Top Banner
© 2015 ANSYS, Inc. April 24, 2015 1 16.0 Release Lecture 3 – Forced Convection Heat Transfer Modeling using ANSYS Fluent
43

Heat Transfer Modeling using ANSYS Fluent

Dec 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 1

16.0 Release

Lecture 3 – Forced Convection

Heat Transfer Modeling using ANSYS Fluent

Page 2: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 2

Outline

• Introduction – Heat Transfer Coefficient

• Laminar and Turbulent Boundary Layers

• Modelling Heat Transfer – The Reynolds Analogy

• Turbulence Modelling and Dynamic and Thermal Wall Functions

• Case Study - Modelling Heat Transfer for Non-Equilibrium and Complex Flows

Page 3: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 3

Heat Transfer Coefficient

• Influence of:

• Geometry, fluid properties, etc.

• Importance of the boundary layer

• Local heat flux

• Mean heat flux

0

0

0TTxh

y

Tkx s

y

fy

0T

sT

0

0

00)(

1)( TThdxTTxh

Lx p

L

py

Mechanism Fluid h (W/m2·K)

Natural

Convection

Gases 5 – 30

Water 100 – 1000

Forced

Convection

Gas 10 – 300

Water 300 – 12,000

Oil 50 – 1,700

Liquid metal 6,000 – 110,000

Phase Change

Boiling 3,000 – 60,000

Condensation 5,000 – 110,000

constant...pT

Page 4: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 4

Boundary Layers

• Important parameters are bulk velocity, bulk temperature, and pressure gradient

• Dimensionless variables: 0

~

U

uu

s

s

TT

TTT

0

~

L

00 , TULaminar Transition Turbulent

laminar

turbulent

Page 5: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 5

Boundary Layers

• Laminar boundary layer

• Mixing is characterized by the ratio of viscous boundary layer thickness to thermal boundary layer thickness.

• Turbulent boundary layer

• Mixing is primarily governed by turbulence.

• Heat transfer coefficient – use an available correlation for the friction coefficient, Cf (valid for a flat plate only)

• Laminar Boundary Layers (exact)

• Turbulent Boundary Layers (empirical correlations)

2/1,Re

664.0

x

xfC 3/12/1 PrRe332.0Nu xx

5/1,Re

0592.0

x

xfC 3/15/4 PrRe0296.0Nu xx

Page 6: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 6

Modeling Turbulent Heat Transfer

• RANS equations

• Boussinesq approximation for Reynolds stresses

• Turbulent viscosity, μT, is calculated from some turbulence model:

• By analogy, PrT = 0.85 (from experimental data)

uuu TTT

vu

y

u

yx

P

y

uv

x

uu

TvC

y

Tk

yy

Tv

x

TuC pp

y

uvu T

y

TDTv T

T

TTD

Pr

Page 7: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 7

Turbulent Boundary Layer Structure

• Velocity profile exhibits layered structure identified from dimensional analysis

• Viscous sublayer – Viscous forces dominate, velocity depends on ρ, τw, μ, y.

• Outer layer – Depends on mean flow characteristics

• Overlap layer – Log law applies

• TKE production and dissipation are nearly equal in the overlap layer (turbulent equilibrium)

• Dissipation dominates production in the viscous sublayer region.

Uy

0L

oss

Ga

in

Fully-Developed Pipe Flow

Dissipation of k

Diffusion of k

Production of k

10 30

Uy5 60

U

U

45.5ln5.2

Uy

U

U

Inner layer

Outer

layer

Fully turbulent

or

Log-law region Buffer layer

or

Blending

region

Viscous

sublayer

Upper limit

Depends on

Reynolds number

Page 8: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 8

Effects of Transition

• Spurious jump of Cf and h at transition from laminar to turbulent flows (Rex > 5e5)

• Natural transition is a complex phenomenon (for RANS)

• RANS: k-kL-w , intermittency transition, and Transition SST models can be used for natural transition, bypass transition, separation induced transition

• Use if extent of laminar flow region is significant

TU ,

wT

)(x

)(xh

cx

TU , Laminar Transition Turbulent

laminar

turbulent

k

Page 9: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 9

Boundary Layer Heat Transfer

• Impact on numerical modeling

• Use of wall functions for y+ >> 1 (when hypothesis are fulfilled)

• Sensitivity of the results to y+ (transition, low-Re effect) and Pr

• When hypothesis fails (Non-equilibrium boundary layers, recirculation, stagnation, transition), we need to correctly resolve both the momentum AND thermal viscous sub-layer (y+ < 1)

• This is straightforward for Pr ~ 1 or Pr < 1.

