Top Banner
Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W. Schleifenbaum, P. Watson
38

Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Hamilton approch to Yang-Mills Theory in Coulomb Gauge

H. Reinhardt

Tübingen

Collaborators:D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W. Schleifenbaum, P. Watson

Page 2: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

related work:

D. Zwanziger

A.P. Szczepaniak, E. S. Swanson, …

Page 3: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Plan of the talk

• Hamilton approach to continuum Yang-Mills theory in Coulomb gauge

• Variational solution of the YM Schrödinger equation: Dyson- Schwinger equations

• Numerical Results• Infrared analysis of the DSE• ghost-gluon and 3-gluon vertex• t Hooft loop• Conclusions

Page 4: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Classical Yang-Mills theory

24

41 ))((2 xFxdLg

AAAAxF ,)(

Lagrange function:

field strength tensor

Page 5: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Canonical Quantization of Yang-Mills theory

)()(/)( momenta xExALx ai

ai

ai

)( scoordinatecartesian xAa

0)( :gauge Weyl 0 xAa0)(0 xa

)(/)( :onquantizati xAix ak

ak

))()(( 22321 xBxxdH

Gauß law: mD

)()( :)x U(invariance gauge residual AAU

Page 6: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Attempts to solve the Schrödinger equation with

gauge invariant wave functionals

K. Johnson,… gauge invariant variables

Karabali, Kim, Nair strong coupling expansion of the (D=2+1) YM wave functional

Greensite gradient expansion

projection techniquesKogan, Kovner,...Heineman, Martin, VautherinSchröder, H.R.

more efficient way: resolve Gauß´law explicitly by fixing the gauge

Page 7: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Coulomb gauge

mD Gauß law:

|| 1m( D ) , ( A )

resolution of Gauß´ law

)()(*)(| AAAJDAcurved space

Faddeev-Popov )()( DDetAJ

A 0, A A

|| , / i A

Page 8: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

YM Hamiltonian in Coulomb gauge

)( 2||||1121 BJJJJH

-arises from Gauß´law =neccessary to maintain gauge invariance -provides the confining potential

Coulomb term11

C 2

1 1 2 112

m

H J J

J ( D ) ( )( D ) J

color density: A

Christ and Lee

Page 9: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Importance of the Faddeev-Popov determinant

ˆDet( D )

defines the metric in the space of gauge orbitsand hence reflects the gauge invariance

Page 10: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

aim: solving the Yang-Mills Schrödinger eq.

for the vacuum by the variational principle

with suitable ansätze for

H DAJ(A) (A)H (A) min

metric of the space of gauge orbits: )( DDetJ

Dyson-Schwinger equations

Page 11: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

12

1A exp A A

Det D

2*

12*

12

21 |

)(r , )(

drdrr

rJr

rQM: particle in a L=0-state

vacuum wave functional

x x´ determined from

H min

variational kernel

DSE (gap equation)

Page 12: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

ghost propagator 1 dG ( D )

ghost form factor dAbelian case d=1

gluon propagator 11

2AA

gluon DSE (gap equation) 2 2 2k k k

k k ...

2

12

ln Det D

A A

curvature

gluon self-energy

Dyson-Schwinger Equations

ghost DSE

Page 13: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

d( ),....

Regularization and renormalization:momentum subtraction scheme renormalization constants:

ultrviolet and infrared asymtotic behaviour of the solutions to the Schwinger Dyson equations is independent of the renormalization constants except for )(d

In D=2+1 is the only value for which the coupled Schwinger-Dyson equation have a self-consistent solution

)( criticaldd

critical

1

d( ) d :

d (k 0) 0

horizon condition Zwanziger

Page 14: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Numerical results (D=3+1)

k : d k 1/ ln k k k

k 0 : d k 1/ k k 1/ k

k 0

k k finite (renormalization) const.

ghost form factor gluon energy and curvature

Page 15: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Coulomb potential

4k 0

V(k) 1/ k

Page 16: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

external static color sources

electric field

ghost propagator

1 DE

Page 17: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

The color electric flux tube

missing: back reaction of the vacuum to the external sources

Page 18: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

comparison with lattice d=3

lattice: L. Moyarts, dissertation

Page 19: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

D=3+1

Infrared behaviour of lattice GF: not yet conclusivetoo small lattices, see talk by A. Maas

Page 20: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

previous work: A.P. Szczepaniak, E. S. Swanson, Phys. Rev. 65 (2002) 025012 A.P. Szczepaniak, Phys. Rev. 69(2004) 074031

different ansatz for the wave functional did not include the curvature of the space of gauge orbits i.e. the Faddeev- Popov determinant

present work: C. Feuchter & H. R. hep-th/0402106, PRD70(2004) hep-th/0408237, PRD71(2005)

W. Schleifenbaum, M. Leder, H.R. PRD73(2006) D. Epple, H. R., W. Schleifenbaum, in prepration

full inclusion of the curvature

measure for the curvature

2

12

ln Det D

A A

Page 21: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Importance of the curvature

Szczepaniak & SwansonPhys. Rev. D65 (2002)

• the = 0 solution does not produce a linear confinement potential

Page 22: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

kSzczepania &Swanson 0

rkpresent wo ansatz) (radial 21

AADDetA 21exp)(

Infrared limit = independent of

Robustness of the infrared limit

0/ 0/ dHdHto 2-loop order:

oft independen is AA

Page 23: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Infrared analysis of the DSE

A exp( S A / 2)

generating functional

vacuum wave functional:

d=4 Landau gauge functional integral

d=3 Coulomb gauge canonical quantization S A ...?

