Top Banner
Status and main challenges for detectors in Hadron Therapy European Radiation Detection and Imaging (ERDIT) Bernd Voss GSI Helmholtzzentrum für Schwerionenforschung GmbH
26

Guideline

Feb 25, 2016

Download

Documents

hesper

Status and main challenges for detectors in Hadron Therapy European Radiation Detection and Imaging ( ERDIT) Bernd Voss GSI Helmholtzzentrum für Schwerionenforschung GmbH. Guideline. What is Hadron Therapy about? - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Guideline

Status and main challenges for detectors in Hadron Therapy

European Radiation Detection and Imaging (ERDIT)

Bernd VossGSI Helmholtzzentrum für Schwerionenforschung GmbH

Page 2: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Guideline

What is Hadron Therapy about? What are the methods & instruments offering particles for

treatment during the evolution ‘State-of-the-art’ ‘Modern’ ‘Futuristic’ accelerators?

Which tasks do we have to perform and which questions do we have to answer in radio therapy (RT)?

Which requirements & challenges for detector systems result? Are there already practical solutions?

11.04.2013

Page 3: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Hadron-Therapy Light Ions vs. Photons

Ions… Show inverse depth-dose profiles with a finite range

and low lateral scattering at least in the plateau region Allow superior tumor-dose conformality

Introduce increased sensibility to range uncertainties (wrong dosage) daily positioning for 30 days, intra- & inter-fractional target movement 11.04.2013

IMRT 12CJäkel et al, Med Phys 35 2008

Fragment tail

Schardt et al, Rev Med Phys 82 2010

Page 4: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Hadron-Therapy Knowledge of base data is crucial Depth-dose/range distributions

Nuclear fragmentation cross-sections

Conversion of CT planning data (Hounsfield Units) into range of ions

Existing detector equipment for the base-data collection is

mature

11.04.2013

Wat

er e

quiv

alen

t pat

h le

ngth

CT number

Depth in water (mm)

Rel

ativ

e i

oniz

atio

n

Rietzel et al, Rad Onc 2,14 2007

OHHU 21000

HU:

Page 5: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

‘Standard’ Accelerator structures Cyclotron,

Synchrotron, Synchro-cyclotron

‘State-of-the-art’ Hadron Therapy facilities

11.04.2013

Beam application

Beam transport

Basic research & Quality assurance

Mature detector equipment pick up, SEM, SCI,

rest-gas monitors, IC, CG, MWPCUnder investigation:

GEM-TPC, Diamond, Si

Beam preparationHeidelberg Ion Therapy:

Page 6: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

‘State-of-the-art’ beam delivery Minor Challenges

On-line monitoring of irradiation exhibits…

Local saturationspoiling width determination for wire based gaseous systems in high-flux areas esp. for point-like (pencil) beams with high LET radiation (12C-RT)

Potential solutionExploit robust amplification methods e.g. based on GEM technology First prototypes show feasibility

11.04.2013

Page 7: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

E ≥1012V/cm

Relativistic e-

‘Modern’ Accelerators LASER driven accelerator

11.04.2013

LASER 1 PW250TW, Ti-Saphire, Neodynium-Glass, O(100m2) space req. Pulse 25700fs, 25/w10/s conventional p-cyclotron:

100MHz Dose Rate (2 Gy/(min l)) ~10-3 Gy/pulse ~10-10 Gy/pulse Spot point like O(10µm2), O(1021W cm-2) Proton energy 10170MeV with exponential energy spectra (factor 2 still missing)

Targets thin foils (50nm-10µm Si,Ti,Hydro-Carbon), H2droplets

Limited mass to increase proton energy at given power at decreased divergence and to obtain (quasi) mono-chromatic beams!

Page 8: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN Y. -J. Chen et al. LLNL-CONF-414222, 2009

‘Futuristic’ Accelerators Dielectric Wall Accelerator

CT-guided rotational (200°) IMPT Pulsed HF fields, p(200MeV) in 2m (E,I,spot) variable pulse-to-pulse Pulse length O(ns)@50Hz On-line monitoring beam-application?

