51 0.232 41 5.440 5.06 5.92 0.201 74 5.392 4.53 5.90 0.224 18 5.430 5.18 5.70 0.139

CP4/LP

4 18 2.365 2.04 2.61 0.159 26 2.280 2.01 2.57 0.129 47 2.373 2.09 2.65 0.140 81 2.317 2.07 2.61 0.122 19 2.399 2.28 2.58 0.084

(CP4/LP

4)/(M

3M

3/WM

3) 18 0.646 0.56 0.72 0.042 26 0.639 0.59 0.73 0.036 45 0.653 0.57 0.71 0.040 76 0.642 0.58 0.72 0.035 19 0.659 0.62 0.72 0.027

(CC/WCsup)

/(P4P

4/WP

4) 18 1.324 1.27 1.40 0.038 27 1.330 1.26 1.41 0.038 41 1.295 1.11 1.52 0.098 73 1.342 1.21 1.46 0.056 18 1.391 1.30 1.44 0.037

(M1M

3/LoM

1)/(M

3M

3/WM

3) 18 0.618 0.59 0.66 0.019 32 0.618 0.59 0.67 0.017 46 0.625 0.57 0.67 0.027 76 0.632 0.59 0.77 0.025 19 0.622 0.59 0.69 0.024

(M1M

3/LoM

1)/(P

4P

4/WP

4) 18 0.568 0.52 0.61 0.021 35 0.583 0.54 0.62 0.021 47 0.540 0.44 0.62 0.038 77 0.567 0.49 0.67 0.028 19 0.580 0.50 0.64 0.029

M1M3/LM3 18 2.961 2.85 3.12 0.081 36 2.925 2.67 3.11 0.100 48 3.007 2.77 3.21 0.116 76 3.005 2.74 3.18 0.097 19 2.991 2.84 3.18 0.091

CP4/LP4 18 3.916 3.45 4.36 0.236 29 3.932 3.31 4.51 0.354 48 3.783 3.30 4.41 0.263 72 3.908 3.07 4.64 0.289 19 3.790 3.38 4.32 0.245

CP4/LCinf 18 3.264 2.92 3.43 0.129 30 3.154 2.65 3.64 0.187 45 3.277 2.72 3.94 0.243 73 3.245 2.90 3.77 0.176 19 3.187 2.89 3.47 0.120

I1M3/LP3 18 11.343 10.40 12.08 0.414 31 11.554 10.58 12.54 0.541 47 11.722 10.86 13.55 0.503 74 11.961 10.29 15.07 0.683 19 11.898 10.37 13.58 0.679

I1M3/LP2 18 12.272 11.61 13.13 0.489 28 12.333 11.57 13.47 0.506 46 12.917 11.87 14.36 0.522 73 12.973 11.46 14.29 0.541 19 12.827 12.14 13.49 0.428

M1M3/LM1 18 2.518 2.43 2.64 0.061 36 2.523 2.39 2.69 0.070 48 2.608 2.36 2.91 0.116 76 2.570 2.39 2.72 0.075 19 2.515 2.45 2.59 0.047

(M1M3/LM3)/(M1M3/LM1) 18 1.177 1.11 1.27 0.043 36 1.160 1.08 1.23 0.037 48 1.154 1.08 1.25 0.036 76 1.170 1.08 1.23 0.033 19 1.189 1.11 1.27 0.037

(CP4/LP4)/(M1M3/LM1) 18 1.557 1.31 1.78 0.111 29 1.559 1.29 1.82 0.151 48 1.453 1.21 1.71 0.120 72 1.523 1.17 1.88 0.126 19 1.507 1.36 1.71 0.093

(CP4/LCinf)/(M1M3/LM1) 18 1.297 1.16 1.40 0.062 30 1.250 1.01 1.40 0.081 45 1.258 1.05 1.51 0.090 73 1.264 1.10 1.45 0.082 19 1.268 1.12 1.38 0.058

(I1M3/LP3)/(CP4/LP4) 18 2.907 2.57 3.43 0.219 29 2.967 2.40 3.50 0.344 47 3.112 2.55 3.74 0.272 71 3.087 2.41 4.91 0.355 19 3.155 2.49 3.70 0.311

Page 52: Hidden diversity in bent-winged bats (Chiroptera ...

26

Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character n M min max SD n M min max SD n M min max SD n M min max SD

LI1 92 0.489 0.41 0.63 0.031 14 0.485 0.45 0.53 0.024 26 0.507 0.43 0.58 0.033 12 0.460 0.40 0.49 0.024

LI2 92 0.620 0.53 0.73 0.031 14 0.616 0.55 0.66 0.032 26 0.623 0.55 0.68 0.035 12 0.563 0.50 0.65 0.045

WI1 92 0.445 0.25 0.50 0.028 14 0.454 0.40 0.51 0.031 26 0.455 0.35 0.50 0.032 12 0.428 0.38 0.48 0.032

WI2 92 0.590 0.53 0.71 0.032 14 0.579 0.43 0.65 0.055 26 0.571 0.53 0.65 0.029 12 0.589 0.56 0.60 0.012

LCsup 92 1.072 1.00 1.18 0.034 14 1.088 1.05 1.14 0.030 26 1.114 1.03 1.20 0.048 12 1.056 0.96 1.13 0.042

WCsup 92 0.865 0.80 1.15 0.041 14 0.858 0.81 0.90 0.025 26 0.933 0.85 1.00 0.042 12 0.860 0.80 0.95 0.036

LP2 93 0.832 0.78 0.93 0.034 14 0.835 0.80 0.89 0.027 27 0.895 0.79 1.00 0.055 12 0.850 0.75 0.90 0.041

WP2 93 1.124 0.91 1.25 0.051 14 1.118 1.06 1.16 0.031 27 1.081 0.90 1.19 0.061 12 1.028 0.80 1.15 0.096

WP4 93 1.403 1.30 1.53 0.039 14 1.368 1.29 1.43 0.046 27 1.413 1.33 1.58 0.057 12 1.350 1.26 1.43 0.060

LP4 93 1.266 1.08 1.40 0.064 14 1.196 1.09 1.28 0.056 27 1.282 1.23 1.45 0.057 12 1.200 1.03 1.28 0.069

LoM1 93 1.455 1.31 1.56 0.035 14 1.482 1.43 1.55 0.032 27 1.491 1.38 1.55 0.050 12 1.447 1.36 1.50 0.047

LiM1 93 0.957 0.85 1.05 0.042 14 0.994 0.95 1.05 0.034 27 0.991 0.90 1.10 0.044 12 0.951 0.88 1.03 0.040

W1M1 93 2.024 1.93 2.13 0.044 14 2.027 1.94 2.10 0.053 27 2.016 1.89 2.16 0.061 12 1.923 1.88 2.04 0.049

W2M1 93 1.650 1.58 1.80 0.039 14 1.671 1.60 1.80 0.054 27 1.681 1.60 1.80 0.059 12 1.616 1.56 1.69 0.038

W3M1 93 1.778 1.18 1.90 0.082 14 1.783 1.68 1.86 0.049 27 1.758 1.65 1.90 0.066 12 1.681 1.60 1.78 0.061

LoM2 93 1.412 1.33 1.53 0.033 14 1.445 1.40 1.48 0.024 27 1.473 1.40 1.56 0.039 12 1.385 1.33 1.41 0.032

LiM2 93 0.877 0.75 0.95 0.033 14 0.902 0.86 0.93 0.020 27 0.966 0.90 1.04 0.032 12 0.889 0.80 0.96 0.047