2

21g

S A F ghost dominance in the infrared

S A 0

A 1

strong coupling

Z j exp jA

DADet( D )exp( S A jA)

Page 24: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Analytic solution of DSE in the infraredLG: Lerche, v. Smekal Zwanziger, Alkofer, Fischer,…CG: Schleifenbaum, Leder, H.R.

gluon propagator2

AD(p)

p 2

BG(p)

p ghost propagator

basic assumption:Gribov´s confinment scenario at work

horizon condition:2 -1G(p) d(p) / p , d (p=0)=0 0

2 d 4 sum rule:

ghost DSE (bare ghost-gluon vertex)

Landau gauge d=4 2 0 infrared divergent ghost form factor 0

infrared finite gluon form factor <0

2 1 Coulomb gauge d=3

solution of gluon DSE

1.18, ( 1.0)

0.796(0.85), 1.0(0.99)

Coulomb gauge d=2 2 2 0.4

Page 25: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

ghost gluon vertex

D=4 Landau gauge(Taylor): non-renormalization in all orders in g becomes bare for vanishing incoming ghost momentumd=3 Coulomb gauge: similar behaviour renormalization can be ignored

Page 26: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

3- gluon vertex

a b c abc abci 1 j 2 k 3 ijk 1 2 3 ijk 1 2 3A (p ),A (p ),A (p ) : (p ,p ,p ) f (p ,p ,p )

Asumption: color structure of the bare vertex single form factor

2 d / 2 2 3 / 21 2 3

2 1.775 2 1.77

p p p : p F p (p ) (p)

d 3 , 0.85 F p (p ) (numer. F p (p ) )

ijk 1 2 3 1 ik 1 2 3jp ,p ,p i p F p ,p ,p perm.

Page 27: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

3-gluon vertex in Coulomb gauge

Page 28: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

large variety of wave functionals produce the same DSE more sensitive observables than energy

Coulomb potential = upper bound for true static quark potential (Zwanziger)confining Coulomb potential (=nessary but) not suffient for confinement

Wilson loop 1N

C

W A C tr P exp A

order parameter of YMT

temporal Wilson loopexp( A(C)) confined phase

W[A](C)exp( P(C)) deconfine phase

difficult to calculate in continuum theory due to path ordering

spatialT 0 : W C

Page 29: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

´t Hooft loop

´t HooftMünsterTomboulisSamuelBhattacharya et alDel Debbio, Di Giacomo, B. LuciniChernodub et al.Korthals-Altes, Kovner,..de Focrand, D´Elia, Pepe, v. Smekal,….Quandt, H.R., Engelhardt….Recent review: Greensite

disorder parameter of YMT

spatial ´t Hooft loop

exp( P(C)) confined phase

V[A](C)exp( A(C)) deconfine phase

Page 30: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

continuum representation: H.R: Phys.Lett.B557(2003)

3V(C) exp i d x (C)(x) (x)A a ai i(x) / i A (x)

1 2L(C ,C )1 2W (C ) (C ) ZA

V(C)-center vortex generator

center vortex field CA

´t Hooft loop

1 2L(C ,C )1 2 2 1V(C )W(C ) Z W(C )V(C )defining eq.

1 2

Z (non trivial) center element

L(C ,C ) Gauß´ linking number

1C

2C

Page 31: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

3V(C) exp i d x (C)(x) (x)A a ai i(x) / i A (x)

gauge dependent but produces gauge invariant results when acting on gauge invariant states

2 3i; x d x x( )

iA

aaexp T Z

C

C

E

a 2 ai iV(C ) exp i d (x( ))

Page 32: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

´t Hooft loop electric flux

C

E

Wilson loop magnetic flux

C

B

Page 33: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

3V(C) exp i d x (C)(x) (x)A a ai i(x) / i A (x)

V C A A (C)A

didxexp iap x x a , p QM:

*V(C) DA (A) (A (C))A

wave functionals in Coulomb gauge satisfy Gauß´law and hence should be regarded as the gauge invariant wave functional restricted to transverse gauge fields.

Page 34: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

´t Hooft loop in Coulomb gauge

*V(C) DA Det( D ) (A ) (A (C))A

infrared properties of K(p) determine the large R-behaviour of S(R)

p 0

K p 0 p p c(finite)

Det( D ) exp A A

representation (correct to 2 loop) H. R. & C.F. PRD71

2

12

ln Det D

A A

V(C) exp( S(C)) 0

S(C) dpK(p)h(C,p)

h(C;p)-geometry of the loop C

2

12

(p)K(p) (p) 1

(p)

properties of the YM vacuum

planar circular loop C with radius R

Page 35: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

from gap equation k 0

k k finite (renormalization) const : c

renormalization condition:

c=0 produces wave functional which in the infrared approaches thestrong coupling limit A 1

V C exp perimeter(C)

V C exp perimeter(C) log(perimeter(C))

c 0

V C exp area(C)

neglect curvature 0

Page 36: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.
Page 37: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Summary and Conclusion• Variational solution of the YM Schrödinger equation in Coulomb

gauge • Infrared analysis and numerical solution of the resulting DSE• Quark and gluon confinement• Curvature in gauge orbit space (Fadeev –Popov determinant) is

crucial for the confinement properties• Ghost-gluon vertex = IR-finite• 3-gluon vertex= IR-divergent• ´t Hooft loop: perimeter law for a wave functional which in the

infrared shows strict ghost dominance• Current projects:

– QCD string– Topological susceptibility

Page 38: Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.

Thanks to the organizers