Top Banner
Definitions Definitions Measuring heat flow Kelvin and the age of the Earth Radioactivity Continental heat flow (1) Oceanic heat flow (1) Global budget (1) Continental vs oceanic heat flow Plate model for the oceans Continental heat flow (2) Gl b lb d t (2) Global budget (2) Constraints on the temperature regime
74

Heat Flow in Oceanic Crust

Feb 25, 2023

Download

Documents

Yuda Fitri
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Heat Flow in Oceanic Crust

DefinitionsDefinitionsMeasuring heat flow

Kelvin and the age of the EarthRadioactivityy

Continental heat flow (1)Oceanic heat flow (1)

Global budget (1)Continental vs oceanic heat flow

Plate model for the oceansContinental heat flow (2)

Gl b l b d t (2)Global budget (2)Constraints on the temperature regime

Page 2: Heat Flow in Oceanic Crust

ObjectivesHow do we determine temperature deep in the Earth? What is the Earth’s energy budget?What is the source of energy for geological processes? How does temperature controls physical properties and

i ?tectonic processes?

Page 3: Heat Flow in Oceanic Crust

Thermodynamics1st law: heat is a form of energy dU = dQ -PdV ΔQ = C ρ ΔT 2nd law (simple form): heat goes from hot to cold (Entropy can only increase unless work is done. Work can be extracted from system only if there are a cold and a hotextracted from system only if there are a cold and a hot source). Conduction of heat (Fourier): q = -λ grad TConduction of heat (Fourier): q λ grad T Other mechanisms of heat transport (radiation, convection).

Page 4: Heat Flow in Oceanic Crust

Three mechanisms of heat transport Conduction. Transport of energy in a medium (solid, fluid, or gas) without transport of matter. Convection. Energy is transported by movement of matter. Radiation. Electromagnetic waves transport energy in vacuum or in solid or fluid at very high temperaturevacuum, or in solid or fluid at very high temperature.All three mechanisms are found in the Earth. Near the surface, i.e. in the lithosphere conduction dominates.surface, i.e. in the lithosphere conduction dominates.

Page 5: Heat Flow in Oceanic Crust
Page 6: Heat Flow in Oceanic Crust

How do we measure heat flux?

Page 7: Heat Flow in Oceanic Crust

Some numbersk (thermal conductivity) 3 W/m/K (average for most rocks)Temperature gradient 20-30 K/km Heat flux ~ 60 mW m-2

If di d d i h d hIf gradient does not decrease with depth, temperature at 100km >2000K and temperature at CMB > 60,000K

Page 8: Heat Flow in Oceanic Crust

More numbersMean heat flux 80 mW m-2

Total energy loss 44 1012 W 44 TW or 1.3 1021J/yrTotal energy in quakes 1019 J/yrTotal tidal friction < 1017 J/yrEnergy from Sun 1.8 1017 W or 5 1024 J/yr2005 World energy consumption 15 TW or 5 1020 J/yr

Page 9: Heat Flow in Oceanic Crust
Page 10: Heat Flow in Oceanic Crust

Thermal diffusivity κ = λ / ρ C It gives scaling between time and length for heat transportIt gives scaling between time and length for heat transportτ = L2 / κNote κ ~ 10-6 m2 /s or 31 6 m2 / yrNote κ ~ 10 6 m2 /s or 31.6 m2 / yr

Page 11: Heat Flow in Oceanic Crust

Kelvin and the age of the EarthJ.W Thomson (Lord Kelvin) tried to use the present temperaturepresent temperature gradient to calculate the age of the EarthgAssumed the Earth hot initiallyCooling by conduction

Page 12: Heat Flow in Oceanic Crust
Page 13: Heat Flow in Oceanic Crust
Page 14: Heat Flow in Oceanic Crust

Kelvin calculated 25 Myr as the age of the EarthKelvin liked that number because it was consistent withKelvin liked that number because it was consistent with his calculation of the energy budget for the sun (assuming that the sun was radiating the gravitational energy g g gyaccumulated at formation. Kelvin calculation was flawed because

He ignored radio-activity He ignored convection

Kelvin assumptions were in all the following debatesKelvin assumptions were in all the following debates about thermal evolution of the Earth. Note that his model would work to estimate the age of the gsea floor.