W1M2 93 1.944 1.88 2.06 0.038 14 1.967 1.90 2.05 0.049 27 1.986 1.90 2.10 0.054 12 1.841 1.73 1.90 0.054

W2M2 93 1.792 1.71 1.90 0.035 14 1.826 1.73 1.90 0.052 27 1.824 1.75 1.93 0.048 12 1.732 1.63 1.80 0.052

W3M3 93 1.896 1.79 2.00 0.049 14 1.888 1.80 1.95 0.049 27 1.947 1.83 2.08 0.071 12 1.754 1.65 1.83 0.050

WM3 93 1.744 1.65 1.83 0.036 14 1.750 1.71 1.78 0.021 27 1.783 1.68 1.88 0.055 12 1.693 1.58 1.75 0.058

LM3 93 0.792 0.75 0.85 0.021 14 0.806 0.78 0.85 0.023 27 0.808 0.78 0.88 0.021 12 0.765 0.73 0.80 0.026

LI1 86 0.396 0.35 0.46 0.023 14 0.406 0.38 0.48 0.029 27 0.404 0.35 0.48 0.029 11 0.383 0.35 0.40 0.018

LI2 90 0.396 0.35 0.43 0.018 14 0.427 0.38 0.45 0.023 27 0.419 0.38 0.48 0.023 12 0.379 0.33 0.40 0.021

LI3 90 0.538 0.49 0.63 0.023 14 0.526 0.50 0.55 0.014 27 0.555 0.50 0.60 0.025 12 0.493 0.45 0.55 0.032

WI1 87 0.242 0.20 0.28 0.018 14 0.244 0.23 0.28 0.020 27 0.260 0.20 0.30 0.023 11 0.234 0.20 0.28 0.020

WI2 90 0.389 0.35 0.45 0.018 14 0.405 0.38 0.48 0.028 27 0.387 0.35 0.43 0.019 12 0.359 0.33 0.38 0.016

WI3 90 0.524 0.49 0.56 0.015 14 0.535 0.51 0.55 0.012 27 0.534 0.50 0.73 0.041 12 0.508 0.48 0.53 0.016

LCinf 89 0.736 0.68 0.80 0.026 14 0.741 0.70 0.78 0.027 26 0.787 0.71 0.86 0.040 12 0.745 0.68 0.80 0.033

WCinf 89 0.807 0.75 0.86 0.025 14 0.821 0.78 0.85 0.027 26 0.853 0.75 0.93 0.045 12 0.780 0.73 0.85 0.033

LP2 89 0.569 0.53 0.63 0.022 14 0.549 0.51 0.58 0.017 26 0.575 0.53 0.63 0.032 12 0.567 0.53 0.60 0.022

WP2 89 0.627 0.58 0.68 0.021 14 0.634 0.60 0.66 0.018 26 0.651 0.61 0.68 0.019 12 0.610 0.58 0.65 0.024

LP3 89 0.622 0.54 0.68 0.026 14 0.612 0.56 0.66 0.028 27 0.657 0.60 0.70 0.026 12 0.585 0.54 0.61 0.021

WP3 89 0.636 0.58 0.70 0.026 14 0.638 0.60 0.66 0.023 27 0.624 0.55 0.68 0.026 12 0.609 0.58 0.65 0.023

WP4 90 0.761 0.68 0.85 0.030 14 0.781 0.70 0.83 0.035 27 0.767 0.73 0.83 0.027 12 0.751 0.71 0.80 0.022

LP4 90 0.601 0.50 0.68 0.037 14 0.634 0.55 0.70 0.037 27 0.668 0.58 0.76 0.058 12 0.633 0.53 0.70 0.049

LM1 90 1.458 1.36 1.51 0.027 14 1.483 1.40 1.55 0.036 27 1.468 1.39 1.55 0.043 12 1.428 1.33 1.50 0.045

Page 53: Hidden diversity in bent-winged bats (Chiroptera ...

27

Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD

W1M190 0.852 0.78 0.95 0.033 14 0.879 0.80 0.95 0.037 27 0.859 0.80 0.95 0.038 12 0.846 0.78 0.90 0.037

W2M1 90 0.873 0.80 0.98 0.031 14 0.903 0.88 0.95 0.022 27 0.916 0.85 1.01 0.048 12 0.888 0.83 0.93 0.035

W3M1 90 0.959 0.90 1.03 0.028 14 1.000 0.93 1.13 0.051 27 0.997 0.93 1.05 0.029 12 0.994 0.93 1.03 0.034

LM2 90 1.393 1.30 1.45 0.027 14 1.411 1.38 1.46 0.026 27 1.402 1.33 1.46 0.038 12 1.365 1.28 1.45 0.054

W1M2 90 0.825 0.73 0.93 0.032 14 0.847 0.81 0.88 0.023 27 0.833 0.75 0.90 0.038 12 0.829 0.75 0.89 0.039

W2M2 90 0.831 0.78 0.91 0.024 14 0.861 0.83 0.90 0.023 27 0.873 0.83 0.93 0.028 12 0.839 0.80 0.88 0.028

LM3 90 1.249 1.15 1.33 0.031 14 1.257 1.20 1.31 0.033 27 1.268 1.20 1.31 0.029 12 1.221 1.15 1.28 0.034

WM3 90 0.638 0.58 0.88 0.034 14 0.665 0.63 0.70 0.023 27 0.688 0.64 0.75 0.032 12 0.665 0.60 0.73 0.034

WI1/LI

1 92 0.913 0.53 1.09 0.083 14 0.939 0.84 1.11 0.074 26 0.901 0.61 1.03 0.079 12 0.931 0.81 1.03 0.064

WI2/LI

2 92 0.953 0.81 1.19 0.071 14 0.940 0.71 1.02 0.088 26 0.920 0.80 1.11 0.070 12 1.052 0.90 1.18 0.085

WCsup

/LCsup 92 0.807 0.71 1.07 0.038 14 0.789 0.76 0.83 0.020 26 0.838 0.78 0.88 0.033 12 0.816 0.76 0.91 0.046

HCsup

/WCsup

/LCsup 57 1.707 1.27 1.92 0.122 9 1.744 1.43 1.97 0.156 15 1.634 1.43 1.82 0.141 3 1.787 1.69 1.90 0.109

WP2/LP

2 93 1.353 1.10 1.52 0.064 14 1.340 1.25 1.42 0.053 27 1.212 0.92 1.35 0.089 12 1.209 1.03 1.35 0.095

HP2/WP

2/LP

2 58 0.622 0.44 0.72 0.060 9 0.638 0.49 0.73 0.068 15 0.606 0.48 0.70 0.077 3 0.635 0.61 0.66 0.024

WP4/LP

4 93 1.110 1.00 1.26 0.055 14 1.147 1.04 1.26 0.071 27 1.104 0.97 1.18 0.056 12 1.128 1.03 1.24 0.067

HP4/WP

4/LP

4 58 0.850 0.53 0.98 0.087 9 0.917 0.49 1.11 0.229 15 0.863 0.81 0.93 0.040 3 0.936 0.92 0.97 0.030

LoM1/LiM

1 93 1.523 1.25 1.71 0.076 14 1.493 1.41 1.58 0.049 27 1.508 1.31 1.72 0.086 12 1.523 1.42 1.61 0.056

LoM2/LiM

2 93 1.612 1.49 1.83 0.056 14 1.603 1.54 1.71 0.044 27 1.526 1.43 1.65 0.056 12 1.563 1.45 1.70 0.079

WM3/LM

3 93 2.204 2.03 2.33 0.059 14 2.172 2.07 2.29 0.059 27 2.208 2.08 2.29 0.060 12 2.214 2.14 2.26 0.038

W2M1/LoM

1 93 1.135 1.06 1.22 0.031 14 1.127 1.08 1.19 0.030 27 1.128 1.04 1.21 0.041 12 1.117 1.07 1.15 0.027

W2M2/LoM

2 93 1.270 1.16 1.35 0.034 14 1.264 1.21 1.32 0.029 27 1.239 1.16 1.33 0.032 12 1.251 1.16 1.32 0.038

HCsup

/HP2 57 2.749 2.29 3.56 0.229 9 2.771 2.20 3.69 0.408 15 2.917 2.62 3.14 0.173 3 2.742 2.51 2.89 0.204

HCsup

/HP4 57 1.060 0.81 1.83 0.167 8 1.082 0.87 1.74 0.273 15 1.103 0.96 1.25 0.076 3 1.064 1.00 1.11 0.057

(HCsup

/WCsup

/LCsup

)/(HP2/WP

2/LP

2) 57 2.764 1.99 3.84 0.292 9 2.765 2.15 3.57 0.398 15 2.731 2.11 3.69 0.370 3 2.815 2.66 2.89 0.134

