Top Banner
HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an
34

HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Jan 18, 2018

Download

Documents

Douglas Blair

HERD conceptual detector design 17/10/123 PWO W+ CsI(Na) + Fiber + ICCD Charge detector: Si-PIN (1cm×1cm×500  m) – Top: 2x(1mx1m), 4 Sides: 2x(1mx40cm) Shower Tracker –W: 10x3.5mm + 2x17.5mm + 2x35mm (4X 0 = 1.6 ) –Scin. Fibers: 14 X-Y double layers, 1x1mm 2, 1m long Nucleon Tracker with Scin. Fibers ECAL: 16X 0 = 0.7 –PWO bar: 2.5x2.5x70cm 3 –6 layers alternate in X-Y HCAL: 30 layers of W plates + CsI cells –W: 30x3.5mm, 3X 0 = 1.2 –CsI cell:2.5x2.5cm 2 x0.2cm Neutron detector: B-doped plastic scintillator with delayed signals Geneva proposes to replace the scintillating fiber shower tracker with a Silicon tracker-converter to improve  and tracking performance October 2012
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

HERD Tracker Layoutand Photon performance Studies

Xin WuUniversity of Geneva

3rd HERD Workshop19-20 January, 2016, Xi’an

Page 2: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Evolution of the HERD Layout• 1st HERD workshop in October 2012– Si-PIN + 4 X0 Shower Tracker (W + fibers) + ECAL + 3D HCAL– Proposed to replace shower tracker with Silicon-Tungsten Tracker (STK) to improve

photon and tracking performance• 5 converter layers, thickness 3x1 mm + 2x2 mm = 2 X0

• 2nd HERD workshop in December 2013– Proposed to reduce W plate thickness to improve PSF for GeV and below photon

• 3rd HERD workshop in January 2016– Propose to add a PANGU-like tracker to the top for best sub-GeV PSF

• High energy part remains, 5-sides, DAMPE-like, with W converters– 4 layers W of 1 mm thick (1.14 X0) to reach comparable PSF with Fermi

in 1 -100 GeV range• Low energy part, PANGU-like, no W converters

– 40 layers of 320 µ thick silicon (0.14 X0)– Improve PSF by x6-x3 better for 100 MeV – 10 GeV 100 MeV 2Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 3: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

HERD conceptual detector design

17/10/12 3

PWO

W+ CsI(Na) + Fiber + ICCD

• Charge detector: Si-PIN (1cm×1cm×500m)– Top: 2x(1mx1m), 4 Sides: 2x(1mx40cm)

• Shower Tracker– W: 10x3.5mm + 2x17.5mm +

2x35mm (4X0 = 1.6)– Scin. Fibers: 14 X-Y double

layers, 1x1mm2, 1m long• Nucleon Tracker with

Scin. Fibers

• ECAL: 16X0 = 0.7– PWO bar: 2.5x2.5x70cm3

– 6 layers alternate in X-Y

• HCAL: 30 layers of W plates + CsI cells

– W: 30x3.5mm, 3X0 = 1.2 – CsI cell:2.5x2.5cm2x0.2cm• Neutron detector: B-doped plastic scintillator

with delayed signals Geneva proposes to replace the scintillating fiber shower tracker with a Silicon tracker-converter

to improve and tracking performance

October 2012

Page 4: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Baseline design of HERD

4/23

December 2013

Page 5: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

HERD Design : 3D Calo & 5-Side Sensitiven10X acceptance than others, but

weight2.3 T ~1/3 AMSSTK(W+SSD)

Chargegamma-ray directionCR back scatter

3D CALOe/G/CR energye/p discriminationSTK(W+SSD)

5/43S-N Zhang, May 2015

Page 6: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Characteristics of all components

6/43

type size X0,λ unit main functions

tracker(top)

Sistrips

70 cm ×70 cm

2 X0 7 x-y(W foils)

Charge Early shower Tracks

tracker4 sides

Sistrips

65 cm ×50 cm

2 X0 7 x-y(W foils)

Charge Early shower Tracks

CALO ~10K LYSOcubes

63 cm ×63 cm ×63 cm

55X03 λ

3 cm ×3 cm ×3 cm

e/γ energy nucleon energy e/p separation

S-N Zhang, May 2015

Page 7: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Now to wrap a beautiful gift …

7Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 8: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Now add PANGU to HERD …

• First try to fit the envelop: 1510×1480×1580 (overall) and 880×834×729 (calorimeter) – Very challenging to fit services for a 5-sides outward sensitive detector– Simple approach first: 5 identical sides (“DAMPE”) + a light top (“PANGU”)

8Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Silicon-Tungsten Tracker

Calorimeter

Silicon Tracker (“PANGU”) Anti-Coincidence

Detector

Page 9: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

“Economical” Layout • High energy (STK): use DAMPE SSD (320 µm, 95×95, 121 µm pitch) – Long ladder: 7 SSD (~67 cm), readout electronics on one side to save space

• Higher noise all strips readout, no floating strips (uniform S/N)⟹– 7 double-layers of 320 µm Si, 4 with 1 mm W, ~1.14X0 (~Fermi),

• Support tray thickness ~25(W)/20(no W), total height ~20 cm

9Xin Wu HERD Workshop, Beijing, 19-20/1/2016

• “PANGU”: 20 double-layers of SSD, no W (total 0.14X0)– Default same SSD as STK (alternative 150 µm)– New support structure, as transparent as possible– Total height ~ 30 cm

• ACD: ~6 mm thick, segmented, SiPM readout

• Alternative technology: scintillating fiber tracker with SiPM (for the STK part)– Advantage: flexible geometry, no

wire bonds, less fragile– Disadvantages: low TRL, dark

current noise, energy resolution(?)