11.04.2013

Lawrence Livermore National Laboratory (LLNL)

Page 9: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

‘Modern’ beam delivery Major Challenges

DWA & PRIOR (???) still in a very early stage or just sketched

LASER based systems are set up; open questions: Shielding the patient against beam contaminations (hard-X,e-,n) Formation of irradiation-field from non-monochromatic beams Dosimetry for exponential energy spectrum

recently solved by conventional IC calibrated against FC Measurements for (x,y,z) steering and control for ultra-fast (ns)

irradiation techniques; how to do an intensity modulation & dose control particle therapy?

11.04.2013

Page 10: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Intermediate Summary …ongoing detector R&D

Besides ongoing attempts to optimize equipment for online monitoring of beam delivery & control (MWPC)

existing detector equipment for base-data collection and state-of-the-art ion-beam application is mature R&D endeavors concentrate on: methods to reduce range uncertainties

(anatomy, patient positioning, inter- and intra fractional motion of target volume)

attempting to obtain 3D in-vivo on-line dosimetry & tomography using available information emerging from the target volume

developing dedicated imaging detector systems

11.04.2013

Page 11: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Insight into target volume Interaction & products

for 1010 protons (170 MeV, ~2Gy): (3·109) n(9·108) p(1·107) a(2·105)

Aim: In-beam in-vivo single particle tomography & dosimetryExploit information on the target volume by emerging radiation

11.04.2013

Time (s) after collision

10-21 10-18 10-15 10-12 10-9 10-6 10-3 100 103

ParticlesPrompt -rays

+-decay

Nucleons& clusters

Projectile

Target

Projectile fragment

Target fragment

Fireball

Prompt -rays

Fragmented ions

radioactive nuclides

Page 12: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Single particle (in-vivo) imaging

11.04.2013

SPECTPrompt -rays

Interaction Vertex Imaging Light charged particles

Proton beams

Light ion beams

Electronic collimationCompton camera

SiliconScintillator

ScintillatorScintillator

CdZnTe = ScattererSCI,CZT = Absorber

Passive collimationSlit cameras

Singleslit

Multislit

ICT Primaries

Range telescope

PET ß+emitter

Single Particle Tomography on-line / in-beam ‘off-line’

Mostly completely new methods (except PET) Clinical applicable technical solutions not elaborated Appropriate detectors not commercially available

in-beamin-roomoff-line

Page 13: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Positron Emission Tomography

11.04.2013

PET ß+emitter

Single Particle Tomography on-line / in-beam ‘off-line’

in-beamin-roomoff-line

protonprotonprojectile

neutron16O 15O

target fragment nucleus of tissue

target fragment

12C ion projectile

nucleus of tissue

16O 15Oneutrons

12C 11C projectile fragment

Required devices: PET Camera

15O, 11C, ...

11C, 10C

15O, 11C, ...

β+ production is a by-product of the irradiation

Parodi et al, IEEE TNS 2005

Page 14: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

In-beam: GSI Darmstadt Off-line: MGH Boston, HIT Heidelberg

more…• HIMAC, Chiba• NCC, Kashiwa • HIBMC, Hyogo• MDACC, Houston• Univ. of Florida

Positron Emission Tomography …some Hardware

11.04.2013Courtesy W. Enghardt / OncoRay

In-vivo range measurements In-vivo dosimetry & real-time image guidance Ongoing developments (TOF-PET, PET+CT)

reduce unfavorable in-beam random coincidences/background (by 20-30%)

Mature technology

Page 15: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Prompt -ray imaging

11.04.2013

SPECTPrompt -rays

Electronic collimationCompton camera

SiliconScintillator

ScintillatorScintillator

CZTSCI,CZT

Passive collimationSlit camera

Singleslit

Multislit

Single Particle Tomography on-line / in-beam

Required devices: Hodoscope (x,y,t) Scatterer (x,y,E) Absorber (x,y,z,E,t)

Ray (IPN Lyon)

Ray (IPN Lyon)

Page 16: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Nucleonsand clusters

Prompt -rays

Primary ions

Prompt -ray imaging Technique

11.04.2013

12C(75/95 AMeV) on PMMA

BP position

BP position

Prieels et al (IBA) Dauvergne et al (IPNL Lyon) A. Ferrari and FLUKA collaboration

blue FLUKAred Data

P R E L I M I N A R Y

Proton treatment plan -rays MC simulation

Page 17: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Prompt -ray imaging …some Hardware