Page 15: Heat Flow in Oceanic Crust

C d i liConductive cooling modelNote that cooling remains gsuperficial. Even after 1Gyr, there is almost no cooling deeper than 600km.

As t ~l2/κ, it would take 100Gyr for cooling to reach 6000km!6000km!

Page 16: Heat Flow in Oceanic Crust

RadioactivityR.J. Strutt (4th Lord Rayleigh) 1906

fl i l bHeat flux can entirely be accounted for by radio-activityactivity. “Crust” can not be thicker than 60km!!!(Before Mohorovicic discovered the Moho)

Page 17: Heat Flow in Oceanic Crust

Radioactivity

Page 18: Heat Flow in Oceanic Crust
Page 19: Heat Flow in Oceanic Crust

First continental heat flux measurements by Bullard (1939).

Page 20: Heat Flow in Oceanic Crust

Oceanic heat flow

Page 21: Heat Flow in Oceanic Crust

Surprise !!!Continental crust is radioactive and thickOceanic crust is thin with almost no heat generationOceanic heat flow < Continental heat flow ?Apparently NO difference?

Page 22: Heat Flow in Oceanic Crust
Page 23: Heat Flow in Oceanic Crust

Energy Budget of the earth (1)Birch (1951)Total energy loss = 30 TWH t d ti i h d it 5 W/kHeat production in chondrites = 5 pW/kgMass of earth = 6 1024 kgCoincidence?Coincidence?

Several problems (K/U ratio)Can not be in equilibrium with present heat production is heat is conducted to the surfaceconducted to the surface Note this buget is obsolete (Current estimate of energy loss is 44TW)

Q i C li H d iQuestion: Cooling vs Heat production

Page 24: Heat Flow in Oceanic Crust
Page 25: Heat Flow in Oceanic Crust
Page 26: Heat Flow in Oceanic Crust

Cooling half space or plate

CQ = 490 ± 20 QmWm-2 Myr1/2

based on petrology andpetrology and physical properties

Page 27: Heat Flow in Oceanic Crust
Page 28: Heat Flow in Oceanic Crust
Page 29: Heat Flow in Oceanic Crust

Where hydrothermal circulation is shut off, heat flux datadata fitshut off, heat flux datadata fit model

Page 30: Heat Flow in Oceanic Crust

N i f d t fit li h lf d lNoise free data fit cooling half space model at young ages

Page 31: Heat Flow in Oceanic Crust

Heat flux reflects age of oceanicHeat flux reflects age of oceanic lithosphere

Page 32: Heat Flow in Oceanic Crust

Predicted heat flux

Page 33: Heat Flow in Oceanic Crust
Page 34: Heat Flow in Oceanic Crust
Page 35: Heat Flow in Oceanic Crust

Isostatic balance

Page 36: Heat Flow in Oceanic Crust

Bathymetry fits model for agesBathymetry fits model for ages <80Myr

Page 37: Heat Flow in Oceanic Crust

For ages > 80 Myr, heat flux at base of plate balances heat flux at surface: no more cooling

Page 38: Heat Flow in Oceanic Crust

Hotspots perturb bathymetryHotspots perturb bathymetry profiles

Page 39: Heat Flow in Oceanic Crust
Page 40: Heat Flow in Oceanic Crust

CONTINENTAL HEAT FLUX

Page 41: Heat Flow in Oceanic Crust

Steady state thermal model forSteady state thermal model for stable continents

Heat flux and temperature gradient decrease with depth because of h pdepth because of h.p.The higher the crustal h.p., the lower Moho andthe lower Moho and mantle temperature

Page 42: Heat Flow in Oceanic Crust

Heat flux variations in stableHeat flux variations in stable continents (e.g. Canadian Shield)

Qs = Qm + ∫ A dz Qm can not vary by more than +/- 3 mWm-2

Qm < 20 mWm-2 (lowest heat flux measured) Best estimates 13 < Qm < 15 mWm-2

Kapuskasing crustal sectionGrenville provinceG it d h t fl d t i iGravity and heat flux data inversion