To be demonstrated!

Page 10: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

HERD Tracker Layout HE (“DAMPE”)

• More robust tacking with 3 X/Y hits after the last W layer • First X/Y hit serve as link to the low energy part on top

10Xin WuHERD Workshop, Beijing, 19-20/1/2016

TRAY W

TRAY W

TRAY W

4

4

4

4

4

4

208

2929

2424

26.5

26.5

2520

1

5

4

3

2

1

0

7

TRAY W6

29

4

66 cm (active Si) WSi X-viewSi Y-view

Page 11: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

HERD Tracker Layout LE (“PANGU”)

• New light support structure

11Xin WuHERD Workshop, Beijing, 19-20/1/2016

3

3

3

3

270

1313

1313

10

4

11

10

9

8

28

27 3

66 cm (active Si)Si X-viewSi Y-view

……

Page 12: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Some very rough estimates …• Silicon– STK: 7x7x2x5 = 490 ladders, 3430 SSD, ~31 m2

– “PANGU”: 7x20x2 = 280 ladders, 1960 SSD, , ~18 m2

• Weight– Tungsten: 7x7x4x5 = 980 plates (same size as SSD), 8844.5 cm3, 170 kg– 50 kg support for each STK + 8 kg each ACD – 20 kg total for “PANGU”– Total : 170 + 58x5 + 20 = 480 kg + 25% margin = ~600 kg• Readout channels and power consumption– STK: 768x490 = 376320 channels, assume 1 mW/cha (DAMPE) ⟹ 376 W

• Can be reduced by going to 0.18µm ASICs (VA)– PANGU: 768x280 = 215040 channels, assume 0.3 mW/cha (TAA1) ⟹ 65 W

• First 6 layers should use VA instead for charge measurement : +15 W• Trigger and readout: 20 W (PANGU)

– ACD: 10 W– Total: 376 + 80 + 15 = 471 W + 25% margin = ~600 W

12Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 13: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

13Xin Wu

Some numbers of dimension

It would be useful to know if the CSS is blocking some angular ranges

Need larger top STK to increase coverage (8x8 or 10x10 SSD? )

Page 14: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

14Xin Wu

Need larger side STK to increase coverage (8 SSD ladder?)

Page 15: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Available Space before mounting the ACD

15Xin Wu

• How to increase angular coverage?• Obvious choice: increase the size of the top STK by 3 SSD (PANGU part unchanged)– 5-SSD ladders, number of ladders 98 280⟹

• Add 182 ladders, 140k channels, 140 kW– Recover ~4x5° coverage – Routing of the electronics would be complicated

• Additional: make 2 of the side STK larger– 5-SSD ladders on x, 7-SSD ladders on y

• Add 182 ladders, 140k channels, 140 kW– Recover ~4x5° coverage – Very difficult to route the electronics

For large size tracker, scintillating fiber has a big advantage in cost and power (but charge measurement could be a problem!)

Intermediate solution: DAMPE 4-SSD ladders with charge sharing, 8x8 SSD/layer

Page 16: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Performance Studies• Detector simulation with Geant4-10.1.2• Only top tracker (“DAMPE” part and “PANGU” part) and calorimeter are simulated

– ACD not implemented• Tracker uses the DAMPE SSD geometry, including guard ring, inter-SSD distance, etc.

– A ladder is made of 7 SSD– Readout pitch is 121 µm, no floating strip charge sharing, analog readout– Tracker layers placed as described in page 8 and 9

• Only silicon and tungsten are implemented, support structure material ignored

• Calorimeter implemented as BGO bars– Only the total amount of energy deposited in calorimeter is used in the analysis

• Distance between sensitive surfaces of calorimeter and track is 5 cm– Also simulated 12 cm for comparison

16Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 17: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Event generation and detection • Photons generated from a flat surface with 3 angular ranges

– Normal incidence: cos > 0.975 (<12.84°)– = 30°– = 50°

• Filtering: only interacting events are selected• Further selection

– Photon converted in the tracker– Both electron and positron have at least 6 matching silicon clusters– Both electron and positron tracks are found by the Kalman filter with perfect

pattern recognition (only matched clusters are fed to the filter)– At least 70% of the photon energy is deposited in the detector (tracker +

calorimeter)• Effective area and Point Spread Function are compared

– Two different method of photon direction reconstruction• Leading track• Vector sum of electron and positron tracks weighted by Gaussian smeared

energy (30%) 17Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 18: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Pair Opening Angle

• Leading track gives a as good PSF as the energy weighted measurement above a few GeV

18Xin Wu HERD Workshop, Beijing, 19-20/1/2016

gamma ray

electron positron

Page 19: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

PSF: Converted in DAMPE

• ~ 0.15° @ 10 GeV, ~0.8° @ 1 GeV, ~7° @ 100 MeV – Fermi: ~ 0.15° @ 10 GeV, 0.7° @ 1 GeV, 5° @ 100 MeV

19Xin Wu PSF Comparable to Fermi!

