Top Banner
Project by Project by Santiago Yeomans, Chad Cummins, Gboyega Santiago Yeomans, Chad Cummins, Gboyega Adeola Adeola Guitar Signal Guitar Signal Transmitter Transmitter
25

Guitar Signal Transmitter

Dec 31, 2015

Download

Documents

daniel-dotson

Guitar Signal Transmitter. Project by Santiago Yeomans, Chad Cummins, Gboyega Adeola. Introduction. Electric guitar output will connect to FM transmitter Transmitted audio will be received at receiver and connected to guitar amplifier ¼ “ audio plugs used for connections - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Guitar Signal Transmitter

Project by Project by

Santiago Yeomans, Chad Cummins, Santiago Yeomans, Chad Cummins, Gboyega AdeolaGboyega Adeola

Guitar Signal Guitar Signal TransmitterTransmitter

Page 2: Guitar Signal Transmitter

IntroductionIntroduction

• Electric guitar output will connect to FM transmitter

• Transmitted audio will be received at receiver and connected to guitar amplifier

• ¼ “ audio plugs used for connections– output of guitar to transmitter– output of receiver to amp

Page 3: Guitar Signal Transmitter

Frequency Modulation vs. Phase Modulation

FM PM

Fair S/N ratio Best S/N ratio

Variable modulation index

Constant modulation index

Easier implementation

Phase lock loop to demodulate signal

VCO can produce high index freq. modulation

Multipliers needed to produce high index PM

Cost efficient Expensive

Page 4: Guitar Signal Transmitter

Flow Diagram Flow Diagram

Reactance Modulator

Carrier Oscillator

Buffer AmplifierFrequency Multipliers

Driver Amplifier

Power outputamplifier

Reactance Modulator: The nature of FM is that when the baseband signal is zero, the carrier is at its “carrier” frequency, when it peaks the carrier deviation is at a maximum and when it troughs the deviation is at its minimum. This deviation is simply a quickening or slowing down of frequency around the carrier frequency by an amount proportional to the baseband signal. In order to convey this characteristic of FM on the carrier wave, the capacitance must be varied.

Buffer Amplifier: The buffer amplifier acts as a high input impedance with a low gain and low output impedance associated with it. The high input impedance prevents loading effects from the oscillator section.

Frequency Multipliers: To avoid frequency drifts of the LC tank while modulating the carrier by the baseband with a high modulation index, modulation can take place at lower frequencies with a higher Q factor of the oscillator.

Power Output Section- Develops the final carrier power to be transmitted. Also included here is an impedance matching network, in which the output impedance is the same as that on the load (antenna)

Page 5: Guitar Signal Transmitter

Block DiagramBlock Diagram

InOut

Page 6: Guitar Signal Transmitter

Three StagesThree Stages• Signal Source (Guitar, CD player)

– CD Audio Output: >1.5 V– Guitar Signal Output: 150mv– Output Impedance:

• Transmitter– Colpitts Oscillator ---– Circuit Self-Amplification

• Receiver– Hartley Oscillator ---– Audio amplifier

Page 7: Guitar Signal Transmitter

Oscillator

Resonant Circuits.Resonant frequency is that at which the impedance of capacitor & inductor is the same; it represents the oscillator carrier frequency in Hertz. The parallel resonant circuit we used, known as an LC tank, takes the advantage of the resonant frequency and allows the impedance to be at a maximum & the current at a minimum at Fc.

Q : ratio of maximum energy stored to the amount lost per ac cycle. It determines the 3dB bandwidth of resonant circuits.

Since we didn’t have a resistor in the LC tank, the inherent properties of inductor & capacitor at high frequencies had to be taken into account.

Page 8: Guitar Signal Transmitter

Essential Circuit ElementsEssential Circuit Elements• Transistors:

– Transmitter: 2 (2N3904)– Receiver: BF256, 2N3904

• Inductors– Copper Coils

• 5 turns• 16 turns

Page 9: Guitar Signal Transmitter

TransmitterTransmitter

Page 10: Guitar Signal Transmitter
Page 11: Guitar Signal Transmitter

ReceiverReceiver

Page 12: Guitar Signal Transmitter
Page 13: Guitar Signal Transmitter

LPF 682 HzLPF 682 Hz

1 kHz1 kHz

Chebyshev Filters6-Band Equalization Stage6-Band Equalization Stage

Page 14: Guitar Signal Transmitter

2 kHz2 kHz

4 kHz4 kHz

Page 15: Guitar Signal Transmitter

8 kHz8 kHz

10.9 kHz10.9 kHz

Page 16: Guitar Signal Transmitter

Pspice SimulationPspice Simulation

Page 17: Guitar Signal Transmitter

Output of receiver connected to guitar Output of receiver connected to guitar amplifieramplifier

Page 18: Guitar Signal Transmitter

Project AchievementsProject Achievements• Achieved both FM RF Transmission

and reception– Carrier frequency of 100 MHz

• Audio received and sent to guitar amplifier

• Audio from cd player worked well• Temporarily had guitar audio

transmitting and receiving• Circuits were low cost to build

Page 19: Guitar Signal Transmitter

PerformancePerformance• Quality of Audio

– Clear at times, some noise occasionally

• Transmission– Better transmission was achieved with a

source device having a larger input impedance.

Page 20: Guitar Signal Transmitter

Project ChallengesProject Challenges• Setup both transmitter and receiver for same carrier frequency (100MHz)

– Variable Capacitor range was unknown, not sure about the pins(Variable cap taken from $5 handheld radio bought from Wal-Mart)

Page 21: Guitar Signal Transmitter

Challenges continuedChallenges continued• Working with the LM741 Op Amp• Working with a breadboard• Parasitic Capacitances• Unable to Effectively Simulate• Inductors• Parasitic Capacitances inherent in high

frequency engineering

Page 22: Guitar Signal Transmitter

OversightsOversights

• Impedance Mismatching– Between Amplifier and Receiver

• Under-estimated difficulty of amplifying guitar audio before transmission

Page 23: Guitar Signal Transmitter

TimelineTimeline

Page 24: Guitar Signal Transmitter

Factors for obtaining better S/N

Resistive properties in LC tankA) Skin effect - at high frequencies, there is less cross sectional area for carriers to

move, so the resistance increase; when the magnetic field at the centre of the wire increases and local inductive reactance takes over, that is, stray capacitances begin to build up between adjacent turns.

B) Dielectric permittivity

Temperature Stability of the oscillatorComponents in oscillator have non-zero temperature coefficients. To find thechange in frequency for a given temperature change, simply multiply the coefficient by the temperature change & the centre frequency.Major source of frequency instability: Capacitor & Transistor (junction capacitance)

More compact circuitry

Wrapping the circuit with aluminum foil to electromagnetically shield the RF stage. Unwanted electromagentic radiation had to be stopped from destructively interferingWith the carrier modulation.

Page 25: Guitar Signal Transmitter

Future ImprovementsFuture Improvements

• Replace the common 2N3904 transistor with a BC549 which would perform better with high frequency

• Use a ground plane for better performance of sensitive circuits

• Solder all connections