Top Banner
Handbook of Electrochemical Impedance Spectroscopy 0 1 0 1 2 Re Z Im Z ELECTRICAL CIRCUITS CONTAINING CPEs ER@SE/LEPMI J.-P. Diard, B. Le Gorrec, C. Montella Hosted by Bio-Logic @ www.bio-logic.info March 29, 2013
33

Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Feb 09, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Handbookof

Electrochemical Impedance Spectroscopy

0 10

1

2

Re Z *

-Im

Z*

ELECTRICAL CIRCUITS

CONTAINING CPEs

ER@SE/LEPMIJ.-P. Diard, B. Le Gorrec, C. Montella

Hosted by Bio-Logic @ www.bio-logic.info

March 29, 2013

Page 2: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

2

Page 3: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Contents

1 Circuits containing one CPE 51.1 Constant Phase Element (CPE), symbol Q . . . . . . . . . . . . 51.2 Circuit (R+Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2.2 Reduced impedance . . . . . . . . . . . . . . . . . . . . . 6

1.3 Circuit (R/Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.1 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.2 Reduced impedance . . . . . . . . . . . . . . . . . . . . . 71.3.3 Pseudocapacitance #1 . . . . . . . . . . . . . . . . . . . . 71.3.4 Pseudocapacitance #2 . . . . . . . . . . . . . . . . . . . . 8

1.4 Circuit (R/Q)+(R/Q)+ .. (Voigt) . . . . . . . . . . . . . . . . . 91.5 Circuit (R1+(R2/Q2)) . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 101.5.2 Reduced impedance . . . . . . . . . . . . . . . . . . . . . 10

1.6 Circuit (R1/(R2+Q2)) . . . . . . . . . . . . . . . . . . . . . . . . 101.6.1 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . 111.6.2 Reduced impedance . . . . . . . . . . . . . . . . . . . . . 11

1.7 Transformation formulae between(R+(R/Q))and (R/(R+Q)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.7.1 α21 = α22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.7.2 α21 6= α22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Circuits made of two CPEs 132.1 Circuit (Q1+Q2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 α1 = α2 = α . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.2 α1 6= α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.3 Reduced impedance . . . . . . . . . . . . . . . . . . . . . 14

2.2 Circuit (Q1/Q2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.1 α1 = α2 = α . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.2 α1 6= α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.3 Reduced impedance . . . . . . . . . . . . . . . . . . . . . 16

3 Circuits made of one R and two CPEs 193.1 Circuit ((R1/Q1) + Q2) . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 α1 = α2 = α . . . . . . . . . . . . . . . . . . . . . . . . . 193.1.2 α1 6= α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Circuit ((R1 + Q1)/Q2) . . . . . . . . . . . . . . . . . . . . . . . 213.2.1 α1 = α2 = α . . . . . . . . . . . . . . . . . . . . . . . . . 21

3

Page 4: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

4 CONTENTS

3.2.2 α1 6= α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Circuits made of two Rs and two CPEs 234.1 Circuit ((R1/Q1)+(R2/Q2)) . . . . . . . . . . . . . . . . . . . . . 234.2 Circuit ((R1+(R2/Q2))/Q1) . . . . . . . . . . . . . . . . . . . . . 244.3 Circuit ((Q1+(R2/Q2))/R1) . . . . . . . . . . . . . . . . . . . . . 254.4 Circuit (((Q2+R2)/R1)/Q1) . . . . . . . . . . . . . . . . . . . . . 26

A Symbols for CPE 29

Page 5: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Chapter 1

Circuits containing oneCPE

1.1 Constant Phase Element (CPE), symbol Q

Figure 1.1: Most often used symbol for CPE (see also the Appendix A).

Z =1

Q (i ω)α , Re Z =

Q ωα, Im Z = −

Q ωα

cα = cos(π α

2) , sα = sin(

π α

2)

|Z| =1

Q ωα, φZ = −

π α

2

The Q unit (F cm−2 sα−1) depends on α (1).

1.2 Circuit (R+Q)

1.2.1 Impedance

Z(ω) = R +1

Q (iω)α , Re Z = R +

Q ωα, Im Z = −

Q ωα

1 Different equations for CPE: Z =Q

(i ω)1−α[5], Z =

1

(Q i ω)α[26].

5

Page 6: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

6 CHAPTER 1. CIRCUITS CONTAINING ONE CPE

0Re Z

0

-Im

Z

- ΑΠ2

0Re Y

0

ImY

ΑΠ2

Figure 1.2: Nyquist diagram of the impedance and admittance for the CPE element,plotted for α = 0.8. The arrows always indicate the increasing frequency direction.

R

Q

Figure 1.3: Circuit (R+Q).

1.2.2 Reduced impedance

Z∗(ω) =Z(ω)

R= 1 +

1

τ (i ω)α, τ = R Q

The τ unit depends on α: uτ = sα.

Z∗(u) = 1 +1

(i u)α, u = ω τ1/α

0 1 2Re Z*

0

1

2

-Im

Z*

uc=1

0 1Re Y*

0

0.5

ImY*

uc=1

Figure 1.4: Nyquist diagram of the reduced impedance and admittance (Y ∗ = R Y )for the (R+Q) circuit, plotted for α = 0.8.