(HP4/WP

4/LP

4)/(HP

2/WP

2/LP

2) 58 1.381 0.85 1.96 0.204 9 1.423 0.94 1.61 0.272 15 1.449 1.18 1.88 0.214 3 1.475 1.40 1.53 0.067

(W2M1/LoM

1)/(WM

3/LM

3) 93 0.515 0.47 0.56 0.020 14 0.519 0.49 0.55 0.018 27 0.511 0.47 0.55 0.021 12 0.505 0.49 0.54 0.016

(W2M1/LoM

1)/(WP

4/LP

4) 93 1.025 0.86 1.15 0.059 14 0.986 0.86 1.11 0.066 27 1.024 0.93 1.22 0.066 12 0.994 0.88 1.09 0.061

(W2M1/LoM

1)/(WP

2/LP

2) 93 0.841 0.74 1.02 0.044 14 0.842 0.78 0.90 0.037 27 0.936 0.81 1.21 0.079 12 0.930 0.85 1.08 0.083

(W2M1/LoM

1)/(WC

sup/LC

sup) 92 1.408 1.04 1.60 0.066 14 1.430 1.37 1.53 0.048 26 1.350 1.24 1.49 0.069 12 1.373 1.26 1.45 0.065

(WI1LI

1)/(WI

2LI

2) 91 0.595 0.34 0.71 0.055 14 0.624 0.47 0.79 0.076 26 0.653 0.50 0.95 0.090 12 0.599 0.45 0.70 0.068

(WCsup

LCsup

)/(WP2LP

2) 92 0.997 0.83 1.44 0.077 14 1.002 0.90 1.13 0.060 26 1.080 0.85 1.33 0.121 12 1.053 0.87 1.49 0.154

(WP4LP

4)/(WP

2LP

2) 93 1.906 1.51 2.51 0.168 14 1.754 1.59 1.94 0.114 27 1.885 1.50 2.42 0.204 12 1.886 1.55 2.89 0.367

(W2M1LiM

1)/(WM

3LM

3) 93 1.144 0.97 1.29 0.066 14 1.178 1.05 1.26 0.073 27 1.158 0.98 1.32 0.083 12 1.189 1.10 1.32 0.065

(W2M1LiM

1)/(W2M

2LiM

2) 93 1.005 0.85 1.15 0.044 14 1.009 0.94 1.07 0.044 27 0.946 0.84 1.05 0.052 12 1.000 0.88 1.10 0.055

(W2M1LiM

1)/(WC

supLC

sup) 92 1.706 1.33 2.01 0.109 14 1.781 1.59 2.08 0.121 26 1.612 1.24 2.10 0.174 12 1.694 1.55 1.87 0.102

(W2M1LiM

1)/(WP

4LP

4) 93 0.893 0.74 1.10 0.075 14 1.018 0.90 1.13 0.076 27 0.923 0.77 1.15 0.080 12 0.953 0.81 1.06 0.080

(W2M1LiM

1)/(WP

2LP

2) 93 1.694 1.32 2.16 0.135 14 1.783 1.55 1.96 0.126 27 1.731 1.49 2.09 0.160 12 1.777 1.58 2.34 0.215

Page 54: Hidden diversity in bent-winged bats (Chiroptera ...

28

Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD

(W2M1LiM

1)/(WI

2LI

2) 92 4.334 3.57 5.18 0.332 14 4.731 3.60 6.31 0.729 26 4.702 4.12 5.59 0.441 12 4.664 4.09 5.40 0.370

LI1/WI1 86 1.641 1.36 2.06 0.160 14 1.674 1.45 2.00 0.152 27 1.564 1.27 1.90 0.163 11 1.648 1.40 2.00 0.179

LI2/WI2 90 1.020 0.78 1.14 0.067 14 1.056 0.94 1.16 0.075 27 1.085 0.94 1.29 0.080 12 1.056 0.93 1.15 0.057

LI3/WI3 90 1.028 0.93 1.15 0.048 14 0.984 0.93 1.05 0.035 27 1.045 0.76 1.14 0.079 12 0.970 0.86 1.05 0.059

WCsup/LCsup 89 1.098 0.98 1.19 0.046 14 1.110 1.03 1.18 0.048 26 1.086 1.00 1.21 0.054 12 1.048 1.00 1.12 0.033

HCinf/WCinf/LCinf 55 2.460 1.92 2.80 0.175 9 2.432 2.31 2.59 0.105 15 2.361 2.16 2.68 0.143 3 2.398 2.37 2.44 0.041

WP2/LP2 89 1.105 0.96 1.26 0.059 14 1.155 1.04 1.22 0.043 26 1.135 1.00 1.29 0.066 12 1.078 1.02 1.18 0.048

HP2/WP2/LP2 55 1.379 1.09 1.54 0.098 8 1.504 1.37 1.72 0.115 15 1.302 1.03 1.47 0.139 3 1.326 1.31 1.34 0.016

WP3/LP3 89 1.024 0.88 1.17 0.058 14 1.043 0.92 1.11 0.054 27 0.951 0.88 1.06 0.043 12 1.042 0.96 1.16 0.056

HP3/WP3/LP3 55 1.461 1.13 1.94 0.133 9 1.634 1.38 1.88 0.162 15 1.274 1.12 1.48 0.109 3 1.686 1.53 1.79 0.135

WP4/LP4 90 1.272 1.08 1.58 0.100 14 1.236 1.08 1.33 0.081 27 1.156 0.98 1.39 0.097 12 1.192 1.07 1.43 0.088

W2M1/W1M1 90 1.025 0.94 1.10 0.029 14 1.027 0.97 1.09 0.031 27 1.067 0.97 1.19 0.057 12 1.050 0.94 1.10 0.041

LM1/W2M1 90 1.672 1.47 1.84 0.062 14 1.643 1.59 1.70 0.035 27 1.606 1.43 1.77 0.084 12 1.611 1.51 1.71 0.064

W2M2/W1M2 90 1.007 0.94 1.07 0.025 14 1.016 1.00 1.06 0.020 27 1.049 0.94 1.14 0.045 12 1.012 0.96 1.07 0.034

LM2/W2M2 90 1.678 1.53 1.81 0.048 14 1.640 1.57 1.76 0.055 27 1.608 1.47 1.71 0.069 12 1.627 1.57 1.71 0.041

LM3/WM3 90 1.963 1.46 2.15 0.092 14 1.891 1.79 1.96 0.056 27 1.848 1.72 2.02 0.081 12 1.841 1.66 1.98 0.093

HCinf/HP2 55 2.967 2.18 3.35 0.220 8 2.891 2.66 3.11 0.167 15 3.281 2.71 3.97 0.274 3 3.086 2.89 3.39 0.266

HCinf/HP3 55 2.562 2.09 3.03 0.174 9 2.385 2.14 2.70 0.179 15 2.951 2.38 3.33 0.257 3 2.351 2.20 2.65 0.261

HCinf/HP4 55 1.648 1.31 2.00 0.109 9 1.575 1.45 1.68 0.069 15 1.771 1.51 2.00 0.129 3 1.590 1.41 1.74 0.168

(WP4/LP4)/(WP2/LP2) 89 1.155 0.97 1.51 0.098 14 1.070 0.93 1.18 0.062 26 1.029 0.85 1.31 0.114 12 1.107 0.98 1.31 0.095

(WCinf/LCinf)/(WP2/LP2) 89 0.996 0.84 1.14 0.067 14 0.961 0.89 1.02 0.045 26 0.961 0.83 1.16 0.087 12 0.974 0.85 1.05 0.058

(WCinf/LCinf)/(WP3/LP3) 89 1.076 0.91 1.24 0.080 14 1.066 0.93 1.16 0.065 26 1.141 0.99 1.31 0.080 12 1.008 0.86 1.08 0.060

(HCinf/WCinf/LCinf)/(HP2/WP2/LP2) 55 1.790 1.36 2.29 0.162 8 1.629 1.43 1.79 0.132 15 1.833 1.61 2.36 0.224 3 1.808 1.76 1.84 0.039

(HCinf/WCinf/LCinf)/(HP3/WP3/LP3) 55 1.695 1.30 2.12 0.173 9 1.500 1.26 1.71 0.139 15 1.867 1.51 2.16 0.208 3 1.428 1.36 1.55 0.109

