Top Banner
H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ) On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation Laboratory Collaborators: A. Vaterlaus (ETH Z ürich) A. Kashuba (Landau Inst. Moscow) ; A. Dobin (Seagate) D. Weller, G. Ju, B.Lu (Seagate Technologies) G. Woltersdorf, B. Heinrich (S.F.U. Vancouver) samples theory magnetic imaging
21

H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Feb 01, 2016

Download

Documents

spiro

On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation Laboratory. Collaborators:. H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ). A. Vaterlaus (ETH Z. ü. rich). magnetic imaging. A. Kashuba (Landau Inst. Moscow) ; A. Dobin (Seagate). - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

On the Ultimate Speed of Magnetic Switching

Joachim Stöhr

Stanford Synchrotron Radiation Laboratory

Collaborators:

A. Vaterlaus (ETH Zürich)

A. Kashuba (Landau Inst. Moscow) ; A. Dobin (Seagate)

D. Weller, G. Ju, B.Lu (Seagate Technologies)

G. Woltersdorf, B. Heinrich (S.F.U. Vancouver) samples

theory

magnetic imaging

Page 2: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

The ultrafast technology gap

want to reliably switch small

magnetic “bits”

The Technology Problem: Smaller and Faster

Page 3: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

186 years of “Oersted switching”….

How can we switch faster ?

Page 4: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Faster than 100 ps….Mechanisms of ultrafast transfer of energy and angular momentum

Optical pulse

Most direct way:Oersted switching

Precessional or ballistic switchingExchange switching (spin injection)

Shockwave

IR or THz pulseElectrons Phonons

Spin

~ 1 ps

= ? ~ 100 ps

Page 5: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Precessional or ballistic switching:

Discovery

Page 6: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Creation of large, ultrafast magnetic fields

Conventional method

- t

oo slow

Ultrafast pulse – use electron accelerator

C. H. Back et al., Science 285, 864 (1999)

Page 7: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Torques on in-plane magnetization by beam field

Max. torque

Min. torque

Initial magnetization of sample

Fast switching occurs when H M┴

Page 8: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Precessional or ballistic switching: 1999

Patent issued December 21, 2000: R. Allenspach, Ch. Back and H. C. Siegmann

Page 9: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Precessional switching case 1:

Perpendicular anisotropy sample

I. Tudosa, C. Stamm, A.B. Kashuba, F. King, H.C. Siegmann,J. Stöhr, G. Ju, B. Lu, and D. Weller

Nature 428, 831 (2004)

Page 10: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

End of field pulse

M

The simplest case: perpendicular magnetic medium

Page 11: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Pattern of perpendicular anisotropy sample CoCrPt perpendicular recording media (Seagate)

Page 12: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Multiple shot switching of perpendicular sample

Dark areas mean M

Light areas mean M

Tudosa et al., Nature 428, 831 (2004)

CoCrPt recording film

Page 13: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Landau-Lifshitz-Gilbert theoryExperiment

1 = white

0 = gray

-1 = dark

Intensity profiles thru images

1 shot

2 shots

6 shots 7 shots

curve = M1

curve = (M1)3

curve = (M1)7

curve = (M1)5

curve = (M1)2

curve = (M1)4

curve = (M1)6

Data analysis

Landau-Lifshitz-Gilbert theoryExperiment

3 shots

5 shots4 shots

Multiplicative probabilities are signature of a random variable. Analysis reveals a memory-less process.

Page 14: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Magnetization fracture under ultrafast field pulse excitation

Non-deterministic region partly due to fractured magnetization

Page 15: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Magnetization fracture under ultrafast field pulse excitation

Macro-spin approximation uniform precession

Magnetization fracture moment de-phasing

Breakdown of the macro-spin approximation

Tudosa et al., Nature 428, 831 (2004)

Page 16: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Precessional switching case 2:

In-plane anisotropy sample

C. Stamm, I. Tudosa, H.C. Siegmann, J. J. Stöhr, A. Yu. Dobin,G. Woltersdorf, B. Heinrich and A. Vaterlaus

Phys. Rev. Lett. 94, 197603 (2005)

Page 17: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

In-Plane Magnetization: Pattern development

• Magnetic field intensity is large

• Precisely known field size

540o

360o

180o

720o

Rotation angles:

Page 18: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Origin of observed switching pattern

In macrospin approximation, line positions depend on:• angle = B • in-plane anisotropy Ku

• out-of-plane anisotropy K┴

• LLG damping parameter

from FMR data

H increases15 layers of Fe/GaAs(110)

Page 19: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Breakdown of the Macrospin Approximation H increases

With increasing field, deposited energy far exceeds macrospin approximation this energy is due to increased dissipation or spin wave excitation

Page 20: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Breakdown of the macrospin approximation: why?

Experiments reveal breakdown for short pulse length and large B

peak power deposition ~ B2 / = B / 2

Breakdown appears to be caused by peak power induced fracture of magnetization – non-linear excitations of spin system

Page 21: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford )

Conclusions

• The breakdown of the macrospin approximation for fast field pulses limits the reliability of magnetic switching

• Breakdown is believed to arise from energy & angular momentum transfer within the spin system – excitation of higher spin wave modes

• Details are not well understood….

For more, see: http://www-ssrl.slac.stanford.edu/stohr

and

J. Stöhr and H. C. Siegmann Magnetism: From Fundamentals to Nanoscale Dynamics 800+ page textbook ( Springer, to be published in Spring 2006 )