Page 7: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

1.3. CIRCUIT (R/Q) 7

1.3 Circuit (R/Q)

R

Q

Figure 1.5: Circuit (R/Q).

1.3.1 Impedance

Z(ω) =R

1 + τ (i ω)α ; τ = R Q

Re Z(ω) =R (1 + τ ωα cα)

1 + τ2 ω2 α + 2 τ ωα cα; Im Z(ω) = −

R τ ωα sα

1 + τ2 ω2 α + 2 τ ωα cα

1.3.2 Reduced impedance

Z∗(ω) =Z(ω)

R=

1

1 + τ (i ω)α ; τ = R Q

Re Z∗(ω) =1 + τ ωα cα

1 + τ2 ω2 α + 2 τ ωα cα; Im Z∗(ω) = −

τ ωα sα

1 + τ2 ω2 α + 2 τ ωα cα

dIm Z∗(ω)

dω=

α τ ω−1+α(

−1 + τ2 ω2 α)

(1 + τ2 ω2 α + 2 τ ωα cα)2= 0 ⇒ ωα

c = 1/τ [6]

Re Z∗(ωc) = 1/2 , Im Z∗(ωc) = −sα

2 (1 + cα)

α =2

πarccos

(

−1 +2

1 + 4 Im Z∗(ωc)2

)

Z∗(u) =1

1 + (i u)α , u = ω τ1/α

(Fig. 1.6)

1.3.3 Pseudocapacitance #1

The value of the pseudocapacitance C (C/F cm−2) for the (R/C) circuit givingthe same characteristic frequency than that of the (R/Q) circuit (Fig. 1.7) isobtained from:

ωc =1

(R Q)1/α=

1

R C⇒ C = Q

1α R

1α−1

Page 8: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

8 CHAPTER 1. CIRCUITS CONTAINING ONE CPE

0 1Re Z*

0

0.5

-Im

Z*

uc=1

0 1 2Re Y*

0

1

2

ImY*

uc=1

Figure 1.6: Nyquist diagram of the reduced impedance (depressed semi-circle [22])and admittance (Y ∗ = R Y ) for the (R/Q) circuit, plotted for α = 0.8.

R

Q

R

C

0 R0

Ωc=1

HRQL1Α

0 R0

Ωc= 1HRCL

Figure 1.7: (R/Q) and (R/C) circuits with the same characteristic frequency at theapex (or summit) of impedance arc.

1.3.4 Pseudocapacitance #2

The value of the pseudocapacitance C (C/F cm−2) for the (RC/C) circuit giv-ing the same impedance for the characteristic frequency of the (RQ/Q) circuit(Fig. 1.7) is obtained from [2, 9]:

C = Q1/αR(1/α)−1Q sin(α π/2), RC =

RQ

2 (cos(α π/4))2

with:

τ(RC/C) = (RQ Q)1/α tan(α π/4)

Page 9: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

1.4. CIRCUIT (R/Q)+(R/Q)+ .. (VOIGT) 9

RQ

Q

RC

C

0 RC RQ0

Re Z

-Im

Z

Ωc =1

JRQ QN1Α

Figure 1.8: (RQ/Q) and (RC/C) circuits with the same impedance for the character-istic frequency of the (RQ/Q) circuit.

1.4 Circuit (R/Q)+(R/Q)+ .. (Voigt)

Z(ω) =

nRQ∑

i=1

Ri

1 + τi (i ω)αi; τi = Ri Qi

Re Z(ω) =

nRQ∑

i=1

Ri (1 + τi ωαi cαi)

1 + τ2i ω2 αi + 2 τi ωαi cαi)

Im Z(ω) = −

nRQ∑

i=1

Ri τi ωαi sαi

1 + τ2i ω2 αi + 2 τi ωαi cαi

1.5 Circuit (R1+(R2/Q2))

R1

R2

Q2

Figure 1.9: Circuit (R1+(R2/Q2)).

Page 10: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

10 CHAPTER 1. CIRCUITS CONTAINING ONE CPE

1.5.1 Impedance

Z(ω) = R1 +1

(i ω)α2 Q2 +1

R2

Z(ω) =(R1 + R2) (1 + (i ω)α2 τ2)

1 + (i ω)α2 τ1, τ1 = R2 Q2, τ2 =

R1 R2 Q2

R1 + R2

1.5.2 Reduced impedance

Z∗(u) =Z(u)

R1 + R2=

1 + T (i u)α2

1 + (i u)α2(1.1)

u = τ1/α2

1 ω, T = τ2/τ1 = R1/(R1 + R2) < 1

Re Z∗(u) =T cα uα2 + cα uα2 + Tu2α2 + 1

2 cα uα2 + u2α2 + 1

Im Z∗(u) = −(1 − T )uα2 sα

2 cα uα2 + u2α2 + 1

0 R1 R1+R2

0

Re Z

-Im

Z

Ωc=1

Τ11Α

1

Τ21Α

0 T 10

Re Z*

-Im

Z* uc= 1

1

T1Α

Figure 1.10: Nyquist diagrams of the impedance and reduced impedance for the(R1+(R2/Q2)) circuit.

1.6 Circuit (R1/(R2+Q2))

R2

R1

Q2

Figure 1.11: Circuit (R1/(R2+Q2)).

