Top Banner
PlotScale Monitoring to Determine Effectiveness of Individual Water Quality Practices Matthew Helmers Dean’s Professor, College of Ag. & Life Sciences Professor, Dept. of Ag. and Biosystems Eng. Iowa State University Department of Agricultural and Biosystems Engineering
27

Helmers - Plot-Scale Monitoring

Jan 22, 2018

Download

Environment

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Helmers - Plot-Scale Monitoring

Plot‐Scale Monitoring to Determine Effectiveness of Individual Water Quality Practices

Matthew HelmersDean’s Professor, College of Ag. & Life Sciences Professor, Dept. of Ag. and Biosystems Eng.

Iowa State University

Department of Agricultural and Biosystems Engineering

Page 2: Helmers - Plot-Scale Monitoring

NWRF DrainageGilmore City DRF

NERF Drainage

COBS

SERF Drainage

Replicated subsurface drainage plots to evaluate performance of various in-field management practices

Page 3: Helmers - Plot-Scale Monitoring

Department of Agricultural and Biosystems Engineering

Plot Sampling Layout

125 ft

50 ft

Perforated border tile -drains to remote outlet

Flow monitoring sump(three drain lines in each sump)

Treatment plot

125 ft

50 ft

Perforated border tile -drains to remote outlet

Flow monitoring sump(three drain lines in each sump)

Treatment plot

Page 4: Helmers - Plot-Scale Monitoring

Flow and sampling set-up at Gilmore City site

Page 5: Helmers - Plot-Scale Monitoring

Timing of Subsurface Drainage (1990-2011)

Page 6: Helmers - Plot-Scale Monitoring

Corn-Soybean Rotation 150/160 lb-N/acre Application Rate

Variability in Drainage, Nitrate Concentration and Nitrate Loss – Weather a Major Driver

Page 7: Helmers - Plot-Scale Monitoring

Impact of Nitrogen Application Rate

Page 8: Helmers - Plot-Scale Monitoring

Impact of Application Timing: 2006-14

140 kg-N/ha 168 kg-N/ha

Page 9: Helmers - Plot-Scale Monitoring

Impact of Application Timing: 2006-14

140 kg-N/ha 168 kg-N/ha

Page 10: Helmers - Plot-Scale Monitoring

Impact of Nitrogen Source – 168kg-N/ha

Page 11: Helmers - Plot-Scale Monitoring

Impact of Nitrogen Source – 168 kg-N/ha

Page 12: Helmers - Plot-Scale Monitoring

Impacts of Cover Crops on Nitrate-N Concentration in Drainage Water – Gilmore City

~25% Reduction in Nitrate-N Concentration With Annual Rye Cover Crop

Page 13: Helmers - Plot-Scale Monitoring

Using Prairie Strips to Reduce Sediment and Nutrient Loss

prairiestrips.org

Page 14: Helmers - Plot-Scale Monitoring

Watershed Experiment: NSNWR

Neal Smith Prairie Learning Center

Site 1

Site 2

Site 3

#S#S#S

#SSite 1

Site 2

Site 3Site 0

%U

Neal Smith Prairie Learning Center

0 2 4 6 8 10 12 Kilometers

N

EW

S

300 0 300 600 Meters

Walnut Creek Watershed boundaryRefuge boundary

Page 15: Helmers - Plot-Scale Monitoring

Site History• Watersheds under primarily bromegrass cover until fall 2006

• Watershed instrumentation: spring 2005• Pre‐treatment data collection: 2005 – 2006 field seasons

• Treatment establishment: fall 2006 & spring 2007– Soybean planted in 2007– Prairie strips sown in July 2007

• No‐till corn‐soybean rotation in cropped areas

Page 16: Helmers - Plot-Scale Monitoring

reconstructed prairie

corn - soybean row crops, ZERO TILLAGE

Experimental Watershed Treatments

12 watersheds: Balanced Incomplete Block Design:

3 reps X 4 treatments X 3 blocks

0% 10% 10% 20%

Page 17: Helmers - Plot-Scale Monitoring

Watershed CharacteristicsSize (acre)

Slope (%)

Location and percent of grass filters* 

Basswood‐1 1.3 7.5 10% at footslopeBasswood‐2 1.2 6.6 5% at footslope and 5% at upslopeBasswood‐3 1.2 6.4 10% at footslope and 10% upslopeBasswood‐4 1.4 8.2 10% at footslope and 10% upslopeBasswood‐5 3.1 8.9 5% at footslope and 5% upslopeBasswood‐6 2.1 10.5 All rowcropsInterim‐1 7.4 7.7 3.3% at footslope, 3.3% at sideslope, and 

3.3% at upslope

Interim‐2 7.9 6.1 10% at footslopeInterim‐3 1.8 9.3 All rowcropsOrbweaver‐1 2.9 10.3 10% at footslopeOrbweaver‐2 5.9 6.7 6.7% at footslope, 6.7% at sideslope, and 

6.7% at upslope

Orbweaver‐3 3.1 6.6 All rowcrops

*Percent of grass filters = area of filters / area of watershed

Page 18: Helmers - Plot-Scale Monitoring

What is unique?

Natural Flow Conditions

Page 19: Helmers - Plot-Scale Monitoring

Surface Runoff MonitoringH-flumes monitor movement of water, sediment, and nutrients

Page 20: Helmers - Plot-Scale Monitoring

Precipitation (April‐November)

Page 21: Helmers - Plot-Scale Monitoring

Surface Runoff 

Page 22: Helmers - Plot-Scale Monitoring

Sediment Loss in Runoff (2007‐2012)

>95% Reduction in sediment export from watersheds with prairie filter strips

Page 23: Helmers - Plot-Scale Monitoring

Phosphorus Loss in Runoff (2007‐2012)

Zhou et al., 2014

>90% Reduction in TP export from watersheds with prairie filter strips

Page 24: Helmers - Plot-Scale Monitoring

Total Nitrogen Loss in Runoff (2007‐2011)

Zhou et al., 2014

>90% Reduction in TN export from watersheds with prairie filter strips

Page 25: Helmers - Plot-Scale Monitoring

Nitrate‐N Loss in Runoff (2007‐2011)

Zhou et al., 2014

Page 26: Helmers - Plot-Scale Monitoring

Visual Examples (4 inch rain in June 2008)

100% Crop 100% Prairie10% Prairie90% Crop

Page 27: Helmers - Plot-Scale Monitoring

Summary• In Iowa, on average the majority of drainage

and nitrate-N loss occurs in April-June• Timing of nitrogen application (fall or early

season sidedress) had little impact on nitrate-N concentrations in drainage

• In north-central Iowa, winter cereal rye cover crops reduced nitrate-N concentration in subsurface drainage by ~25%

• Strategically sited prairie strips hold potential for reducing surface runoff and loss of sediment and nutrients with surface runoff