Top Banner
1 Self-Optimizing Control Self-Optimizing Control HDA case study • S. Skogestad, May 2006 • Thanks to Antonio Araújo
26

HDA case study

Jan 25, 2016

Download

Documents

espen

HDA case study. S. Skogestad, May 2006 Thanks to Antonio Araújo. CH 3. →. +. H 2. +. CH 4. +. Heat. +. H 2. →. 2. ←. Process Description. Benzene production from thermal-dealkalination of toluene (high-temperature, non-catalytic process). Main reaction: Side reaction - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: HDA case study

1

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

HDA case study

• S. Skogestad, May 2006

• Thanks to Antonio Araújo

Page 2: HDA case study

2

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Process Description

• Benzene production from thermal-dealkalination of toluene (high-temperature, non-catalytic process).

• Main reaction:

• Side reaction

• Excess of hydrogen is needed to repress the side reaction and coke formation.

• References for HDA process:• McKetta (1977) – first reference on the process;• Douglas (1988) – design of the process;• Wolff (1994) – discuss the operability of the process.

• No references on the optimization of the process for control structure design purposes.

CH3

+ H2 → + +CH4 Heat

H2+→2 ←

Toluene Benzene

Diphenyl

Page 3: HDA case study

3

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Mixer FEHE Furnace PFR Quench

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

Process Description

Page 4: HDA case study

4

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Steady-state operational degrees of freedom

Process units DOF

External feed streams (feed rate) 2

Heat exchangers duties (including 1 furnace) 3

Splitters 2

Compressor duty 1

Adiabatic flash(*) 0

Gas phase reactor(*) 0

Distillation columns 6

Equality constraint

Quencher outlet temperature -1

Remaining degrees of freedom at steady state 13

(*) No adjustable valves (assumed fully open valve before flash)

14

Page 5: HDA case study

5

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Steady-state operational degrees of freedom

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

1

2

7

4

3

56

8

1214

13 11 9

10

Page 6: HDA case study

6

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Cost Function and Constraints

• The following profit is maximized (Douglas’s EP):

-J = pbenDben – ptolFtol – pgasFgas – pfuelQfuel – pcwQcw – ppowerWpower - psteamQsteam + Σ(pv,iFv,i)

• Constraints during operation:– Production rate: Dben ≥ 265 lbmol/h.– Hydrogen excess in reactor inlet: FHyd / (Fben + Ftol + Fdiph) ≥ 5.– Bound on toluene feed rate: Ftol ≤ 300 lbmol/h.– Reactor pressure: Preactor ≤ 500 psia.– Reactor outlet temperature: Treactor ≤ 1300 °F.– Quencher outlet temperature: Tquencher = 1150 °F.– Product purity: xDben ≥ 0.9997.– Separator inlet temperature: 95 °F ≤ Tflash ≤ 105 °F.– + Distillation constraints

• Manipulated variables are bounded.

Page 7: HDA case study

7

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Disturbances

Disturbance Unit Nominal Lower Upper

Toluene feed flow rate lbmol/h 300 285 315

Gas feed composition mol% of H2 95 90 100

Benzene price $/lbmol 9.04 8.34 9.74

Energetic value of fuel to the furnace MBTU/lbmol 0.1247 0.12 0.13

Page 8: HDA case study

8

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5P

rofit

(M$/

year

)

Optimization

Benzene price

Disturbance

Page 9: HDA case study

9

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

• 14 steady-state degrees of freedom

• 10 active constraints:1. Pure toluene feed rate (UB)2. By-pass valve around FEHE (LB)3. Reactor inlet hydrogen-aromatics ratio (LB)4. Flash inlet temperature (LB)

5. Methane mole fraction in stabilizer bottom (UB)6. Benzene mole fraction in stabilizer distillate (UB)7. Benzene mole fraction in benzene column bottom (UB) 8. Toluene mole fraction in benzene column distillate (UB)9. Toulene mole fraction in toluene column bottom (UB)10. Diphenyl mole fraction in toluene column distillate (UB)

• 1 equality constraint:11. Quencher outlet temperature

• 3 remaining unconstrained degrees of freedom.

Optimization

Page 10: HDA case study

10

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Optimization – Active Constraints

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

8

2

1

4

3

5

6

7

10

9

11Equality

Page 11: HDA case study

11

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Candidate Controlled Variables• Candidate controlled variables:

– Pressure differences;– Temperatures;– Compositions;– Heat duties;– Flow rates;– Combinations thereof.

• 138 candidate controlled variables might be selected.• 14 degrees of freedom.• Number of different sets of controlled variables:

• 10 active constraints + 1 equality constraint leaving 3 DOF:

• What should we do with the remaining 3 DOF?– Self-optimizing control!!!

18138 138!5.3 10

14 124!14!

127 127!333,375

3 124!3!

Page 12: HDA case study

12

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Analysis of the linear model

• Select 3 of 127 candidate measurements.

• Scale variables properly and linearize.

• Find max σ(G3x3) by a branch-and-bound algorithm.

• Alternatively, find max σ(G3x3·Juu-1/2) by a branch-and-bound

algorithm.

• Calculate the loss by the exact local method for the most important disturbance: Namely, feed toluene rate.