Page 11: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

1.7. TRANSFORMATION FORMULAE BETWEEN(R+(R/Q)) AND (R/(R+Q))11

1.6.1 Impedance

Z(ω) =R1 (1 + τ2 (i ω)α2)

1 + τ1 (i ω)α2, τ1 = (R1 + R2)Q2, τ2 = R2 Q2

Re Z(ω) =R1

(

cos(

πα2

2

)

(τ1 + τ2)ωα2 + τ1τ2ω2α2 + 1

)

τ1

(

τ1ωα2 + 2 cos(

πα2

2

))

ωα2 + 1

Im Z(ω) = −ωα2 sin

(

πα2

2

)

R1 (τ1 − τ2)

τ1

(

τ1ωα2 + 2 cos(

πα2

2

))

ωα2 + 1

1.6.2 Reduced impedance

Z∗(u) =Z(u)

R1=

1 + T (i u)α2

1 + (i u)α2

u = τ1/α2

1 ω, T = τ2/τ1 = R2/(R1 + R2) < 1

cf. Eq. (1.1) and Fig. 1.10.

1.7 Transformation formulae between(R+(R/Q))and (R/(R+Q))

1.7.1 α21 = α22

R11

R21

Q21

R22

R12

Q22

Figure 1.12: The (R+(R/Q)) and (R/(R+Q)) circuits are non-distinguishable forα21 = α22 [1].

Transformations formulae (R+(R/Q)) → (R/(R+Q))

R12 = R11 + R21, R22 =R2

11

R21+ R11, Q22 =

Q21R221

(R11 + R21) 2

Transformations formulae (R/(R+Q))→(R+(R/Q))

Q21 =Q22 (R12 + R22)

2

R212

, R11 =R12R22

R12 + R22, R21 =

R212

R12 + R22

1.7.2 α21 6= α22

The (R+(R/Q)) and (R/(R+Q)) circuits (Fig. 1.12) are distinguishable forα21 6= α22

Page 12: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

12 CHAPTER 1. CIRCUITS CONTAINING ONE CPE

Page 13: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Chapter 2

Circuits made of two CPEs

2.1 Circuit (Q1+Q2)

Q1 Q2

Figure 2.1: Circuit (Q1+Q2).

2.1.1 α1 = α2 = α

Z(ω) =

(

1

Q1+

1

Q2

)

1

(i ω)α=

1

Q (i ω)α, Q =

Q1 Q2

Q1 + Q2

cf. § 1.1.

2.1.2 α1 6= α2

Impedance

Z(ω) =1

Q1 (i ω)α1+

1

Q2 (i ω)α2=

Q1 (i ω)α1 + Q2 (i ω)α2

Q1 Q2 (i ω)α1+α2

Re Z(ω) =cos(

πα1

2

)

ω−α1

Q1+

cos(

πα2

2

)

ω−α2

Q2

Im Z(ω) = −sin(

πα1

2

)

ω−α1

Q1−

sin(

πα2

2

)

ω−α2

Q2

|ZQ1| = |ZQ2

| ⇒ ω = ωc =

(

Q2

Q1

)1

α1−α2

13

Page 14: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

14 CHAPTER 2. CIRCUITS MADE OF TWO CPES

• α1 < α2 (Figs. 2.2 and 2.3)

ω → 0 ⇒ Z(ω) ≈1

Q2 (i ω)α2, ω → ∞ ⇒ Z(ω) ≈

1

Q1 (i ω)α1

• α1 > α2

ω → 0 ⇒ Z(ω) ≈1

Q1 (i ω)α1, ω → ∞ ⇒ Z(ω) ≈

1

Q2 (i ω)α2

0 2000

200

Re ZW

-Im

ZW

1 4

1

4

logHRe ZWL

logH-

ImZWL

Figure 2.2: Nyquist and log Nyquist [8] diagrams of the impedance for the (Q1+Q2)circuit, plotted for Q1 = 10−2 F cm−2 sα1−1, Q2 = 10−2 F cm−2 sα2−1, α1 = 0.6, α2 =0.9 (α1 < α2). Dots: ωc = (Q2/Q1)

1/(α1−α2).

-5 5HQ2Q1L1HΑ1-Α2L

0

5

log ΩHrd s-1L

logÈZWÈ

- Α2

- Α1

-5 5HQ2Q1L1HΑ1-Α2L

-45

-90

log ΩHrd s-1L

ΦZ°

-Α1 Π2

-Α2 Π2

Figure 2.3: Bode diagrams of the impedance for the (Q1+Q2) circuit. Same valuesof parameters as in Fig. 2.2. α1 < α2.

2.1.3 Reduced impedance

Z∗(u) = Q1 ωα1

c Z(ω) =1

(i u)α1+

1

(i u)α2, u =

ω

ωc

Page 15: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

2.1. CIRCUIT (Q1+Q2) 15

0 1 2 30

1

2

3

Re Z*

-Im

Z*

-2 0 2-2

0

2

log HRe Z*L

logH-

ImZ*L

Figure 2.4: Nyquist and log Nyquist [8] diagrams of the reduced impedance for the(Q1+Q2) circuit, plotted for α1 = 0.6, α2 = 0.9 (α1 < α2). Dots: uc = 1.

-3 30

-3

0

3

log u

logÈZ*È

- Α2

- Α1

-3 30

-45

-90

log u

ΦZ*°

-Α1 Π2

-Α2 Π2

Figure 2.5: Bode diagrams of the impedance for the (Q1+Q2) circuit. Same valuesof parameters as in Fig. 2.4. α1 < α2.