(LM1/W2M1)/(LM3/WM3) 90 0.853 0.73 1.14 0.049 14 0.870 0.82 0.93 0.035 27 0.871 0.73 1.01 0.056 12 0.878 0.81 1.00 0.065

(LM1/W2M1)/(WP4/LP4) 90 1.323 1.01 1.62 0.121 14 1.336 1.20 1.50 0.101 27 1.397 1.21 1.80 0.124 12 1.357 1.19 1.52 0.091

(WI1LI1)/(WI2LI2) 86 0.626 0.47 0.83 0.064 14 0.576 0.39 0.68 0.072 27 0.650 0.45 0.79 0.086 11 0.665 0.58 0.78 0.063

(WI2LI2)/(WI3LI3) 90 0.546 0.47 0.63 0.037 14 0.615 0.51 0.72 0.053 27 0.551 0.36 0.66 0.060 12 0.546 0.48 0.60 0.041

(WCinfLCinf)/(WP2LP2) 89 1.670 1.40 1.94 0.109 14 1.750 1.61 1.96 0.092 26 1.795 1.50 2.07 0.146 12 1.683 1.55 1.89 0.114

(WCinfLCinf)/(WP3LP3) 89 1.506 1.29 1.88 0.112 14 1.563 1.39 1.71 0.102 26 1.631 1.34 1.90 0.147 12 1.633 1.42 1.97 0.132

(WCinfLCinf)/(WP4LP4) 89 1.306 1.11 1.60 0.102 14 1.236 0.97 1.50 0.116 26 1.330 0.99 1.67 0.184 12 1.233 1.07 1.73 0.176

(WP2LP2)/(WP4LP4) 89 0.784 0.67 0.95 0.064 14 0.707 0.60 0.86 0.064 26 0.742 0.61 0.97 0.097 12 0.732 0.63 0.91 0.078

(W1M1LM1)/(WCinfLCinf) 89 2.097 1.82 2.42 0.132 14 2.147 1.87 2.45 0.147 26 1.893 1.55 2.41 0.208 12 2.086 1.71 2.27 0.158

(W1M1LM1)/(WP2LP2) 89 3.491 3.06 3.88 0.180 14 3.752 3.25 4.01 0.210 26 3.381 2.93 4.02 0.318 12 3.498 3.19 3.78 0.202

(W1M1LM1)/(WP3LP3) 89 3.149 2.80 3.68 0.190 14 3.350 2.91 3.75 0.234 27 3.089 2.72 3.72 0.272 12 3.391 3.13 3.70 0.191

(W1M1LM1)/(WP4LP4) 90 2.731 2.26 3.42 0.204 14 2.645 2.37 3.18 0.211 27 2.480 2.06 2.92 0.247 12 2.554 2.24 2.95 0.235

(W1M1LM1)/(W1M2LM2) 90 1.082 0.97 1.22 0.038 14 1.092 0.99 1.21 0.057 27 1.080 1.01 1.20 0.047 12 1.070 0.98 1.18 0.076

Page 55: Hidden diversity in bent-winged bats (Chiroptera ...

29

Table S3. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character/index n M min max SD n M min max SD n M min max SD n M min max SD

(W1M1LM1)/(WM3LM3) 90 1.565 1.10 1.81 0.094 14 1.563 1.38 1.74 0.113 27 1.449 1.27 1.68 0.083 12 1.492 1.36 1.63 0.094

HI2 57 0.636 0.55 0.74 0.036 14 0.613 0.53 0.68 0.037 26 0.705 0.58 0.80 0.060 3 0.613 0.55 0.66 0.057

HI1 57 0.557 0.40 0.65 0.048 14 0.603 0.48 0.65 0.049 26 0.606 0.50 0.74 0.059 3 0.600 0.55 0.65 0.050

HCsup 57 1.579 1.25 1.73 0.088 14 1.569 1.30 1.73 0.130 26 1.645 1.28 2.00 0.178 3 1.629 1.60 1.66 0.031

HP3 58 0.580 0.45 0.70 0.052 14 0.542 0.25 0.68 0.107 27 0.556 0.38 0.70 0.077 3 0.596 0.58 0.64 0.036

HP4 58 1.514 0.88 1.70 0.153 14 1.411 0.79 1.71 0.311 27 1.531 1.35 1.75 0.104 3 1.533 1.50 1.60 0.058

HI1 53 0.288 0.23 0.35 0.024 14 0.290 0.25 0.33 0.019 27 0.256 0.23 0.30 0.022 2 0.269 0.26 0.28 0.009

HI2 56 0.302 0.26 0.35 0.020 14 0.305 0.30 0.33 0.009 27 0.275 0.23 0.33 0.026 3 0.271 0.26 0.28 0.007

HI3 56 0.336 0.28 0.38 0.020 14 0.338 0.28 0.43 0.041 27 0.311 0.23 0.38 0.031 3 0.308 0.30 0.33 0.014

HCinf 55 1.452 1.15 1.55 0.088 14 1.436 1.25 1.55 0.084 25 1.557 1.29 1.80 0.148 3 1.425 1.38 1.53 0.087

HP2 55 0.490 0.43 0.55 0.025 13 0.468 0.25 0.55 0.079 26 0.472 0.36 0.55 0.056 3 0.463 0.45 0.48 0.013

HP3 55 0.568 0.43 0.64 0.038 14 0.566 0.36 0.73 0.102 27 0.534 0.41 0.63 0.050 3 0.608 0.58 0.63 0.029

HP4 55 0.883 0.75 0.95 0.050 14 0.918 0.78 1.00 0.056 27 0.879 0.75 1.03 0.076 3 0.900 0.85 0.98 0.066

I1M

3/LoM

1 92 4.734 4.42 5.10 0.123 14 4.742 4.52 4.93 0.112 27 4.861 4.42 5.33 0.185 12 4.710 4.51 4.96 0.123

M3M

3/WM

3 92 3.610 3.45 3.90 0.086 14 3.682 3.57 3.76 0.057 27 3.766 3.62 3.92 0.088 12 3.689 3.36 3.83 0.125

P4P

4/WP

4 91 3.932 3.65 4.23 0.121 14 4.105 3.87 4.30 0.123 27 4.096 3.66 4.46 0.194 12 3.954 3.42 4.37 0.251

M1M

3/LoM

1 93 2.245 2.10 2.45 0.062 14 2.267 2.13 2.35 0.058 27 2.263 2.14 2.44 0.077 12 2.212 2.09 2.30 0.056

M1M

3/LoM

2 93 2.313 2.16 2.54 0.068 14 2.326 2.21 2.41 0.058 27 2.290 2.12 2.39 0.055 12 2.310 2.16 2.48 0.085

CCsup

/WCsup 91 5.272 4.06 5.75 0.217 14 5.392 5.06 5.75 0.187 26 5.074 4.45 5.46 0.235 12 4.987 3.88 5.30 0.376

CP4/LP

4 92 2.288 2.05 2.73 0.129 14 2.420 2.27 2.65 0.121 27 2.364 2.12 2.50 0.109 12 2.360 2.14 2.56 0.123

(CP4/LP

4)/(M

3M

3/WM

3) 92 0.634 0.56 0.73 0.034 14 0.657 0.62 0.73 0.033 27 0.628 0.57 0.68 0.029 12 0.640 0.58 0.70 0.034

(CC/WCsup)

/(P4P

4/WP

4) 90 1.341 1.03 1.48 0.057 14 1.315 1.21 1.44 0.069 26 1.240 1.10 1.37 0.057 12 1.261 1.14 1.35 0.067

(M1M

3/LoM

1)/(M

3M

3/WM

3) 92 0.622 0.58 0.70 0.021 14 0.616 0.59 0.64 0.015 27 0.601 0.56 0.66 0.025 12 0.600 0.57 0.63 0.018

(M1M

3/LoM

1)/(P

4P

4/WP

4) 91 0.572 0.52 0.64 0.024 14 0.553 0.51 0.58 0.024 27 0.554 0.49 0.63 0.032 12 0.561 0.51 0.61 0.033

