Top Banner
Helpful Hints • Welcome! • I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) • 1. Background to rocks in relation to experiments • 2. Experimental approaches • 3. Key findings from the papers If you are an experienced petrologist you might want to miss out section 1. I’ve tried to pop in some stimulating questions and summarise the information in a way especially relevant to experimental petrology so it might be worth looking at anyway. 2. is background to the important considerations for experimentalists and a little insight into the limits of the usefulness of experiments in the shallow parts of subduction zones. It contains a few of my own thoughts,further reading etc. Hopefully these sections will help you to get more out of the two papers which I have summarised in Section 3. I’ll be interested to hear your thoughts on some of the questions I have posed (but of course I am not trying to wriggle out of answering questions myself!) Enjoy. NB : some of the slides are ‘animated’
35

Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Dec 14, 2015

Download

Documents

Erin Loller
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Helpful Hints• Welcome!• I’ve added three sections

(labelled (usually )in bottom left-hand corner 1,2 and 3)

• 1. Background to rocks in relation to experiments

• 2. Experimental approaches

• 3. Key findings from the papers

If you are an experienced petrologist you might want to miss out section 1. I’ve tried to pop in some stimulating questions and summarise the information in a way especially relevant to experimental petrology so it might be worth looking at anyway.

2. is background to the important considerations for experimentalists and a little insight into the limits of the usefulness of experiments in the shallow parts of subduction zones. It contains a few of my own thoughts,further reading etc.

Hopefully these sections will help you to get more out of the two papers which I have summarised in Section 3. I’ll be interested to hear your thoughts on some of the questions I have posed (but of course I am not trying to wriggle out of answering questions myself!)Enjoy.

NB : some of the slides are ‘animated’

Page 2: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

What is a rock?I’d like you to start by taking 5 – 10 minutes to discuss your experiences of rocks and then to describe what features of (igneous) rocks you think are useful for understanding magmatic processes!

Rodin’s ‘The Thinker’

Andesite (opx, amph,plag, Fe-Ti oxides and accessory pyrrhotite).

1

Page 3: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Many subduction-related systems are open, with almost all of these processes happening to individual rocks

So when might analysing bulk composition be useful/important ? What would the bulk actually represent?1

Page 4: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Pre

ssur

e

Temperature

Liquidus I

Possible Magma Ascent path

Crystallisation starts here(v. few crystals)

More crystals here(more undercooled from the liquidus)

Important properties of the solid components (crystals) I

This is for a system containing water, volatiles are important here

Some phases (e.g. Plagioclase) have strong temperature dependence of the liquidus at low PH2O

1

Page 5: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Larger crystals (phenocrysts)-Grow in the storage region,Reflect ‘magma chamber’ processes

Microphenocrysts – may reflect storage OR ascent conditions

Microlites – smallest crystals, may reflectDegassing or ascent related process.

Consequences in the rock

1

Page 6: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Pre

ssur

e

Temperature

Liquidus I

Important properties of the solid components (crystals) II

This is for a system containing water, volatiles are important here

Liquidus II

Some phases (e.g. cpx) have a less marked T dependency, thus differing phenocryst components can reflect differing conditions of formation.

I

II

I

I +II

Liquidus III

Finally, hydrous minerals (e.g.amphibole, biotite) have a positive slope at low pressures. This reverses at higher pressures. Some of you may be able to explain this in terms of the thermodynamic properties of the phase and melt!

Now think about typical storage, ascent paths and how this might be reflected in the mineral assemblage1

Page 7: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Important properties of the solid components (crystals) III

(Soufriere Hills groundmass composition experiments from Couch et al., 2003)

Most phenocryst phases in subduction-related rocks exhibit considerable solid solution. This is often a strong function of one or a few of of P,T, volatile content and fO2 . Differing phases can be used for different purposes.