Page 16: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

16 CHAPTER 2. CIRCUITS MADE OF TWO CPES

2.2 Circuit (Q1/Q2)

Q1

Q2

Figure 2.6: Circuit (Q1/Q2).

2.2.1 α1 = α2 = α

Z(ω) =1

(Q1 + Q2) (i ω)α=

1

Q (i ω)α, Q = Q1 + Q2

cf. § 1.1.

2.2.2 α1 6= α2

Impedance

Z(ω) =1

Q1 (i ω)α1 + Q2 (i ω)α2

Re Z(ω) =cos(

πα1

2

)

Q1ωα1 + cos

(

πα2

2

)

Q2ωα2

Q21ω

2α1 + Q22ω

2α2 + 2 cos(

12π (α1 − α2)

)

Q1Q2ωα1+α2

Im Z(ω) = −sin(

πα1

2

)

Q1ωα1 + sin

(

πα2

2

)

Q2ωα2

Q21ω

2α1 + Q22ω

2α2 + 2 cos(

12π (α1 − α2)

)

Q1Q2ωα1+α2

• α1 < α2 (Figs. 2.7 and 2.8)

ω → 0 ⇒ Z(ω) ≈1

Q1 (i ω)α1, ω → ∞ ⇒ Z(ω) ≈

1

Q2 (i ω)α2

• α1 > α2

ω → 0 ⇒ Z(ω) ≈1

Q2 (i ω)α2, ω → ∞ ⇒ Z(ω) ≈

1

Q1 (i ω)α1

2.2.3 Reduced impedance

Z∗(u) = Q1 ωα1

c Z(ω) =1

(i u)α1 + (i u)α2, u =

ω

ωc

Page 17: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

2.2. CIRCUIT (Q1/Q2) 17

0 500

50

Re ZW

-Im

ZW

0 3

0

3

logHRe ZWL

logH-

ImZWL

Figure 2.7: Nyquist and log Nyquist [8] diagrams of the impedance for the (Q1/Q2)circuit plotted for Q1 = 10−2 F cm−2 sα1−1, Q2 = 10−2 F cm−2 sα2−1, α1 = 0.6, α2 =0.9 (α1 < α2). Dots: ωc = (Q2/Q1)

1/(α1−α2).

-5 5HQ2Q1L1HΑ1-Α2L

0

5

log ΩHrd s-1L

logÈZWÈ

- Α1

- Α2

-5 5HQ2Q1L1HΑ1-Α2L

-45

-90

log ΩHrd s-1L

ΦZ°

-Α1 Π2

-Α2 Π2

Figure 2.8: Bode diagrams of the impedance for the (Q1/Q2) circuit. Same values ofparameters as in Fig. 2.7. α1 < α2.

0 10

1

Re Z*

-Im

Z*

-2 0 2-2

0

2

log HRe Z*L

logH-

ImZ*L

Figure 2.9: Nyquist and log Nyquist [8] diagrams of the reduced impedance for the(Q1/Q2) circuit, plotted for α1 = 0.6, α2 = 0.9 (α1 < α2). Dots: uc = 1.

Page 18: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

18 CHAPTER 2. CIRCUITS MADE OF TWO CPES

-3 30

-3

0

3

log u

logÈZ*È

- Α1

- Α2

-3 30

-45

-90

log u

ΦZ*°

-Α1 Π2

-Α2 Π2

Figure 2.10: Bode diagrams of the impedance for the (Q1/Q2) circuit. Same valuesof parameters as in Fig. 2.9. α1 < α2.

Page 19: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Chapter 3

Circuits made of one R andtwo CPEs

3.1 Circuit ((R1/Q1) + Q2)

Q2

Q1

R1

Figure 3.1: Circuit ((R1/Q1)+Q2).

3.1.1 α1 = α2 = α

Impedance

Z(ω) =1

1

R1+ Q1 (i ω)α

+1

Q2 (i ω)α

Z(ω) =1 + (i ω)α τ2

(i ω)α Q2 (1 + (i ω)α τ1), τ1 = R1 Q1, τ2 = (Q1 + Q2)R1, τ1 < τ2

Re Z(ω) = −cos(

πα2

) (

τ1τ2ω2α + 1

)

ω−α + cos(πα)τ1 + τ2

Q2(

τ1

(

τ1ωα + 2 cos(

πα2

))

ωα + 1)

Im Z(ω) = −sin(

πα2

) (

τ1τ2ω2α + 1

)

ω−α + sin(πα)τ1

Q2(

τ1

(

τ1ωα + 2 cos(

πα2

))

ωα + 1)

19

Page 20: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

20 CHAPTER 3. CIRCUITS MADE OF ONE R AND TWO CPES

Reduced impedance

Z∗(u) =Z(u)

R1=

1

T − 1

1 + T (i u)α

(i u)α (1 + (i u)α)(3.1)

u = ω τ1/α, T = τ2/τ1 = 1 + Q2/Q1 > 1

Re Z∗(u) =u−α

(

(T + cos(απ))uα +(

Tu2α + 1)

cos(

απ2

))

(T − 1)(

2 cos(

απ2

)

uα + u2α + 1)

Im Z∗(u) = u−α

(

1

1 − T−

u2α

2 cos(

απ2

)

uα + u2α + 1

)

sin(απ

2

)

0 10

1

2

Re Z *

-Im

Z*

Figure 3.2: Nyquist diagram of the reduced impedance for the ((R1/Q1)+Q2) circuit(Fig. 3.1, Eq. (3.1)), plotted for T = 4, 9, 90 and α = 0.85. The line thickness increaseswith increasing T . Dots: reduced characteristic angular frequency uc1 = 1; circles:reduced characteristic angular frequency uc2 = 1/T 1/α (φuc1 = φuc2).