M1M3/LM3 90 2.940 2.76 3.17 0.073 14 3.024 2.90 3.18 0.071 27 2.993 2.81 3.18 0.088 12 2.947 2.81 3.07 0.067

CP4/LP4 89 3.986 3.36 4.64 0.261 14 3.706 3.41 4.05 0.181 27 3.871 3.31 4.49 0.295 12 3.698 3.39 4.27 0.218

CP4/LCinf 89 3.243 2.88 3.57 0.147 14 3.166 2.97 3.41 0.128 26 3.277 2.99 3.70 0.191 12 3.138 2.80 3.34 0.164

I1M3/LP3 89 11.551 10.65 13.30 0.472 14 12.029 11.17 12.82 0.539 27 11.543 10.80 12.87 0.478 12 12.181 11.36 13.40 0.512

I1M3/LP2 89 12.639 11.44 13.64 0.478 14 13.400 12.80 14.30 0.414 26 13.202 11.84 14.21 0.776 12 12.583 12.00 13.31 0.449

M1M3/LM1 90 2.518 2.40 2.74 0.058 14 2.563 2.45 2.71 0.067 27 2.586 2.35 2.77 0.087 12 2.520 2.36 2.64 0.077

(M1M3/LM3)/(M1M3/LM1) 90 1.168 1.10 1.26 0.032 14 1.180 1.10 1.24 0.040 27 1.158 1.08 1.24 0.040 12 1.170 1.12 1.22 0.033

(CP4/LP4)/(M1M3/LM1) 89 1.584 1.30 1.90 0.118 14 1.446 1.35 1.56 0.072 27 1.498 1.31 1.69 0.112 12 1.470 1.35 1.74 0.112

(CP4/LCinf)/(M1M3/LM1) 89 1.288 1.13 1.44 0.066 14 1.235 1.18 1.35 0.050 26 1.266 1.13 1.48 0.083 12 1.246 1.14 1.34 0.070

(I1M3/LP3)/(CP4/LP4) 89 2.910 2.39 3.62 0.224 14 3.256 2.78 3.70 0.261 27 3.002 2.53 3.60 0.291 12 3.306 2.83 3.80 0.262

Page 56: Hidden diversity in bent-winged bats (Chiroptera ...

30

Table S4. Results of ANOVA of all dental and cranial characteristics of Middle Eastern

(representing M. (s.) pallidus; on the right) or Cretan (representing geographically limited

population of M. schreibersii; on the left) sample sets, and Balkan (with addition of the

genotyped Levantine samples) (representing M. schreibersii) samples. See Appendix S1 for

explanation of dimension abbreviations. * = p < 0.05, ** = p < 0.001, *** = p < 0.0001.

Character df F p Character df F p Character df F p Character df F p

LCr 106 26.47 *** WCsup 111 1.68 LCr 101 21.66 *** LCsup 106 2.40

LCb 106 38.78 *** HCsup 110 0.04 LCb 101 29.11 *** WCsup 106 6.74 *

LaZ 104 4.16 * LP2 112 1.31 LaZ 99 43.84 *** HCsup 105 2.25

LaI 112 16.97 *** WP2 112 1.78 LaI 107 0.84 LP2 107 0.46

LaInf 110 6.72 * HP3 111 3.05 LaInf 105 3.39 WP2 107 3.98 *

LaN 109 46.47 *** WP4 112 0.63 LaN 104 2.60 HP3 106 0.09

LaM 106 29.14 *** LP4 112 12.42 *** LaM 101 18.31 *** WP4 107 0.58

ANc 108 6.33 * HP4 112 8.17 ** ANc 103 11.35 ** LP4 107 4.05 *

ACr 107 0.02 LoM1 113 2.22 ACr 102 9.00 ** HP4 107 3.25

LMd 105 32.18 *** LiM1 113 1.70 LMd 100 31.35 *** LoM1 108 6.52 *

ACo 105 1.22 W1M1 113 10.26 ** ACo 100 14.95 *** LiM1 108 0.78

CC 103 0.52 W2M1 113 8.64 ** CC 99 14.36 *** W1M1 108 0.39

P4P4 107 13.22 *** W3M1 113 8.67 ** P4P4 102 7.21 ** W2M1 108 4.34 *

M3M3 106 27.10 *** LoM2 112 4.82 * M3M3 101 17.20 *** W3M1 108 0.09

I1M3 110 22.57 *** LiM2 112 0.01 I1M3 105 18.13 *** LoM2 107 5.39 *

CM3 110 8.20 ** W1M2 112 14.02 *** CM3 105 33.84 *** LiM2 107 2.66

P4M3 110 5.11 * W2M2 112 43.63 *** P4M3 105 19.23 *** W1M2 107 2.35

M1M3 111 6.55 * W3M3 112 12.57 *** M1M3 106 5.85 * W2M2 107 6.91 **

CP4 111 1.03 WM3 111 26.50 *** CP4 106 3.73 W3M3 107 3.08

I1M3 105 52.64 *** LM3111 6.03 * I1M3 100 1.51 WM3

106 0.01

CM3 104 21.85 *** LI1 105 0.00 CM3 99 28.83 *** LM3106 5.40 *

P4M3 106 13.47 *** WI1 105 1.15 P4M3 101 17.21 *** LI1 100 1.96

M1M3 107 7.97 ** HI1 105 2.65 M1M3 102 2.43 WI1 100 0.18

CP4 104 10.61 ** LI2 105 8.17 ** CP4 99 0.08 HI1 100 0.12

CS1 95 25.91 *** WI2 105 3.13 CS1 89 1.43 LI2 100 24.80 ***

CS2 97 22.28 *** HI2 105 0.02 CS2 92 20.69 *** WI2 100 2.11

CS3 102 43.14 *** LI3 105 19.33 *** CS3 97 29.67 *** HI2 100 0.56

CS4 103 34.40 *** WI3 105 13.76 CS4 98 18.77 *** LI3 100 16.51 ***

G1RW1 95 14.26 ** HI3 105 0.85 G1RW1 89 5.44 * WI3 100 0.13

G1RW2 95 3.89 LCinf 105 1.03 G1RW2 89 2.39 HI3 100 1.28

G1RW3 95 0.65 WCinf 105 5.94 * G1RW3 89 3.40 LCinf 100 4.32 *

G1RW4 95 49.70 *** HCinf 105 0.23 G1RW4 89 0.46 WCinf 100 4.80 *

G2RW1 97 6.62 LP2 105 6.27 * G2RW1 92 2.21 HCinf 100 0.77

G2RW2 97 9.82 ** WP2 105 6.27 * G2RW2 92 5.72 * LP2 100 6.11 *

G2RW3 97 13.23 *** HP2 105 3.96 * G2RW3 92 0.07 WP2 100 1.36

G2RW4 97 0.01 LP3 107 5.40 * G2RW4 92 2.75 HP2 99 4.32 *

G3RW1 102 3.58 WP3 107 0.97 G3RW1 97 0.70 LP3 102 0.03

G3RW2 102 2.54 HP3 107 15.04 *** G3RW2 97 2.25 WP3 102 1.34

G3RW3 102 14.60 *** WP4 107 0.78 G3RW3 97 22.05 *** HP3 102 1.14

G3RW4 102 0.25 LP4 106 0.04 G3RW4 97 3.51 WP4 102 1.67

G4RW1 103 2.77 HP4 107 2.31 G4RW1 98 0.03 LP4 101 5.53 *

G4RW2 103 0.03 LM1 108 0.04 G4RW2 98 0.67 HP4 102 13.04 ***

G4RW3 103 0.44 W1M1 108 0.34 G4RW3 98 0.01 LM1 103 3.42

G4RW4 103 3.29 W2M1 108 0.41 G4RW4 98 5.59 * W1M1 103 4.55 *

LI1 110 4.26 * W3M1 108 0.55 LI1 105 0.87 W2M1 103 8.12 **

WI1 110 4.05 LM2 108 9.06 ** WI1 105 3.03 W3M1 103 3.76

HI1 110 0.34 W1M2 108 0.29 HI1 105 2.35 LM2 103 3.15

LI2 111 14.40 *** W2M2 108 0.28 LI2 106 0.11 W1M2 103 2.25

WI2 111 1.85 LM3 108 7.24 ** WI2 106 0.03 W2M2 103 8.94 **

HI2 111 17.23 *** WM3 108 0.01 HI2 106 0.68 LM3 103 0.09

LCsup111 5.04 * WM3 103 12.90 ***

Cretan vs. Balkan (with addition of the genotyped Levantine samples) sample setMiddle Eastern vs. Balkan (with addition of the genotyped Levantine samples)

sample set

Page 57: Hidden diversity in bent-winged bats (Chiroptera ...