“input scaling”

Page 13: HDA case study

13

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Analysis of the linear model

σ(G3x3) = 0.02382, Loss = 8.6461 σ(G3x3·Juu-1/2) = 0.10257, Loss = 6.6803

Toluene column reflux flow rate Compressor powerLiquid (cooling) flow to quencher

Toluene mole fraction in stabilizer bottomCompressor powerFurnace heat duty

σ(G3x3) = 0.02381, Loss = 8.6474 σ(G3x3·Juu-1/2) = 0.10283, Loss = 6.7837

Diphenyl mole fraction in benzene column bottom Compressor powerLiquid (cooling) flow to quencher

Toluene mole fraction in separator liquid outletCompressor powerFurnace heat duty

σ(G3x3) = 0.02380, Loss = 8.6475 σ(G3x3·Juu-1/2) = 0.10129, Loss = 8.4168

Benzene mole fraction in benzene column bottomCompressor powerLiquid (cooling) flow to quencher

Diphenyl mole fraction in quencher outletCompressor powerFurnace heat duty

a. All measurements:σ(Gfull) = 0.0445; σ(Gfull·Juu

-1/2) = 0.1695

IIIIII

I

IIIII

II

IIII

II

III

III

III

III

Page 14: HDA case study

14

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Self-optimizing variables

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

8

2

1

4

1

5

6

7

10

9

I

III

11

II

F

W

I

III

xtol

Q

L

Optimal set

Page 15: HDA case study

15

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Analysis of the linear modelb. Distillation train excluded and separator pressure constant (controllability):σ(Gfull) = 0.0440; σ(Gfull·Juu

-1/2) = 0.1663

σ(G3x3) = 0.02240, Loss = 7.9683 σ(G3x3·Juu-1/2) = 0.08971, Loss = 7.9683

Toluene mole fraction in separator liquid outletCompressor powerSeparator pressure

Toluene mole fraction in separator liquid outletCompressor powerSeparator pressure

σ(G3x3) = 0.02266, Loss = 8.9112 σ(G3x3·Juu-1/2) = 0.08612, Loss = 8.9112

Benzene mole fraction in mixer outletCompressor powerSeparator pressure

Benzene mole fraction in mixer outletCompressor powerSeparator pressure

σ(G3x3) = 0.02265, Loss = 8.9290 σ(G3x3·Juu-1/2) = 0.08598, Loss = 8.9290

Quencher outlet diphenyl mole fractionCompressor powerSeparator pressure

Quencher outlet diphenyl mole fractionCompressor powerSeparator pressure

I

IIIII

I

IIIII

Note: The two methods give the same order in this case

Page 16: HDA case study

16

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Alternative self-optimizing variables

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

8

2

1

4

1

5

6

7

10

9

11

P

W

I

xtol

II

III

Page 17: HDA case study

17

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Conclusion steady-state analysis

• Many similar alternatives in terms of loss

• Need to consider dynamics (Input-output controllability analysis):– RHP-zeros– RHP-poles– Input saturation– Easy of implementation (decentralized control of final 3x3

supervisory control problem)!

• Now: Consider “bottom-up” design of control system

Page 18: HDA case study

18

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Bottom-up design of control system

• Start with stabilizing control– Levels– Pressure– Temperatures

• Normally start with fastest loops (often pressure) – but let is start with levels

Page 19: HDA case study

19

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol “Bottom-up”: Proposed Control Structure

Stabilizing Control: Control 7 liquid levels

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

LCLCLC

LCLCLC

LC

LV-configuration assumed for columns

Page 20: HDA case study

20

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Avoiding “Drift” I – 4 Pressure loops

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

LCLCLC

LCLCLC

LC

PC PC PC

PC

Column pressures are given

Pressure with purge

Page 21: HDA case study

21

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Avoiding “Drift” II – 4 Temperature loops

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

LCLCLC

LCLCLC

LC

TC

TCTC

TC

PC PC PC

PC

ps

Ts

Page 22: HDA case study

22

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Now suggest pairings for supervisory control

Page 23: HDA case study

23

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Control of 11 active constraints.

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

LCLCLC

LCLCLC

LC

TC

TCCC CC

CCCCCC

CC TC

CC

TC

FC

FC TC

PC

TC

3 DOF left

PC PC PC

SP

SPSP

SP

SP

SP methaneSPSP

SPSP SP

ps

Ts

Page 24: HDA case study

24

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Control of 3 self-optimizing variables: Optimal set

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

LCLCLC

LCLCLC

LC

TC

TCCC CC

CCCCCC

CC TC

CC

TC

FC

FC TC

PC

TC

Supervisorycontrol problemseems difficult

PC PC PC

SP

SPSP

SP

SP

SP methaneSPSP

SPSP SP

ps

Ts

Ixtoluene

III

II

Q

Page 25: HDA case study

25

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Control of 3 self-optimizing variables: Alternative set: SIMPLE

Mixer FEHE

Furnace

Reactor

Quencher

Separator

Compressor

Cooler

StabilizerBenzeneColumn

TolueneColumn

H2 + CH4

Toluene

Toluene Benzene CH4

Diphenyl

Purge (H2 + CH4)

LCLCLC

LCLCLC

LC

TC

TCCC CC

CCCCCC

CC TC

CC

TC

FC

FC TC

PC

TC

PC PC PC

SP

SPSP

SP

SP

SPSPSP

SPSP SP

ps

Ts

Ixtol

III

II

Could controlanother composition,e.g. quencher outlet diphenyl

Page 26: HDA case study

26

Sel

f-O

pti

miz

ing

Co

ntr

ol

Sel

f-O

pti

miz

ing

Co

ntr

ol

Conclusion HDA

• Follow systematic procedure

• May want to keep several candidate sets of “almost” self-optimizing variables

• Final evaluation: Non-linear steady-state simulations + Dynamic simulations using Aspen (ongoing!)