3.1.2 α1 6= α2

Impedance

Z(ω) =1

1

R1+ Q1 (i ω)α1

+1

Q2 (i ω)α2

Re Z(ω) =cos(

πα2

2

)

ω−α2

Q2+

R1

(

cos(

πα1

2

)

Q1R1ωα1 + 1

)

Q1R1

(

Q1R1ωα1 + 2 cos(

πα1

2

))

ωα1 + 1

Im Z(ω) = −sin(

πα1

2

)

Q1R21ω

α1

Q1R1

(

Q1R1ωα1 + 2 cos(

πα1

2

))

ωα1 + 1−

sin(

πα2

2

)

ω−α2

Q2

Page 21: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

3.2. CIRCUIT ((R1 + Q1)/Q2) 21

R1

Q1

Q2

Figure 3.3: Circuit ((R1+Q2)/Q1).

3.2 Circuit ((R1 + Q1)/Q2)

3.2.1 α1 = α2 = α

Impedance

Z(ω) =1

(i ω)α Q1 +1

R1 +1

(i ω)α Q2

=1 + Q2 R1(i ω)α

(i ω)α (Q1 + Q2)

(

1 +(i ω)α Q1 Q2 R1

Q1 + Q2

)

Z(ω) =1 + τ2(i ω)α

(i ω)α (Q1 + Q2) (1 + (i ω)α τ1), τ1 =

Q1 Q2 R1

Q1 + Q2, τ2 = Q2 R1

Re Z(ω) =ω−α

(

cos(πα)ωα + τ2ωα + cos

(

πα2

) (

τ2ω2α + 1

))

(

2 cos(

πα2

)

ωα + ω2α + 1)

(Q1 + Q2) τ1

Im Z(ω) = −ω−α sin

(

πα2

) (

2 cos(

πα2

)

ωα + τ2ω2α + 1

)

(

2 cos(

πα2

)

ωα + ω2α + 1)

(Q1 + Q2) τ1

Reduced impedance

Z∗(u) =Z(u)

R1=

T − 1

T 2

1 + T (i u)α

(i u)α (1 + (i u)α)(3.2)

u = ω τ1/α, T = τ2/τ1 = 1 + Q2/Q1 > 1

Re Z∗(u) =(T − 1)u−α

(

(T + cos(απ))uα +(

Tu2α + 1)

cos(

απ2

))

T 2(

2 cos(

απ2

)

uα + u2α + 1)

Im Z∗(u) = −(T − 1)u−α

(

2 cos(

απ2

)

uα + Tu2α + 1)

sin(

απ2

)

T 2(

2 cos(

απ2

)

uα + u2α + 1)

3.2.2 α1 6= α2

Z(ω) =

1

(i ω)α2 Q2+ R1

(i ω)α1 Q1

(

1

(i ω)α1 Q1+

1

(i ω)α2 Q2+ R1

)

Page 22: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

22 CHAPTER 3. CIRCUITS MADE OF ONE R AND TWO CPES

0 10

1

2

Re Z *

-Im

Z*

Figure 3.4: Nyquist diagram of the reduced impedance for the ((R1+Q1)/Q2) circuit(Fig. 3.3, Eq. (3.2)), plotted for T = 4, 9, 90 and α = 0.85. The line thickness increaseswith increasing T . Dots: reduced characteristic angular frequency uc1 = 1; circles:reduced characteristic angular frequency uc2 = 1/T 1/α (φuc1 = φuc2).

Z(ω) =1 + τ (i ω)

α2

(i ω)α1 Q1 + (i ω)α2 Q2 + τ (i ω)α1+α2 Q1

, τ = R1 Q2

Re Z(ω) =(

ωα1 cα1

(

1 + τ2 ω2 α2 + 2 τ ωα2 cα2

)

Q1 + ωα2 (τ ωα2 + cα2) Q2

)

/(

ω2 α1(

1 + τ2 ω2 α2 + 2 τ ωα2 cα2

)

Q12 + 2 ωα1+α2 (τ ωα2 cα1 + cα1mα2) Q1 Q2 + ω2 α2 Q2

2)

cα1mα2 = cos

(

π (α1 − α2)

2

)

Im Z(ω) =(

−ωα1(

1 + τ2 ω2 α2 + 2 τ ωα2 cα2

)

Q1 sα1 − ωα2 Q2 sα2

)

/(

ω2 α1(

1 + τ2 ω2 α2 + 2 τ ωα2 α2)

Q12 + 2 ωα1+α2 (τ ωα2 cα1 + cα1mα2) Q1 Q2 + ω2 α2 Q2

2)

Page 23: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Chapter 4

Circuits made of two Rsand two CPEs

4.1 Circuit ((R1/Q1)+(R2/Q2))

R1

Q1

R2

Q2

Figure 4.1: Circuit ((R1/Q1)+(R2/Q2)).