Page 43: Heat Flow in Oceanic Crust

Moho heat flux in stable continentsMoho heat flux in stable continentsLocation Heat flux (mWm‐2)Location Heat flux (mWm )

Baltic Shield (Archean) 7‐15

Vredefort (South Africa) 18

Slave (Archean, Canada) 12‐24

Kapuskasing (Superior, Canada) 11‐13

Abitibi (Superior, Canada) 10‐14p

Siberian craton (Archean) 10‐12

Dharwar (Archean, India) 11

Norwegian Shield (Proterozoic) 11Norwegian Shield (Proterozoic) 11

Trans‐Hudson‐orogen (Proterozoic, Canada) 11‐16

Grenville (Canada) 13

Kalahari (Proterozoic, South Africa) 17‐25

Page 44: Heat Flow in Oceanic Crust

Calculating temperature in theCalculating temperature in the lithosphere: 1-D heat equation

Page 45: Heat Flow in Oceanic Crust

Lithospheric temperaturetemperature profiles depend on crustal heat production (surface heat flow)flow)

When differences in surfaceWhen differences in surface heat flux are only due to crustal heat production , Moho temperature varies by 150 d150 degrees

Page 46: Heat Flow in Oceanic Crust

Profiles are very i i hsensitive to Moho

heat flow

Uncertainty of +/- 3 mWm-2 gives +/-50km on depth to 1350 adiabatp

Page 47: Heat Flow in Oceanic Crust

Mantle convection

Page 48: Heat Flow in Oceanic Crust

Adiabatic temperature gradient

Page 49: Heat Flow in Oceanic Crust

Rayleigh number

Page 50: Heat Flow in Oceanic Crust

Boundary layers and temerature profileBoundary layers and temerature profile in convecting fluid

Page 51: Heat Flow in Oceanic Crust

Balancing the b dgetBalancing the budgetOceanic heat loss Crustal radio-activityOceanic heat lossHotspotsContinental heat loss

Crustal radio activityMantle radio-activityCore heat flowSecular cooling of mantle

Page 52: Heat Flow in Oceanic Crust

Oceanic heat floOceanic heat flowRaw average of all heatRaw average of all heat flux data 80 mWm-2

Noisy data at young ages y y g gbecause of hydrothermal circulation Better to rely on models

Page 53: Heat Flow in Oceanic Crust

Age distribution of sea floor

Page 54: Heat Flow in Oceanic Crust

Total energy loss of cooling oceanic lithosphere

Age < 80Ma, use halfAge 80Ma, use half space cooling and age distribution ~24 TWAge > 80 Ma, use constant flux 48 mWm-2

~5TW Depends very much on age distribution of sea floor.

Page 55: Heat Flow in Oceanic Crust

Hot spotsHot spotsWeak heat flow anomalyWeak heat flow anomaly on hot spotsUse sea floor bathymetry y yto estimate heat input from buoyancy ~2-4TWPlate may be subducted before heat flows out

Page 56: Heat Flow in Oceanic Crust

Continental heat loss: eliminating the bias in the data

Method 1. Determine average heat flux for each geological age and

eight according toweight according to areal distribution 65mWm-2

Method 2. Determine area weighted averages 63 W 263 mWm-2

Total continents (210 106

km2 = 14TW)km = 14TW)

Page 57: Heat Flow in Oceanic Crust

Heat flux in CanadaBlack triangles represent heat flux sites. Note distribution.