• When Pr is greater than 1, the thermal sublayer is much thinner than the viscous sublayer.

• Small sensitivity to grid resolution (provided that the momentum boundary layer is correctly predicted

• y+ ≤ 1 and ~10 cells for 1 < y+ < 30

Page 10: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 10

BL Heat Transfer Example – Abrupt Pipe Expansion

• Abrupt pipe expansion (non-equilibrium boundary layer, recirculation, wall heat transfer)

• Mesh: y+ ~ 1, 50

• Inlet: Fully-developed turbulent pipe flow.

• Models: RKE with EWT, SST k–ω

• Enhanced wall treatment (for y+ ~ 1 mesh)

• Standard wall functions (for y+ ~ 50 mesh)

• Both equilibrium and non-equilibrium wall functions were studied.

J. Baughn, M. Hoffman, R. Takahashi, and B. Launder (1984), “Local Heat Transfer Downstream of an Abrupt Expansion

in a Circular Channel with Constant Wall Heat Flux,” ASME J. Heat Transfer, Vol. 106, No. 4, pp. 789–796.

750,40Re Dd DFlow

Page 11: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 11

BL Heat Transfer Example –Pipe Expansion

• Local Nusselt number compared to the Dittus-Boelter correlation (valid for pipe flows).

4.08.0

DB PrRe023.0Nu

DBNu

Nu

DBNu

Nu

Hx / Hx /

Page 12: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 12

Turbine Blade Heat Transfer with Transition Models

• VPI Turbine

• Hybrid Mesh: 24,386 cells

• Re = 23,000, Uin = 5.85 m/s, Tin = 20 ºC, Chord = 59.4 cm

• Air with constant properties

• Inlet turbulent intensity = 10%

• Both models do a good job of predicting transition point and heat transfer coefficient

Page 13: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 13

Example – Impinging Jet

0

)(TT

xhp

• Relevant dimensionless parameters

• Height-to-diameter ratio, H/D

• Reynolds number, Re

• Prandtl number, Pr

• Quantities analyzed

• Surface heat transfer coefficient

• Nusselt number

f

xk

Lxh )(Nu

0T

H

D

or pT

Page 14: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 14

Free jet

Stagnation zone

Boundary layer

and transition

?

Characteristics of Impinging Jet Flow

• Modeling challenge – complex flow

• Free jet turbulence

• Stagnation point

• Boundary layer

• Strong streamline curvature

• Transition (?)

Wall jet

Page 15: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 15

TKE Production at Stagnation Point

• Physically, decreased production of turbulence is observed at the stagnation point.

• Two-equation models tend to overestimate TKE production at the stagnation point

Realizable k–ε RNG k–ε

Can the production of turbulent kinetic energy be reduced?

Standard k–ε

Page 16: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 16

Impinging Jet Example

• Turbulent kinetic energy transport equation:

• Modification of production term (Menter, 1992):

• Text user interface command is define/models/viscous/turbulent-expert/

Diffusion

i

j

j

i

j

i

jkj x

u

x

u

x

u

x

k

xDt

DkT

T

Production Dissipation

2

T kP

Page 17: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 17

Effect of Modified Production Term

k–ω Model

Default Production Ω-Based Production

Page 18: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 18

Flow Calculations (y+ = 1)

• The following RANS models were evaluated:

• Standard k–ε (SKE)

• RNG k–ε (RKE) – Minimizes TKE at stagnation point.

• Standard k–ω (KW) – Laminar/turbulent transition in boundary layer.

• Modified k–ω (KWW) – Production of TKE based on rotation rate, Ω.