Z(ω) =1

(i ω)α1 Q1 +1

R1

+1

(i ω)α2 Q2 +1

R2

Z(ω) =R1

1 + (i ω)α1 τ1

+R2

1 + (iω)α2 τ2

, τ1 = R1 Q1 , τ2 = R2 Q2

Z(ω) =R1 + R2 + (i ω)

α1 R2 τ1 + (i ω)α2 R1 τ2

(1 + (i ω)α1 τ1) (1 + (i ω)

α2 τ2)

Re Z(ω) =R1 (1 + ωα1 cα1 τ1)

1 + ωα1 τ1 (2 cα1 + ωα1 τ1)+

R2 (1 + ωα2 cα2 τ2)

1 + ωα2 τ2 (2 cα2 + ωα2 τ2)

Im Z(ω) = −ωα1 R1 sα1 τ1

1 + ωα1 τ1 (2 cα1 + ωα1 τ1)−

ωα2 R2 sα2 τ2

1 + ωα2 τ2 (2 cα2 + ωα2 τ2)

23

Page 24: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

24 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES

0 0.5 10

0.3

Re Z *

-Im

Z* uc1 uc2

Figure 4.2: Nyquist diagrams of the reduced impedance for the ((R1/Q1)+(R2/Q2))circuit (Fig. 4.1). R1 = R2, α1 = α2, Q2 ≫ Q1.

0 0.5 10

0.5

Re Z *

-Im

Z*

uc1 = uc2

0 0.5 10

0.5

Re Z *

-Im

Z*

uc1 = uc2

- Π4 Π4

Figure 4.3: Unusual Nyquist diagrams of the reduced impedance for the((R1/Q1)+(R2/Q2)) circuit (Fig. 4.1). R1 = R2, Q2 = Q1, α1 = 1. Left: α2 = 0.3,right: α2 = 0.5.

4.2 Circuit ((R1+(R2/Q2))/Q1)

Z(ω) =1

(i ω)α1 Q1 +

1

R1 +1

(i ω)α2 Q2 +

1

R2

Z(ω) =R1 + R2 + (i ω)

α2 Q2 R1 R2

1 + (i ω)α1 Q1 (R1 + R2) + (i ω)α2 Q2 R2 + (i ω)α1+α2 Q1 Q2 R1 R2

R1

Q1

Q2

R2

Figure 4.4: Circuit ((R1+(R2/Q2))/Q1).

Page 25: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

4.3. CIRCUIT ((Q1+(R2/Q2))/R1) 25

Re Z(ω) =(

R1 + R2 + ω2 α2 Q22 R1 (1 + ωα1 Cα1 Q1 R1) R2

2+

ωα1 Cα1 Q1 (R1 + R2)2

+ ωα2 Cα2 Q2 R2 (R2 + 2 R1 (1 + ωα1 Cα1 Q1 (R1 + R2))))

/(

1 + ω2 α2 Q22 (1 + ωα1 Q1 R1 (2 Cα1 + ωα1 Q1 R1)) R2

2+

ωα1 Q1 (R1 + R2) (2 Cα1 + ωα1 Q1 (R1 + R2)) + 2 ωα2 Q2 R2

× (Cα2 + ωα1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ωα1 Q1 (R1 + R2)))))

cα1mα2 = cos

(

π (α1 − α2)

2

)

Im Z(ω) =(

ωα1 Q1

(

−ω2 α2 Q22 R1

2 R22 − 2 ωα2 Cα2 Q2 R1 R2 (R1 + R2)−

(R1 + R2)2)

Sα1 − ωα2 Q2 R22 Sα2

)

/(

1 + ω2 α2 Q22 (1 + ωα1 Q1 R1 (2 Cα1 + ωα1 Q1 R1)) R2

2+

ωα1 Q1 (R1 + R2) (2 Cα1 + ωα1 Q1 (R1 + R2)) + 2 ωα2 Q2 R2

× (Cα2 + ωα1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ωα1 Q1 (R1 + R2)))))

4.3 Circuit ((Q1+(R2/Q2))/R1)

Q1

R1

Q2

R2

Figure 4.5: Circuit ((Q1+(R2/Q2))/R1).

Z(ω) =1

1

R1+

11

(i ω)α1 Q1

+1

(i ω)α2 Q2 +

1

R2

Z(ω) =R1 (1 + (i ω)α1 Q1 R2 + (i ω)α2 Q2 R2)

1 + (i ω)α1 Q1 (R1 + R2) + (i ω)

α2 Q2 R2 + (i ω)α1+α2 Q1 Q2 R1 R2

Page 26: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

26 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES

Re Z(ω) =(

R1

(

1 + ωα2 Q2 R2 (2 Cα2 + ωα2 Q2 R2) + ω2 α1 Q12 R2

× (R2 + R1 (1 + ωα2 Cα2 Q2 R2)) + ωα1 Q1 (2 R2 (Cα1 + ωα2 Cα1mα2 Q2 R2)+

Cα1 R1 (1 + ωα2 Q2 R2 (2 Cα2 + ωα2 Q2 R2))))) /(

1 + ω2 α2 Q22 (1 + ωα1 Q1 R1 (2 Cα1 + ωα1 Q1 R1)) R2

2+

ωα1 Q1 (R1 + R2) (2 Cα1 + ωα1 Q1 (R1 + R2))+

2 ωα2 Q2 R2 (Cα2 + ωα1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ωα1 Q1 (R1 + R2)))))