1

This is an example of the influence of P(H2O) and T on plagioclase composition

Page 8: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

This is a BSE-SEM image of (predominantly plagioclase, I’ve labelled a few) phenocrysts) from Soufriere Hills (Montserrat). Brightness is proportionate to mass so the differing colours reflect differing compositions. Take a minute to look at this image and think about what these phenocrysts could be reflecting

plag

plagplag

Scale bar is 500 mKeep thinking about that bulk composition question!

1

Page 9: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Rocks are about more than just composition I

Most melts are 20% less dense than their parent rock1

Page 10: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Rocks are about more than just composition II

40 60

107

1014

(Pa

s)

Crystal content

Based on Lejeune & Richet (1995)

Crystallisation, cooling and changing composition all have implications for the response of the magma to stress (affecting mobility and movement of magmas). Some magmas behave as brittle solids.

1

Page 11: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Thinking pause

Individual crystals tell us a great deal about magmatic history

But when we are thinking about volcanic behaviour it is the macroscopic changes to the system that are important

Never forget to look at the rocks in the field and think about this!!! You can probably come up with some examples.

Page 12: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

The fluid phase. The amount of volatiles dissolved in the magma markedly decreases as a function of pressure (or depth)

1Moore et al., 1998b – ref at end

Page 13: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

VolatilesPhase change from dissolved fluids to exsolved gases is the fundamental driving forced behind volcanic eruptions

Also have profound influence on physical properties of the magma (in what way?)

Exerts strong control on crystallisation.....

Many of you will have experience of volatile emissions, perhaps good here to reflect among yourselves on the way in which volatiles drive volcanic eruptions

1

Page 14: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

RecallP

ress

ure

TemperatureThis is for a system containing water, volatiles are important here

‘Hydrous phases’

‘plagioclase’

Stability and compositions of such phases could be excellent record of volatile content or degassing processes

1

Page 15: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Experiments !!!Can determine volatile concentrations (see Moore et al., 1998b example)

Using phenocryst compositions and abundance can reproduce conditions of storage and ascent, and perturbations relevant to eruption (our papers focus on this)

Dynamic experiments can reproduce degassing-induced crystallisation (see Couch et al., 2003 as an example)

BUT.......

2

Page 16: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

From Pichavant et al., 2007

Need to carefully consider the nature of the liquid + crystals to be reproduced

What is useful about an equilibrium assemblage?

Most useful to use low crystallinity magma equivalent to that under investigation (cf Moore et al., 1998) or natural glass or experimental reversal with bulk and glass

Can anything meaningful be derived from working with a hybridised magma?

2

Page 17: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Example from Pichavant et al., 2007

Problems with equilibrium:

Need to consider whether want partial or total equilibrium and what this represents in the real magmatic system. We need to think again about the complete system AND local equilibrium.

Page 18: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Some more observations

There are comparatively few studies of basaltic andesites, although these are often implicated in the recharge and triggering of eruptions (incl. solubility data relevant to excess degassing)

There is something of an experimental ‘gap’ above 3 Kbars and below 10kbars. This is a technical problem rather than a lack of scientific interest (see e.g. conclusions from Moore et al., and Barclay and Carmichael for reasons to work in this zone). See also point above! ...But rescue may be at hand (see Moore et al., 2008).

2

Page 19: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

450km

120km

C o ld se a lsIHPV zo ne

M ulti a nvil d o m a in

Dia m o nd a nvils

15 G p a

6km15km

Pisto n c ylind e r zo ne

1a tm g a s-m ixing furna c e zo ne

Tra nsitio n500M Pa200M Pa

4 G p a

2

Page 20: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

The kit

M a g ne t

Pre ssure ve sse l

Furna c e a nd insula tio n

Sa m p le

To wa te r p um p

The rm o c o up le

Ra p id -q ue nc h c o ld se a l

One of UEA’s RQCS – in its shiny orange safety cage2

At the end of the experiment the magnet is pulled down and sample rapidly removed from the hot zone

Page 21: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Locations of the papers(adapted From Carmichael et al., 2006)

3

Page 22: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Moore and Carmichael

• i

Usual Colima assemblage: plag, opx, cpx and hbl (matched as shown)

No significant role for CO2

NB Colima assemblage too crystalline to use as starting bulk.