31

Table S5. Percentage share-values of the total variation of the first four relative warps of the examined sample sets for the respective view of

skull and mandible (all groups 1 – 9 and subset 1 – 7). G1 – lateral view of mandible, G2 – lateral view of skull, G3 – ventral view of skull, G4 –

dorsal view of skull.

Groups G1RW1 G1RW2 G1RW3 G1RW4 G2RW1 G2RW2 G2RW3 G2RW4 G3RW1 G3RW2 G3RW3 G3RW4 G4RW1 G4RW2 G4RW3 G4RW4

1–7 23.3 17.3 16.9 9.8 20.0 14.9 12.6 8.4 20.9 11.4 10.9 9.3 27.8 13.4 10.8 8.3

1–9 24.3 16.7 16.6 10.0 18.7 15.7 12.1 8.4 19.6 11.7 11.0 9.0 27.0 12.7 11.6 8.4

Page 58: Hidden diversity in bent-winged bats (Chiroptera ...

32

Table S6. Non-metric dental and cranial characters of Miniopterus examined in this study. Codes in brackets stand for the respective genetic

lineage or sublineage (see text). See Appendix S1 for explanation of dimension abbreviations. M= mean, min = minimum value, max =

maximum value, and SD = standard deviation.

Morocco (MO) Western Europe (WM) Pannonia (WM) Balkans (WM) Crete (WM)

Character n M min max SD n M min max SD n M min max SD n M min max SD n M min max SD

P4inf 18 2.376 1.00 3.00 0.757 36 2.771 1.00 4.00 0.636 48 2.458 1.00 4.00 0.798 76 2.260 1.00 4.00 0.800 19 2.389 1.00 3.00 0.591

P4inf2 18 4.111 3.00 5.00 0.676 36 3.714 3.00 5.00 0.613 48 3.292 2.00 5.00 0.713 76 3.500 2.00 5.00 0.572 19 3.737 3.00 4.00 0.452

P3inf 18 3.444 2.00 5.00 0.705 36 3.567 2.00 5.00 0.704 48 3.659 2.00 5.00 0.713 76 3.433 2.00 5.00 0.716 19 3.211 2.00 4.00 0.535

P3inf2 18 3.333 2.00 4.00 0.686 36 3.097 2.00 4.00 0.438 48 2.979 2.00 4.00 0.565 76 2.853 2.00 4.00 0.604 19 3.368 3.00 4.00 0.496

P3inf3 18 3.111 3.00 4.00 0.323 36 3.129 2.00 4.00 0.665 48 2.851 2.00 4.00 0.583 76 2.973 2.00 4.00 0.516 19 2.684 2.00 4.00 0.582

P2P4inf 18 2.858 2.00 4.00 0.580 36 3.310 2.00 5.00 0.721 48 2.848 2.00 4.00 0.714 76 3.183 2.00 5.00 0.788 19 2.444 2.00 4.00 0.598

P2P4inf2 18 3.944 3.00 5.00 0.725 36 3.433 2.00 5.00 0.577 48 3.630 2.00 5.00 0.596 76 3.366 2.00 5.00 0.787 19 3.705 3.00 5.00 0.647

P3P4inf 18 3.785 2.00 5.00 0.781 36 3.578 2.00 5.00 0.594 48 3.532 2.00 5.00 0.680 76 3.110 2.00 5.00 0.758 19 3.588 2.00 5.00 0.672

FmenP2inf 18 3.167 3.00 4.00 0.383 36 2.969 2.00 4.00 0.377 48 2.979 2.00 4.00 0.385 76 3.043 2.00 4.00 0.528 19 3.474 3.00 4.00 0.513

Fmen 18 3.177 2.00 4.00 0.513 36 3.080 2.00 4.00 0.530 48 2.927 2.00 4.00 0.696 76 3.108 2.00 5.00 0.581 19 2.053 1.00 3.00 0.621

Cinf 18 2.444 1.00 3.00 0.616 36 3.386 2.00 4.00 0.570 48 2.933 2.00 4.00 0.726 76 2.767 2.00 4.00 0.622 19 2.842 2.00 4.00 0.501

CingM1inf 18 2.722 2.00 3.00 0.461 36 2.382 1.00 4.00 0.793 48 3.083 2.00 5.00 0.846 76 2.382 1.00 4.00 0.748 19 2.684 1.00 4.00 0.885

CingM1inf2 18 2.889 2.00 4.00 0.583 36 3.500 3.00 5.00 0.644 48 3.646 2.00 5.00 0.729 76 3.368 2.00 5.00 0.690 19 3.842 3.00 5.00 0.602

CingM1inf3 18 2.278 1.00 3.00 0.575 36 2.971 2.00 4.00 0.506 48 2.813 1.00 4.00 0.607 76 2.733 2.00 5.00 0.573 19 2.316 1.00 3.00 0.671

CingM1inf4 18 2.611 2.00 3.00 0.502 36 2.139 1.00 4.00 0.639 48 2.354 2.00 3.00 0.483 76 2.253 1.00 3.00 0.544 19 2.842 2.00 4.00 0.501

CingM2inf 18 2.944 2.00 4.00 0.539 36 2.556 1.00 4.00 0.695 48 2.646 1.00 4.00 0.729 76 2.224 1.00 4.00 0.665 19 2.579 2.00 4.00 0.769

CingM2inf2 18 2.500 2.00 4.00 0.618 36 3.167 2.00 4.00 0.447 48 2.896 2.00 4.00 0.660 76 2.921 1.00 5.00 0.669 19 2.842 2.00 4.00 0.602

CingM2inf3 18 3.167 2.00 4.00 0.514 36 3.167 2.00 4.00 0.447 48 3.146 1.00 4.00 0.583 76 3.092 2.00 4.00 0.495 19 3.000 2.00 4.00 0.577

M3sup 18 2.389 1.00 3.00 0.698 36 2.697 2.00 4.00 0.736 48 3.292 2.00 5.00 0.849 83 2.854 2.00 5.00 0.701 19 2.842 2.00 4.00 0.602

M3sup2 18 2.833 2.00 4.00 0.514 36 3.147 2.00 5.00 0.682 48 3.574 2.00 5.00 0.676 83 3.232 2.00 5.00 0.737 19 2.947 2.00 4.00 0.621

M2sup 18 3.000 3.00 3.00 0.000 36 3.556 3.00 5.00 0.695 48 3.438 3.00 5.00 0.542 83 3.120 2.00 4.00 0.425 19 3.000 3.00 3.00 0.000

M2sup2 18 3.333 2.00 4.00 0.594 36 3.444 2.00 4.00 0.558 48 3.646 2.00 5.00 0.785 83 3.530 2.00 5.00 0.650 19 3.842 3.00 4.00 0.375

M2sup3 18 3.056 2.00 4.00 0.416 36 2.806 2.00 4.00 0.624 48 3.174 2.00 4.00 0.662 83 2.855 2.00 4.00 0.646 19 2.895 2.00 4.00 0.567

M2sup4 18 2.722 2.00 3.00 0.461 36 3.056 2.00 4.00 0.630 48 3.458 2.00 5.00 0.582 83 3.036 2.00 4.00 0.528 19 2.947 2.00 4.00 0.405

CingM2sup 18 3.000 2.00 4.00 0.594 36 2.583 1.00 5.00 1.273 48 2.667 1.00 5.00 1.018 83 2.325 1.00 4.00 0.925 19 2.526 1.00 4.00 1.073

M1sup 18 3.778 3.00 5.00 0.548 36 3.371 2.00 4.00 0.590 48 3.604 2.00 5.00 0.676 83 3.549 2.00 5.00 0.647 19 3.842 3.00 5.00 0.602