Page 20: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

PSF: Converted in PANGU

• PSF improves x3, x4, x6 at low 10 GeV, 1 GeV, 100 MeV– ~ 0.05° @ 10 GeV, ~0.2° @ 1 GeV, ~1° @ 100 MeV 20Xin Wu

Page 21: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

PSF: Converted in PANGU

21Xin Wu

• Measure the energy of each track to ~30% improves PSF at low energy by 20%– Using 150 µm SSD improves the PSF by 25% at low energy (but ~½ of Eff. Area)

HERD Workshop, Beijing, 19-20/1/2016

Page 22: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Effective Area for different selections

22Xin Wu

“PANGU” ≈ 1/6 “DAMPE

Good for diff. or trans.

• At normal incidence, above 10 GeV, energy dependence is weak – Sharp decline below 1 GeV (larger opening angle and energy absorbed by W)

• Some acceptance probably can be recovered with reduced PSF

Page 23: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Effective Area, linear scale

• 70% containment > 10 GeV: ~1900 cm2 for “DAMPE”, ~300 cm2 for “PANGU”– > 1 GeV: ~1900 cm2 for “DAMPE”, ~300 cm2 for “PANGU”– > 400 MeV: “PANGU” is similar to ESA-CAS PANGU of same SSD thickness 23Xin Wu

Fermi: 8000, 7000, 2400 cm2 for 10 GeV, 1 GeV, 100 MeV

Comparable to Fermi if x4 (+ 4 sides)

Page 24: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Off-axis Effective Area, converted in “DAMPE”

• Effective area decreases with incident angle because of the calorimeter is smaller– 100 GeV: 1900 cm2 on-axis, 1400 cm2 at 45°

24Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 25: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Off-axis Effective Area, converted in “PANGU”

• Even bigger drop for “PANGU”

25Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 26: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Off-axis PSF: Converted in DAMPE

• Small angle dependence > 10 GeV, larger (~25%) at lower energy– 1 GeV: 0.8° on-axis, 0.9° at 30°, 1.0° at 45° – 100 MeV: 6.8° on-axis, 7.4° at 30°, 8.2° at 45° 26Xin Wu

Page 27: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Off-axis PSF: Converted in PANGU

• Less sensitive (+16% at 45°) to angles than DAMPE because of less material– 1 GeV: 0.18° on-axis, 0.19° at 30°, 0.21° at 45° – 100 MeV: 1.12° on-axis, 1.17° at 30°, 1.30° at 45° 27Xin Wu

Page 28: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Effective Area vs. Calo-STK distance, DAMPE

• Loss of Effective Area if Calo-STK distance is large, in particular at large angle – Up to ~17% at 45°

28Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 29: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Effective Area vs. Calo-STK distance, PANGU

• Situation is worse for PANGU – Up to ~28% at 45°

29Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Should try to reduce as much as possible the distance calo-STK!

Page 30: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Conclusions• We have implemented a layout of HERD into CAD including a low energy

part (“PANGU”) on the top to check the envelops– Very challenging to cover all solid angles– “Economical” solution with 7-SDD ladders, same STK on all five sides

• Propose use 4x 1mm tungsten plates to have a PSF comparable to Fermi – Effective Area is also comparable with the “economical” layout

• The PANGU part has similar performance as the ESA-CAS PANGU above 400 MeV– Very limited sensitivity below 200 MeV because of large opening angle

• Hard question: What is the optimal balance between PSF and Effective Area, for both high and low energy, from the science point of view?– DM search vs. -ray astronomy?– Probably should not optimized too much for “PANGU” given that HERD

cannot point, and has small FOV?• Would be very useful to simulate the sky coverage of HERD on CSS

30Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Long ladder noise performance to be demonstrated!

Page 31: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

THANK YOU!

Page 32: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Effective Area vs. W thickness, DAMPE

• Loss of Effective Area at high energy because of conversion probability – Up to ~40% at 100 GeV

32Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 33: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

Effective Area vs. W thickness, PANGU

• Better Effective Area below 1 GeV at low energy with 0.5 mm, ~x2 at 100 MeV! – Because less energy loss in W so more passed the energy containment cut

33Xin Wu HERD Workshop, Beijing, 19-20/1/2016

Page 34: HERD Tracker Layout and Photon performance Studies Xin Wu University of Geneva 3 rd HERD Workshop 19-20 January, 2016, Xi’an.

PSF vs. W thickness, DAMPE

• 30-40% improvement of PSF between 100 MeV and 50 MeV

34Xin Wu HERD Workshop, Beijing, 19-20/1/2016