• V2F model – Accounts for near-wall anisotropy by solving a transport equation for (v')2

• Flow characteristics

• Prandtl number: Pr = 0.7

• Reynolds number: Re = 23,000

• Height-to-diameter ratio: H/D = 2.0 and 6.0

Page 19: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 19

Impinging Jet: Velocity Profiles

• Results: H/D = 2, Re = 23,000

Mean velocity profiles

KW

RNG

V2F

r/D = 1

r/D = 2 H

D

• Experiment

Experiment

Page 20: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 20

Results from Two-Equation Models

• Results: H/D = 2, Re = 23,000

Nu* TKE*

Nusselt Number Re = 23,000

Turbulent Kinetic Energy Re = 23,000

• Experiment RNG

SKE KWW

RNG

SKE KWW

Page 21: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 21

Comparison of k–ω and V2F models

• Results: H/D = 2, Re = 23,000

Nu* TKE*

Nusselt Number Re = 23,000

Turbulent Kinetic Energy Re = 23,000

• Experiment V2F

KWW V2F

KWW

Page 22: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 22

Results from Two-Equation Models

• Results: H/D = 6, Re = 23.000

Nusselt Number Re = 23,000

Nusselt Number Re = 23,000

Nu* Nu* • Experiment

RNG

SKE KWW

• Experiment V2F

KWW

Page 23: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 23

Mixed Convection around a Wall-Mounted Cylinder

• Re = 40,000 (subcritical flow)

• Laminar BL with turbulent wake

• Bluff Body

• Massive separation, vortex shedding

• Turbulence model

• SST k–ω with y+ = 1

• LES with dynamic Smagorinsky subgrid model

• 3 million cell mesh

• Mixed convection (buoyancy is important)

• Boussinesq approximation

• Cylinder covered by a 5 mm thick steel layer

• Fluid/Solid coupled thermal simulation

• D >> d so use of shell conduction is appropriate

2.13 m

2 m

0.642 m

ReD = 40,000 g

Courtesy CEA/EDF

600 W

12 m

Page 24: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 24

Flow Regimes for Flow Past Cylinders

• Re < 50

• Laminar wake

• 50 < Re < 5000 :

• Von-Karman street (laminar BL)

• 5,000 < Re < 200,000:

• Laminar BL prior to separation (α = 80°). Sub-critical regime

• Re > 200,000 “Drag Crisis”

• Turbulent boundary layer prior to separation (α = 120°).

No separation Steady separation bubble

Oscillating Kàrman vortex wake

Turbulent boundary

layer with narrow

turbulent wake

Laminar boundary layer

with wide turbulent wake

Page 25: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 25

Subgrid Scale Viscosity Models

• FLUENT offers the following subgrid scale models to be used with LES:

• Smagorinsky model

• WALE model

• Wall Modeled LES (WMLES)

• Wall Modeled LES S-Omega

• Dynamic subgrid kinetic energy transport model

Viscous Model

Page 26: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 26

Results – Surface Temperature

20

40

60

80

100

120

140

160

-180 -160 -140 -120 -100 -80 -60 -40 -20 0

Te

mpéra

ture

(°C

)

Angle (°C)

SST450 SST1250 SST 1750

Exp 450 Exp 1250 Exp 1750

LES 450 LES1250 LES 1750

Exp. From CEA/EDF

450, 1250, 1750 … constant z-Planes

Angle (°)

Page 27: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 27

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

12,0-14,0

10,0-12,0

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=40cm

SST LES Exp.

H (mm)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

12,0-14,0

10,0-12,0

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=40cm

W

(mm)

Results – Wake (x = 0.4 m) Normalized temperature contours

Page 28: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 28

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=50cm

Results – Wake (x = 0.5 m)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

8,0-10,0

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

Visualisation de

l'échauffement de l'air

G=50cm

SST LES Exp.

H (mm)

W (mm)

Normalized temperature contours

Page 29: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 29

Results – Wake (x = 0.75 m)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

G=75cm Visualisation de

l'échauffement de l'air

SST LES Exp.

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

6,0-8,0

4,0-6,0

2,0-4,0

0,0-2,0

G=75cm Visualisation de

l'échauffement de l'air

H (mm)

W (mm)

Normalized temperature contours

Page 30: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 30

Results – Wake (x = 1.5 m)

-800 -500 -321 0 321 500 800

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

Largeur (mm)

Hauteur (mm)

3,0-4,0

2,0-3,0

1,0-2,0

0,0-1,0

Visualisation de

l'échauffement de l'airG=1m50

SST LES Exp.