M1sup2 18 3.111 2.00 4.00 0.583 36 3.371 2.00 4.00 0.636 48 3.542 2.00 5.00 0.713 83 3.378 2.00 4.00 0.618 19 3.684 3.00 5.00 0.582

M1sup3 18 3.222 3.00 4.00 0.428 36 3.229 2.00 4.00 0.590 48 2.681 2.00 4.00 0.622 83 2.839 2.00 4.00 0.551 19 3.263 3.00 4.00 0.452

M1sup4 18 3.333 1.00 5.00 0.907 36 2.257 1.00 3.00 0.498 48 2.375 1.00 3.00 0.570 83 2.695 1.00 5.00 0.675 19 2.579 2.00 3.00 0.507

M1sup5 18 2.529 2.00 3.00 0.499 36 3.188 2.00 4.00 0.607 48 3.349 1.00 5.00 0.711 83 3.342 2.00 5.00 0.629 19 3.764 3.00 4.00 0.412

P4sup 18 2.500 1.00 5.00 0.924 36 2.000 1.00 4.00 0.894 48 2.292 1.00 4.00 0.713 83 2.329 1.00 4.00 0.812 19 1.842 1.00 3.00 0.765

P4sup2 18 3.278 3.00 4.00 0.461 36 3.400 2.00 4.00 0.545 48 3.271 2.00 4.00 0.494 83 3.304 1.00 4.00 0.651 19 3.368 3.00 4.00 0.496

P4sup3 18 3.267 3.00 4.00 0.415 36 2.731 2.00 5.00 0.657 48 2.906 2.00 4.00 0.738 83 2.220 1.00 4.00 0.881 19 2.882 2.00 4.00 0.657

P4sup4 18 2.611 2.00 4.00 0.608 36 2.571 1.00 4.00 0.767 48 2.958 2.00 4.00 0.771 83 2.927 2.00 4.00 0.620 19 2.526 2.00 4.00 0.697

P4sup5 18 3.444 3.00 4.00 0.511 36 3.514 3.00 5.00 0.554 48 3.354 2.00 5.00 0.601 83 3.494 2.00 4.00 0.544 19 3.421 3.00 4.00 0.507

P4sup6 18 3.389 2.00 4.00 0.608 36 3.543 3.00 4.00 0.498 48 3.489 2.00 4.00 0.541 83 3.402 3.00 4.00 0.490 19 3.421 3.00 4.00 0.507

P4sup7 18 3.389 3.00 4.00 0.502 36 3.314 3.00 4.00 0.464 48 3.250 2.00 4.00 0.565 83 3.305 1.00 4.00 0.578 19 3.158 3.00 4.00 0.375

P4sup8 18 3.556 3.00 4.00 0.511 36 3.229 2.00 4.00 0.539 48 2.708 2.00 4.00 0.544 83 3.222 2.00 5.00 0.584 19 3.737 3.00 5.00 0.562

P2sup 18 2.611 1.00 5.00 1.092 36 2.457 1.00 4.00 0.648 48 2.167 1.00 3.00 0.630 83 2.159 1.00 4.00 0.757 19 2.105 1.00 3.00 0.567

P2sup2 18 3.111 2.00 4.00 0.471 36 4.000 3.00 5.00 0.756 48 3.583 3.00 5.00 0.613 83 3.238 2.00 4.00 0.500 19 3.474 3.00 4.00 0.513

P2sup3 18 3.000 2.00 4.00 0.686 36 2.429 1.00 3.00 0.645 48 2.479 1.00 3.00 0.545 83 2.317 1.00 4.00 0.696 19 2.632 2.00 4.00 0.597

P2sup4 18 2.059 1.00 3.00 0.539 36 2.171 1.00 3.00 0.506 48 2.500 1.00 4.00 0.652 83 2.098 1.00 3.00 0.484 19 2.789 2.00 3.00 0.419

CingCsup 18 2.000 1.00 5.00 1.138 36 2.377 1.00 3.00 0.624 48 2.117 1.00 4.00 0.880 83 2.079 1.00 4.00 0.777 19 1.500 1.00 4.00 0.764

ZigW 18 3.833 2.00 5.00 0.857 36 2.514 1.00 4.00 0.649 48 2.758 2.00 4.00 0.507 83 2.626 1.00 4.00 0.671 19 3.368 2.00 5.00 0.684

InfO 18 2.889 2.00 4.00 0.583 36 3.028 2.00 4.00 0.736 48 2.787 1.00 4.00 0.682 83 2.638 1.00 4.00 0.629 19 3.263 3.00 4.00 0.452

InfO2 18 3.167 3.00 4.00 0.383 36 3.222 2.00 4.00 0.591 48 2.745 2.00 4.00 0.482 83 3.062 2.00 4.00 0.687 19 2.579 2.00 3.00 0.507

I2supCsup 18 2.889 2.00 4.00 0.676 36 2.778 2.00 4.00 0.591 48 2.738 2.00 4.00 0.464 83 2.480 1.00 4.00 0.683 19 2.316 1.00 3.00 0.582

ProcCW 18 2.944 2.00 4.00 0.639 36 3.031 1.00 5.00 0.696 48 3.318 2.00 5.00 0.698 83 3.085 2.00 5.00 0.711 19 2.421 2.00 3.00 0.507

RmanW 18 3.556 3.00 4.00 0.511 36 2.929 2.00 4.00 0.409 48 2.729 1.00 4.00 0.676 83 2.710 1.00 4.00 0.713 19 2.684 2.00 4.00 0.582

Isup 18 3.222 2.00 4.00 0.548 36 2.332 1.00 3.00 0.569 48 2.863 1.00 4.00 0.605 83 2.936 2.00 5.00 0.817 19 3.000 2.00 4.00 0.333

Page 59: Hidden diversity in bent-winged bats (Chiroptera ...

33

Table S6. (continued)

Levant (EM) Middle East (ME) Eastern Afghanistan Yemen & Ethiopia (YE)

Character n M min max SD n M min max SD n M min max SD n M min max SD

P4inf 91 2.573 1.00 4.00 0.881 14 2.500 2.00 4.00 0.650 28 3.429 2.00 4.00 0.573 12 3.363 3.00 4.00 0.481

P4inf2 91 3.539 2.00 5.00 0.633 14 3.643 3.00 5.00 0.633 28 2.821 1.00 4.00 0.863 12 2.917 2.00 4.00 0.669

P3inf 91 3.124 2.00 5.00 0.647 14 3.429 2.00 4.00 0.646 28 2.679 1.00 4.00 0.670 12 2.917 2.00 3.00 0.289

P3inf2 91 3.000 1.00 5.00 0.667 14 2.786 1.00 4.00 0.802 28 2.679 2.00 4.00 0.670 12 2.500 2.00 3.00 0.522

P3inf3 91 2.775 2.00 4.00 0.489 14 2.786 2.00 4.00 0.802 28 2.536 1.00 4.00 0.693 12 2.917 2.00 4.00 0.669

P2P4inf 91 2.932 2.00 4.00 0.742 14 3.643 3.00 5.00 0.633 28 2.179 2.00 4.00 0.476 12 2.900 2.00 4.00 0.667

P2P4inf2 91 3.146 2.00 5.00 0.782 14 3.000 2.00 4.00 0.784 28 2.049 1.00 3.00 0.580 12 3.000 2.00 4.00 0.739

P3P4inf 91 3.079 2.00 5.00 0.859 14 3.143 2.00 4.00 0.770 28 2.179 1.00 3.00 0.612 12 3.111 2.00 4.00 0.667

FmenP2inf 91 3.270 2.00 4.00 0.466 14 3.357 3.00 4.00 0.497 28 2.821 2.00 4.00 0.612 12 3.167 2.00 4.00 0.577

Fmen 91 2.803 2.00 5.00 0.570 14 2.527 2.00 4.00 0.624 28 2.774 2.00 4.00 0.541 12 2.273 1.00 3.00 0.617

Cinf 91 3.135 2.00 5.00 0.653 14 2.857 2.00 4.00 0.535 28 3.254 2.00 5.00 0.644 12 3.417 3.00 4.00 0.515