Im Z(ω) = −ωα1 Q1 R22 (Sα1 + ωα2 Q2 R2 ((2 Cα2 + ωα2 Q2 R2) Sα1 + ωα1 Q1 R2 Sα2)) /

(

1 + ω2 α2 Q22 (1 + ωα1 Q1 R1 (2 Cα1 + ωα1 Q1 R1)) R2

2+

ωα1 Q1 (R1 + R2) (2 Cα1 + ωα1 Q1 (R1 + R2))+

2 ωα2 Q2 R2 (Cα2 + ωα1 Q1 (Cα1mα2 R2 + Cα2 R1 (2 Cα1 + ωα1 Q1 (R1 + R2)))))

Z(ω) =R1 (1 + τ1 (i ω)α1 + τ2 (i ω)α2)

1 + (1 + R1/R2) τ1 (iω)α1 + τ2 (i ω)

α2 + τ1 τ2 (R1/R2) (i ω)α1+α2

τ1 = Q1 R2 , τ2 = Q2 R2

4.4 Circuit (((Q2+R2)/R1)/Q1)

Q2

R2

R1

Q1

Figure 4.6: Circuit (((Q2+R2)/R1)/Q1).

Z(ω) =1

(i ω)α1 Q1 +1

R1+

11

(i ω)α2 Q2

+ R2

Z(ω) =R1 (1 + (iω)α2 Q2 R2)

1 + (i ω)α1 Q1 R1 + (i ω)

α2 Q2 R1 + (i ω)α2 Q2 R2 + (i ω)

α1+α2 Q1 Q2 R1 R2

Page 27: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

4.4. CIRCUIT (((Q2+R2)/R1)/Q1) 27

Re Z(ω) = (R1 (1 + ωα2 Q2 (ωα2 Q2 R2 (R1 + R2) + Cα2 (R1 + 2 R2))+

ωα1 Cα1 Q1 R1 (1 + ωα2 Q2 R2 (2 Cα2 + ωα2 Q2 R2)))) /

(1 + ωα2 Q2 (R1 + R2) (2 Cα2 + ωα2 Q2 (R1 + R2)) +

ω2 α1 Q12 R1

2 (1 + ωα2 Q2 R2 (2 Cα2 + ωα2 Q2 R2)) + 2 ωα1 Q1 R1

× (Cα1 + ωα2 Q2 (Cα1mα2 R1 + 2 Cα1 Cα2 R2 + ωα2 Cα1 Q2 R2 (R1 + R2))))

Im Z(ω) =(

R12 (− (ωα1 Q1 (1 + ωα2 Q2 R2 (2 Cα2 + ωα2 Q2 R2)) Sα1) − ωα2 Q2 Sα2)

)

/

(1 + ωα2 Q2 (R1 + R2) (2 Cα2 + ωα2 Q2 (R1 + R2)) +

ω2 α1 Q12 R1

2 (1 + ωα2 Q2 R2 (2 Cα2 + ωα2 Q2 R2)) + 2 ωα1 Q1 R1

× (Cα1 + ωα2 Q2 (Cα1mα2 R1 + 2 Cα1 Cα2 R2 + ωα2 Cα1 Q2 R2 (R1 + R2))))

Z(ω) =R1 (1 + (i ω)

α2 τ2)

1 + (i ω)α1 τ1 + (1 + R1/R2) (i ω)α2 τ2 + (i ω)α1+α2 τ1 τ2

τ1 = Q1 R1 , τ2 = Q2 R2

Page 28: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

28 CHAPTER 4. CIRCUITS MADE OF TWO RS AND TWO CPES

Page 29: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Appendix A

Symbols for CPE

29

Page 30: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

30 APPENDIX A. SYMBOLS FOR CPE

A B CCPE

DE

F

G HQ

I

J K L

M N O

ÙÙP Q R

S T

Figure A.1: Some CPE symbols, taken from A: [13], B: [19], C: [23], D: [5], E: [10],F: [17], G: [18], H: [21], I: [12], J: [15], K: [20], L: [2, 9], M: [11], N: [3, 4], O: [14], P:[24], Q, R [25], S [7], T [16].

Page 31: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

Bibliography

[1] Berthier, F., Diard, J.-P., and Montella, C. Distinguishability ofequivalent circuits containing CPEs. I. Theoretical part. J. Electroanal.

Chem. 510 (2001), 1–11.

[2] Boillot, M. Validation experimentale d’outil de modelisation d’une pile

a combustible de type PEM. PhD thesis, INPL, Nancy, Oct. 2005.

[3] Bommersbach, P., Alemany-Dumont, C., Millet, J., and Nor-

mand, B. Formation and behaviour study of an environment-friendlycorrosion inhibitor by electrochemical methods. Electrochim. Acta 51, 6(2005), 1076 – 1084.

[4] Bommersbach, P., Alemany-Dumont, C., Millet, J.-P., and Nor-

mand, B. Hydrodynamic effect on the behaviour of a corrosion inhibitorfilm: Characterization by electrochemical impedance spectroscopy. Elec-

trochimica Acta 51, 19 (2006), 4011 – 4018.