Page 58: Heat Flow in Oceanic Crust

Heat prod ction of BSE cr st and mantleHeat production of BSE, crust, and mantleU(ppm) Th(ppm) K(ppm) A(pW/kg)

BSE BSE 

Hart & Zindler (1986) 0.021 0.079 264 4.9

McDonough & Sun (1985) 0.020 0.079 240 4.8

Palme & O’Neil (2003) 0.022 0.083 261 5.1

Lyubetskaya & Korenaga (2007) 0.017 0.063 190 3.9

MORB mantle source MORB mantle source 

Langmuir et al. (2005) 0.013 0.040 160 2.8

Continental crust

R d i k  d G ( ) 6

Total BSE 20 TW

Rudnick and Gao (2003) 11.3 5.6 15000 330

Jaupart and Mareschal (2003) 293‐352

Total BSE ~ 20 TW

Continental crust 7TW Mantle ~ 13 TW

Page 59: Heat Flow in Oceanic Crust

Core heat loss?Core heat loss? > 4 TW (hot spots) 4 TW (hot spots)Conductive heat flux on adiabat -> 4TWThermodynamic efficiency of dynamo y y~10% Ohmic dissipation of dynamo (0.1 -> 1 TW)10 TW ?

F Ni (2007)From Nimmo (2007)

Page 60: Heat Flow in Oceanic Crust

Mantle coolingMantle heat loss 39TWCore flux 9TWMantle radioactivity 13 TWSecular cooling must provide 17 TW (52 1019 J/ )17 TW (52 1019 J/yr)Rate ~ 110 K/Gyr

From Abbott et alFrom Abbott et al. (1994)

Page 61: Heat Flow in Oceanic Crust

Summary budgetMantle heat loss: 39TWMantle heat production: 13 / 4 TW

Total heat loss 46+/-2TWother 

(differentiation  13 +/- 4 TW Urey number: 0.33 +/-0 11

core heat flow (9+/‐5TW)

(differentiation, tidal, .. ) < 1TW

0.11

Radio‐activity crust 

(7+/‐1TW)

Secular cooling mantle

(18+/‐8 TW)

(7+/ 1TW)

Radioactivity mantle 

(13+/‐4 TW)( 3 / 4 )

Page 62: Heat Flow in Oceanic Crust
Page 63: Heat Flow in Oceanic Crust

Summary budgetMantle heat loss: 39TWMantle heat production: 13 +/-4 TW4 TW Urey number: 0.33 +/- 0.11

Page 64: Heat Flow in Oceanic Crust
Page 65: Heat Flow in Oceanic Crust
Page 66: Heat Flow in Oceanic Crust
Page 67: Heat Flow in Oceanic Crust
Page 68: Heat Flow in Oceanic Crust
Page 69: Heat Flow in Oceanic Crust

Flux de chaleur et regime thermique 8

Appendice E: Calcul de la temperature en fonction de la profondeur enregime stationnaire

Dans le cas d’un regime stationnaire, l’equation de la chaleur a une dimension prend la forme:

dq

dz= −A(z) (E1)

ou z est la profondeur, A(z) le production de chaleur, et le signe du flux q a ete change implicitement (zest positif vers le bas et q est defini positif vers le haut). On obtient pour le flux

q(z) = q0 −∫ z

0

A(z′)dz′ (E2)

avec q0 le flux de surface Donc le flux decroit avec la profondeur d’autant plus que les sources de chaleuravec q0 le flux de surface. Donc le flux decroit avec la profondeur d autant plus que les sources de chaleursont concentrees pres de la surface. Et pour la temperature:

T (z) = T0 +q0z

K− 1

K

∫ z

0

dz′∫ z′

0

A(z”)dz” (E3)

Si A(z) = A0 pour z < h0, on obtient:

T (z) = T0 +q0z

K− A0z

2

2K(E4)

On peut ainsi iterativement calculer la temperature pour un modele avec plusieurs couches dans lequelles sources de chaleur sont constantes.

Si les sources decroissent exponentiellement avec la profondeur, A(z) = A0 exp(−z/D):

q(z) = q0 − A0D (1 − exp(−z/D)) (E5)

et

T (z) =qrz

K+

A0D2

K(1 − exp(−z/D)) (E6)

ou qr = q0 − A0D est le flux reduit. Notez que pour q0 et qr fixes, la temperature a une profondeurdonnee diminue avec D.

Page 70: Heat Flow in Oceanic Crust
Page 71: Heat Flow in Oceanic Crust
Page 72: Heat Flow in Oceanic Crust
Page 73: Heat Flow in Oceanic Crust
Page 74: Heat Flow in Oceanic Crust