Ascent-related plagioclase growth identified

Mascota spessartite much increased water content. Interesting!

3

Page 23: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Basaltic andesite

Equilibration at water contents of 3-5 wt%

Reproduced assemblage compositions and volumes

3

Page 24: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Notable findings

• Crystals in both compositions result of degassing and decompression of hydrous parent magmas

• Can fractionate (hbl + plag) from similar hydrous parent

• Volatile phase dominated by water• Limited role for magma mixing

3

Page 25: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Cerro la Pilita Trachybasalt (near Jorullo Volcano)

Very rare global occurrence of amphibole-bearing basalts

Using a lava with amphibole allows us to consider why its absent!

0 2km

La Huacana

El Na ra njo del

J o rullo

J orullo Volcano

C e rro La

Pilita J or46

La Puerta dela Playa

Hwy

120

19 00'o

18 55'o

101 43'o101 48'

o

Location of Cerro La Pilita Trachybasalt

Page 26: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Phase diagram

Stability field for the Cerro la Pilita cone

Page 27: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Influence of fO2 (shift of amphibole)

Effect of mixed-volatile conditions (produces unlikely plagioclase compositions)

Page 28: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Astonishing crystallisation!

0

Temperature (C)o

% C

rysta

ls

All crystalsolivinehornblendecpx

(a)

(b)Barclay and Carmichae l, Figure 6

p y x

hbde

0 10 m

Recall: the ‘mechanical’ consequence of the large increase in crystallinity in the experiments of LeJeune and Richet3

ian renfrew
Page 29: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Temperature relative to ‘hornblende in’, Co

-50 0 50-100 100 1500

10

20

30

40

50

60

70

80

% C

ryst

alli

satio

n

0

10

20

30

40

50

60

70

80

% C

ryst

alli

satio

n

-50 0 50-100 100 150

0

10

20

30

40

50

60

70

80%

Cry

sta

llisa

tion

a.

b.

c.

-50 0 50-100 100 150

Barclay and Carmichael, Figure 7

This considers other experiments on other compositions (Sisson and Grove, Moore et al., and Blatter et al.)

Crystallisation effect associated with ‘hornblende in’ most marked for basalts

Will all hydrous basalts stall?

Page 30: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Is this what happens?

Am p hib o le‘in’

Page 31: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Taking it further….

SiO (wt% )2

TiO

(w

t%)

2

SiO (wt% )2

Fe

O (

wt%

)2

3

SiO (wt% )2

Al

O (

wt%

)2

3

SiO (wt% )2

FeO

(w

t%)

Barclay and C arm ichael,F ig 4

The residual melt defines a shoshonitic trend

Here, the experimental composition are compared with the Aurora Volcanic Field in California

A reasonable fit to the trends of erupted material (perhaps plag removal in Aurora)– could we sometimes have re-melting of stalled material as a source of water-rich magma ?

I’m using bulk compostions and experimental glass compositions here – what do you think of that?

Page 32: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

3

Page 33: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Davidson et al., (2007)• Finds geochemical

evidence for fractionation from amphibole

• Does this apply to Mexico??

Cooling rather than Decompression (Annen et al., 2006)

3

Page 34: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

Conclusions

• Used well experiments are exceptionally useful at determing pre-eruptive volatile contents, storage conditions and quantifying the nature of the perturbation prior to eruption

• The attainment of equilibrium is very important and the use of a ‘bulk’ that represents a meaningful magma vital.

• Lots of exciting work to be done particularly at moderate pressures

Page 35: Helpful Hints Welcome! I’ve added three sections (labelled (usually )in bottom left-hand corner 1,2 and 3) 1. Background to rocks in relation to experiments.

References not on the website