CingM1inf 91 2.722 2.00 5.00 0.578 14 2.429 1.00 3.00 0.646 28 3.464 2.00 5.00 0.962 12 3.250 1.00 5.00 1.055

CingM1inf2 91 3.600 2.00 5.00 0.757 14 3.214 2.00 4.00 0.802 28 2.357 1.00 5.00 0.780 12 2.833 2.00 4.00 0.718

CingM1inf3 91 2.911 2.00 4.00 0.509 14 2.714 2.00 4.00 0.611 28 2.357 1.00 4.00 0.678 12 1.833 1.00 3.00 0.835

CingM1inf4 91 2.244 1.00 3.00 0.455 14 2.786 2.00 4.00 0.802 28 2.214 1.00 3.00 0.568 12 2.750 1.00 4.00 0.754

CingM2inf 91 2.400 1.00 4.00 0.581 14 2.071 1.00 3.00 0.475 28 2.393 1.00 5.00 0.875 12 2.583 1.00 3.00 0.669

CingM2inf2 91 2.900 2.00 4.00 0.539 14 2.286 1.00 4.00 0.726 28 1.536 1.00 3.00 0.576 12 2.333 2.00 4.00 0.651

CingM2inf3 91 3.111 2.00 4.00 0.482 14 3.143 2.00 4.00 0.535 28 2.000 1.00 3.00 0.471 12 2.417 1.00 3.00 0.669

M3sup 93 2.667 1.00 4.00 0.727 14 2.857 2.00 4.00 0.535 28 3.107 2.00 5.00 0.629 12 2.250 1.00 3.00 0.754

M3sup2 93 2.495 1.00 4.00 0.619 14 2.857 2.00 4.00 0.535 28 2.266 2.00 3.00 0.440 12 2.083 2.00 3.00 0.289

M2sup 93 3.108 2.00 4.00 0.345 14 3.214 3.00 4.00 0.426 28 3.571 2.00 5.00 0.742 12 2.500 2.00 4.00 0.674

M2sup2 93 3.215 2.00 4.00 0.623 14 3.143 3.00 4.00 0.363 28 2.571 2.00 4.00 0.573 12 3.250 3.00 4.00 0.452

M2sup3 93 2.946 2.00 4.00 0.518 14 2.714 2.00 4.00 0.611 28 2.179 1.00 3.00 0.476 12 2.583 2.00 4.00 0.669

M2sup4 93 3.000 2.00 4.00 0.417 14 2.714 2.00 4.00 0.611 28 1.786 1.00 3.00 0.630 12 2.500 2.00 3.00 0.522

CingM2sup 93 2.667 1.00 5.00 1.097 14 1.929 1.00 3.00 0.829 28 2.643 1.00 5.00 1.339 12 1.667 1.00 3.00 0.651

M1sup 93 3.677 2.00 5.00 0.645 14 3.429 3.00 4.00 0.514 28 3.393 2.00 5.00 0.737 12 2.833 2.00 5.00 0.835

M1sup2 93 3.075 2.00 4.00 0.663 14 3.134 2.00 4.00 0.666 28 2.746 1.00 4.00 0.798 12 2.667 2.00 4.00 0.651

M1sup3 93 3.000 2.00 4.00 0.442 14 2.989 2.00 4.00 0.556 28 2.780 2.00 4.00 0.497 12 2.500 2.00 3.00 0.522

M1sup4 93 2.581 1.00 4.00 0.577 14 3.357 2.00 4.00 0.745 28 2.179 1.00 3.00 0.670 12 2.583 2.00 3.00 0.515

M1sup5 93 3.456 2.00 5.00 0.586 14 2.571 2.00 3.00 0.514 28 2.989 2.00 5.00 0.721 12 3.554 2.00 5.00 0.752

P4sup 93 2.043 1.00 4.00 0.721 14 1.929 1.00 3.00 0.475 28 1.964 1.00 4.00 0.838 12 2.083 1.00 3.00 0.515

P4sup2 93 3.376 2.00 5.00 0.588 14 3.214 2.00 4.00 0.699 28 2.500 1.00 3.00 0.638 12 2.583 2.00 3.00 0.515

P4sup3 93 2.769 1.00 4.00 0.511 14 2.984 2.00 4.00 0.665 28 2.090 1.00 4.00 0.613 12 2.000 1.00 3.00 0.426

P4sup4 93 3.215 2.00 5.00 0.640 14 3.071 2.00 4.00 0.616 28 2.643 1.00 4.00 0.780 12 3.833 3.00 5.00 0.577

P4sup5 93 3.355 1.00 5.00 0.717 14 3.143 2.00 4.00 0.663 28 2.750 1.00 4.00 0.645 12 2.833 2.00 3.00 0.389

P4sup6 93 3.380 2.00 5.00 0.549 14 2.929 2.00 4.00 0.475 28 2.357 1.00 3.00 0.559 12 2.667 2.00 3.00 0.492

P4sup7 93 3.304 2.00 4.00 0.566 14 3.357 3.00 4.00 0.497 28 2.571 2.00 3.00 0.504 12 2.417 2.00 3.00 0.515

P4sup8 93 3.522 2.00 5.00 0.580 14 3.500 3.00 4.00 0.519 28 3.036 2.00 4.00 0.693 12 2.750 2.00 3.00 0.452

P2sup 93 2.086 1.00 4.00 0.747 14 2.286 1.00 3.00 0.825 28 2.333 1.00 5.00 1.054 12 3.083 2.00 4.00 0.669

P2sup2 93 3.387 2.00 5.00 0.590 14 3.357 2.00 4.00 0.633 28 3.470 2.00 5.00 0.660 12 2.417 2.00 4.00 0.793

P2sup3 93 2.879 1.00 4.00 0.507 14 2.643 2.00 4.00 0.633 28 2.886 2.00 4.00 0.497 12 3.167 2.00 4.00 0.835

P2sup4 93 1.968 1.00 3.00 0.453 14 1.857 1.00 2.00 0.363 28 1.706 1.00 4.00 0.808 12 2.167 2.00 3.00 0.389

CingCsup 93 2.044 1.00 4.00 0.896 14 2.286 1.00 4.00 1.069 28 2.443 1.00 4.00 0.956 12 1.818 1.00 3.00 0.716

ZigW 93 2.767 2.00 4.00 0.676 14 3.857 3.00 4.00 0.363 28 3.359 2.00 5.00 0.860 12 3.700 3.00 4.00 0.437

InfO 93 2.753 2.00 4.00 0.686 14 3.500 3.00 4.00 0.519 28 2.357 1.00 4.00 0.826 12 3.728 2.00 5.00 0.750

InfO2 93 2.903 2.00 4.00 0.490 14 2.714 2.00 3.00 0.469 28 3.500 2.00 5.00 0.839 12 2.728 2.00 4.00 0.617

I2supCsup 93 2.544 1.00 4.00 0.710 14 2.739 2.00 4.00 0.630 28 3.644 2.00 5.00 0.764 12 2.400 2.00 3.00 0.467

ProcCW 93 2.899 2.00 4.00 0.676 14 3.214 2.00 5.00 0.893 28 3.406 2.00 5.00 0.843 12 2.900 2.00 4.00 0.667

RmanW 93 2.974 1.00 4.00 0.466 14 3.061 2.43 4.00 0.447 28 2.118 1.00 3.00 0.489 12 2.300 1.00 3.00 0.611

Isup 93 2.615 1.00 4.00 0.688 14 2.571 1.00 4.00 0.852 28 3.068 2.00 4.00 0.767 12 3.463 2.56 4.00 0.573

Page 60: Hidden diversity in bent-winged bats (Chiroptera ...

34

Figure S4. Results of the discriminant function analyses based on the linear morphometric

data of dental dimensions – first two canonical axes. Polygons follow marginal points of

particular groups with coloured dots as centroids. A – all upper tooth-row dimensions of all

specimens; B – all lower tooth-row dimensions employed in a separate analysis without

individuals from marginal areas (eastern Afghanistan, Arabia and Ethiopia).

Page 61: Hidden diversity in bent-winged bats (Chiroptera ...

35

Figure S5. The main shape variable (RW1) plotted against the centroid size (CS2) of the

lateral view of skull. Polygons and coloured dots as in Fig. S4.