H (mm)

W (mm)

Normalized temperature contours

Page 31: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 31

Results – Conclusions

• Wall temperature comparable between RANS/LES

• More accurate wake prediction with LES

• CPU time required

• RANS – Days

• LES – Weeks

• In this case fluid/solid thermal coupling and large difference between characteristic time scales induce expensive unsteady calculations

Page 32: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 32

Large Eddy Simulation – Applications

• Compute unsteady temperature field

• Explicit representation of mixing

• Accurate min/max fluctuations

• Application examples

• Thermal fatigue

• Fluid-structure interaction (FSI)

Page 33: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 33

16.0 Release

Appendix: Lecture 3 Forced Convection

Page 34: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 34

Reynolds Analogy

• Boundary Layer Equations:

• Wall Fluxes:

L

00 , TULaminar Transition Turbulent

laminar

turbulent

0~~

~

Re

2

yL

fy

uC

0~~

~

Nu

yy

T

1,x~T~

00,x~T~

y~T~

PrRe

1

y~T~

vx~T~

u~

U/u,x~u~00,x~v~0,x~u~

y~u~

Re

1

x~P~

y~u~

vx~u~

u~

2

2

0

2

2

Page 35: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 35

Boundary Layers

• Reynolds analogy

• If dP/dx ~ 0, Pr ~ 1 (constant properties)

• In dimensionless form, equations are of the same form. Thus, the solutions for dimensionless velocity and dimensionless temperature should be equivalent.

Nu2

ReL

fC St2

fC

1,x~T~

00,x~T~

y~T~

PrRe

1

y~T~

v~

x~T~

u~

1,x~u~00,x~v~0,x~u~

y~u~

Re

1

y~u~

v~

x~u~

u~

2

2

2

2

PrRe

NuSt

Page 36: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 36

Some Definitions

0

w

yy

u

wU

0

w

yy

Tkq

UC

qT

p

w

y

ulT

2

mix yl mix

This definition is valid for the mixing length model

Page 37: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 37

Wall Functions

• BL Momentum RANS equations

• BC at the wall (y = 0):

• Mixing length model

2

0

0total

U

y

u

y

y

vu

y

u

yx

P

y

uv

x

uu

0 0 0

constant

vu

y

u

total

2

2

Ty

uyκ

y

uvu

Page 38: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 38

• Normalization:

• Viscous sublayer

• Turbulent region

Boundary Layers

2

Uvu

y

u

total

0

yu

2

Uvu

y

u

total

0

Cyu

ln1

yUy

U

uu

q

UcTTT

ppw

Page 39: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 39

Boundary Layers

• Boundary layer energy equation

• BC at the wall (y = 0):

• Reynolds analogy:

UTC

y

Tkq p

y

y

0

0total

TvC

y

Tk

yy

Tv

x

TuC pp

0 0

constant

TvC

y

Tk p

totalq

y

T

y

uyκ

y

TTv

T

2

T

T

PrPr

Page 40: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 40

Boundary Layers

• Viscous sublayer

• Turbulent region

UTCTvC

y

Tk pp

0

yT Pr

UTCTvC

y

Tk pp

0

PrlnPrT fyT

totalq

totalq

For a derivation please refer to “Turbulent heat-

transfer” by Scott Stolpa, pp 26-30

Page 41: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 41

Turbulent Thermal Boundary Layers

• The wall laws are also functions of Prandtl number.

• Viscous sublayer thickness defined as the intersection between viscous and logarithmic law.

y+ ~ 10 for Momentum and for Pr = 1

Pr = 1

)Pr(Pr, TT fyy

0.1 1 10 100 1000

y*

0

4

8

12

16

20

T*

0.1 1 10 100 1000

y*

0

20

40

60

T*

Pr = 7

Page 42: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 42

Velocity Wall Functions in FLUENT

• Non-equilibrium effect and pressure gradient effect

• Use Prandtl-Komolgorov eddy-viscosity model

• Keep pressure gradient in boundary layer equations (partially cancel the inertial terms)

ykCT

2/14/1

yEU ln

1

PP ykCy

2/14/1

/

2/14/1

w

PP kCUU

ykCE

U

kCU 2/14/1

2

2/14/1

ln1

~

2

ln2

1~ vv

v

v y

k

yy

y

y

k

y

dx

dPUU

2/14/1

P

vv

kC

yy

Page 43: Heat Transfer Modeling using ANSYS Fluent

© 2015 ANSYS, Inc. April 24, 2015 43

Temperature Wall Functions in FLUENT

• Jayatilleke: Wide range of Prandtl number

TctPt

P

t

T

Pp

PPpw

yyUUq

kCPyE

k

yyq

kCUy

q

kCCTTT

for PrPrPr2

ln1

Pr

for 2

PrPr

22

2/14/1

2/14/12

2/14/1

tt

PPr

Pr007.0exp28.011

Pr

Pr24.9

4/3