Top Banner
ME 301-Soylu-H1
23

Handouts

Jan 23, 2016

Download

Documents

handout of theory of machines
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Handouts

ME 301-Soylu-H1

Page 2: Handouts

ME 301-Soylu-H2

only one joint between 2 bodies.

Page 3: Handouts

ME 301-Soylu-H3

Page 4: Handouts

ME 301-Soylu-H4

Page 5: Handouts

ME 301-Soylu-H5

Page 6: Handouts

ME 301-Soylu-H6

REVIEW OF COMPLEX NUMBERS

1) z = r ei

exponential form

where, i = 1

Euler’s identity : e i

= cos i sin (EU)

z = r ( cos + i sin ) = r cos + i r sin

z = x + i y orthogonal form

2)

x y

x

y

Real

Imaginary

r

z

Complex numbers

may be used to

express 2D vectors.

A

B

r

Real axis

Page 7: Handouts

ME 301-Soylu-H7

AB = r ei

BA = - AB = - r ei

or,

BA = r ei ’

= r ei ( + )

Let

z1 = r1 1ie

z2 = r2 2ie

3)

z1 z2 = ( r1 cos1 + i r1 sin1 ) ( r2 cos2 + i r2 sin2 )

= ( r1 cos1 r2 cos2 ) + i (r1 sin1 r2 sin2 )

4) z1 z2 = r1 r2 ) θθ i( 21 e

5) 2

1

z

z =

2

1

r

r ) θθ i( 21 e

6) i ei

= ei ( / 2 )

ei

= ei( + / 2 )

form to be used in writing

the loop closure equations

eiθ i e

1 Re

eiθ Unit vector

Page 8: Handouts

ME 301-Soylu-H8

z Complex conjugate of z .

7) 1z = r1 1ie

= r1 cos1 – i r1 sin1

8) z1 z2 = 1z 2z

9) d

d e

i = i e

i [

dt

d e

i = ( i e

i ) (

dt

d ) ]

10) dt

dz1 = dt

d( r1 1i

e

)

= ( dt

dr1 ) ( 1ie

) + ( r1 ) ( i 1ie

dt

d 1 )

11) ei

+ e-i

= 2cos

12) ei

- e-i

= 2 i sin

13) ei0

= 1

ei ( /2)

= i

ei

= -1

ei (3 /2)

= -i

Proof by

Euler’s theorem

Page 9: Handouts

ME 301-Soylu-H9

ME301-Soylu-H9

Page 10: Handouts

ME 301-Soylu-H10

ME301-Soylu-H10

Page 11: Handouts

ME 301-Soylu-H11

CHAPTER 5

FORCE ANALYSIS IN MACHINERY

BASIC CONCEPTS :

Force : Action of one body on another. Force is a vector

quantity which has :

- Magnitude

- Direction

- Line of Action (LA)

- Point of application.

Mechanics of deformable bodies Point of application is

important, since we are interested in deformations and

stresses.

Rigid (i.e., undeformable) body mechanics Point of

application is not important. one can “ slide ” a force

along its LA.

LA

F

( For rigid body mechanics ,

e.g., force analysis )

ijF

Force applied by body i on body j.

jiF

Force applied by body j on body i.

Page 12: Handouts

ME 301-Soylu-H12

Newton’s third law ijF

= - jiF

and LA’s are the

same.

Representations of forces in 2D :

Imaginary (y)

Fy

F

Fx

Real (x)

F

= Fx i

+ Fy j

= Fei

= F <

F = 22 )()( yx FF F

x = F cos

= ATAN2( F

x / F , F

y / F ) F

y = F sin

Note that if

F

= F <

then

- F

= -F < = F < +

Page 13: Handouts

ME 301-Soylu-H13

Moment of a force about a point :

F

r

r

A

AM

= r

F

= r

F

= …….. = -Fd k

or,

AM

= r

F

= ( r < r ) ( F < F ) = rF sin(F - r ) k

Couple : Two, equal, opposite and non-collinear forces.

A . B .

d

F

r

- F

AM

= BM

= ….. = M

M

= r

F

= r

F

= …. = - Fd k

x

y

r

x

y

d

F

Page 14: Handouts

ME 301-Soylu-H14

Page 15: Handouts

ME 301-Soylu-H15

Page 16: Handouts

ME 301-Soylu-H16

Page 17: Handouts

ME 301-Soylu-H17

Page 18: Handouts

ME 301-Soylu-H18

Page 19: Handouts

ME 301-Soylu-H19

Page 20: Handouts

ME 301-Soylu-H20

Page 21: Handouts

ME 301-Soylu-H21

Page 22: Handouts

ME 301-Soylu-H22

Page 23: Handouts

ME 301-Soylu-H23