[5] Brug, G. J., van den Eeden, A. L. G., Sluyters-Rehbach, M., and

Sluyters, J. H. The analysis of electrode impedance complicated by thepresence of a constant phase element. J. Electroanal. Chem. 176 (1984),275–295.

[6] Chabli, A., Diaco, T., and Diard, J.-P. Determination de lasequence de ponderation d’une pile leclanche a l’aide d’une methoded’intercorrelation. J. Applied Electrochem. 11 (1981), 661.

[7] Ding, S.-J., Chang, B.-W., Wu, C.-C., Lai, M.-F., and Chang, H.-

C. Impedance spectral studies of self-assembly of alkanethiols with differentchain lengths using different immobilization strategies on au electrodes.Analytica Chimica Acta 554 (2005), 43 – 51.

[8] Fournier, J., Wrona, P. K., Lasia, A., Lacasse, R., Lalancette,

J.-M., Menard, H., and Brossard, L. J. Electrochem. Soc. 139 (1992),2372.

[9] Franck-Lacaze, L., Bonnet, C., Besse, S., and Lapicque, F. Effectof ozone on the performance of a polymer electrolyte membrane fuel cell.Fuel Cells 09 (2009), 562–569.

[10] Han, D. G., and Choi, G. M. Computer simulation of the electricalconductivity of composites: the effect of geometrical arrangement. Solid

State Ionics 106 (1998), 71–87.

31

Page 32: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

32 BIBLIOGRAPHY

[11] Hernando, J., Lud, S. Q., Bruno, P., Gruen, D. M., Stutz-

mann, M., and Garrido, J. A. Electrochemical impedance spectroscopyof oxidized and hydrogen-terminated nitrogen-induced conductive ultra-nanocristalline diamond. Electrochim. Acta 54 (2009), 1909–1915.

[12] Holzapfel, M., Martinent, A., Alloin, F., B. Le Gorrec, Yazami,

R., and Montella, C. First lithiation and charge/discharge cyclesof graphite materials, investigated by electrochemical impedance spec-troscopy. J. Electroanal. Chem. 546 (2003), 41–50.

[13] Jansen, R., and Beck, F. Electrochim. Acta 39 (1994), 921.

[14] Jonscher, A. K., and Bari, M. A. Admittance spectroscopy of sealedprimary batteries. J. Electrochem. Soc. 135 (1988), 1618–1625.

[15] Kulova, T. L., Skundin, A. M., Pleskov, Y. V., Terukov, E. I.,

and Kon’kov, O. I. Lithium insertion into amorphous silicon thin-filmelectrode. J. Electroanal. Chem. 600 (2007), 217–225.

[16] Laes, K., Bereznev, S., Land, R., Tverjanovich, A., Volobujeva,

O., Traksmaa, R., Raadik, T., and Opik, A. The impedance spec-troscopy of photoabsorber films prepared by high vacuum evaporation tech-nique. Energy Procedia 2, 1 (2010), 119 – 131.

[17] Matthew-Esteban, J., and Orazem, M. E. On the application of theKramers-Kronig relations to evaluate the consistency of electrochemicalimpedance data. J. Electrochem. Soc. 138 (1991), 67–76.

[18] Messaoudi, B., Joiret, S., Keddam, M., and Takenouti, H. Anodicbehaviour of manganese in alkaline medium. Electrochim. Acta 46 (2001),2487–2498.

[19] Orazem, M. E., Shukla, P. S., and Membrino, M. A. Extension of themeasurement model approach for deconvolution of underlying distributionsfor impedance measurements. Electrochim. Acta 47 (2002), 2027–2034.

[20] Quintin, M., Devos, O., Delville, M. H., and Campet, G. Studyof the lithium insertion-deinsertion mechanism in nanocrystalline γ-Fe2O3

electrodes by means of electrochemical impedance spectroscopy. Elec-

trochim. Acta 51 (2006), 6426–6434.

[21] Seki, S., Kobayashi, Y., Miyashiro, H., Yamanaka, A., Mita, Y.,

and Iwahori, T. Degradation mechanism analysis of all solid-state lithiumpolymer rechargeable batteries. In IMBL 12 Meeting (2004), The Electro-chemical Society. Abs. 386.

[22] Sluyters-Rehbach, M. Impedance of electrochemical systems: termi-nology, nomenclature and representation-part I: cells with metal electrodesand liquid solution (IUPAC Recommendations 1994). Pure & Appl. Chem.

66 (1994), 1831–1891.

[23] Tomczyk, P., and Mosialek, M. Investigation of the oxygen electrodereaction in basic molten carbonates using electrochemical impedance spec-troscopy. Electrochim. Acta 46 (2001), 3023–3032.

Page 33: Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS CONTAINING

BIBLIOGRAPHY 33

[24] VanderNoot, T. J., and Abrahams, I. The use of genetic algorithmsin the non-linear regression of immittance data. J. Electroanal. Chem. 448

(1998), 17–23.

[25] Yang, B. Y., and Kim, K. Y. The oxidation behavior of Ni-50%Coalloy electrode in molten Li + K carbonate eutectic. Electrochim. Acta 44

(1999), 2227–2234.

[26] Zoltowski, P. J. Electroanal. Chem. 443 (1998), 149.