11.04.2013

Krimmer, De Rydt IPN Lyon

Scintillating-fibre Hodoscope

Timing ASIC

t~1ns@108 s-1

CZT-strip+LYSO-block Detector

T. Kormoll, et al., NIM A626 (2011) 114,

IEEE NSS-MIC, 2011, pp. 3484

22Na%3

EE

2x128 (1x1mm2)

54x54x20 mm3

20x20x5 mm3

Le Foulher et al. 2010 IPN Lyon

single slit

multi slit

Page 18: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Interaction-Vertex imaging (secondary protons)

11.04.2013

Interaction Vertex Imaging Light charged particles

Proton beams

Light ion beams

Single Particle Tomography on-line / in-beam

Dauvergne et al 2009

AQUA Project: G4 simulations

Required devices: Hodoscope (x,y,t) Trackers (x,y,z,E,t)

in coincidence

Page 19: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Prompt -rays

Nucleons (protons)

Primary ions

Interaction-Vertex imaging Technique

11.04.2013

Single proton

Courtesy of E. Testa

Double proton

Page 20: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Interaction-Vertex imaging …some Hardware

11.04.2013

GANIL (95 AMeV) & HIT (200-300 AMeV)

CMOS

PMMA

‘PRR30’ 2x SCI Stack (r,E)

GEM tracker

30x30cm2

2D-strips ~106 s-1

rad.hard

48x3mm plastic 15cm WEPL

(30-190 MeV)WLS fibres

MPPC SiPM

>106 s-1

Hodoscope

Courtesy of

TERA

2x2cm2

4 planes

10°

Page 21: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Interaction-Vertex imaging …some Results

GEM-spatial 400m

6mrad Angular resolution

~0.3% (0.04 sr) Solid angle

11.04.2013

10 cm

secondary protons__ primary protons

1.5 m

target

GEM

GEM

PRR30

1010 s-1

~5×10

5 s-1

Large-angles beam diagnostics is feasible

at an acquisition rate of 106 tracks/s

reconstructed vertices

Courtesy of

TERA

Page 22: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Primary-Ion Radiography / Tomography

11.04.2013

Single Particle Tomography on-line / in-beam

Required devices: IC Range Telescope (r(Ei))

(Trackers (x,y)i,e)

For transmission ion-imaging prior to or in-between RT

Traversing particles Bragg peak position depends

on the traversed materials

Prompt -rays

Nucleons (protons)

Primary ions

ICT Primaries

Range telescope

Page 23: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Primary-Ion Radiography / Tomography

Transmission ion imaging prior to or in-between RT is feasible

11.04.2013

Water equivalent thickness

12C ions Radiography X-rays

Water equivalent path length

Tomography

61x ICs & PMMA slabs (300x300x3)mm3

Electrometer(www.ptcusa.com)

3x0.6mm21x1mm2

Rinaldi et al 2012

Page 24: Guideline

                                                                                    

B. Voss

Rinaldi, Gianoli et al 2012

P R E L I M I N A R Y

3D ART Reconstruction

12C Ion Tomography

ERDIT for Horizon2020, CERN

Rinaldi, Gianoli et al 2012

P R E L I M I N A R Y

11.04.2013

Page 25: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Summary

Several ‘modern’ beam production scenarios under investigation LASER driven accelerators are not table-top like so far

Dosimetry by IC with FC calibration successfull DWA & 4.5 GeV Proton Camera (@FAIR) are far from being reality

Detectors for Beam Control & Treatment Steering are mature Imaging setups to gain inside in on-line dosimetry are required

Most detector systems exist on a prototype/proof-of-principle base, larger scales are needed

Several ‘new’ detector materials are under investigation (CdZnTe,LaBr,LYSO,..)

Imaging results are promising for PET, prompt gamma, secondary proton, primary-ion tomography

Serious applications as standard medical device still pending

11.04.2013

Page 26: Guideline

                                                                                    

B. Voss ERDIT for Horizon2020, CERN

Acknowledgement

Special thanks to:

Ilaria Rinaldi (Heidelberg University Hospital, Heidelberg) Katia Parodi (Ludwig-Maximilians University, Munich) Wolfgang Enghardt (OncoRay, Dresden) from whom I borrowed some of the information shown.

11.04.2013