Top Banner
High throughput experiments and predictive modelling Micro-dispensing of liquid food droplets on a solid substrate Jimmy Perdana
17

Guest Visit - UNIPA

May 30, 2018

Download

Documents

cherfrans
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 1/17

High throughput experimentsand predictive modelling

Micro-dispensing of liquid food droplets on

a solid substrate

Jimmy Perdana

Page 2: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 2/17

Outline

High throughput experiments

Predictive modelling

Case study: thesis

Conclusions

Q&A

Page 3: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 3/17

Project

High throughput experimentation on spraydrying

Current sub-project (thesis):Investigate dispensing of liquid micro-droplets (d = 80-150 μm) on a solidsubstrate

Page 4: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 4/17

Why: High Throughput?

Large experiments =

• Large amount of sample• Long time experimentation

• Difficult to control• Slow respond

• More expensive

Page 5: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 5/17

How: High Throughput?

• Small scale experiments• Can be completely different• Should be representative

Page 6: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 6/17

Modelling

• Simplification of reality• A tool to get a grip on reality without knowing the

reality in complete detail

• Empirical model: no underlying physical theory• Mechanistic model: based on (an) underlying

physical theory

• Prediction : e.g.: shelf life• Design : e.g.: experiments• Control : e.g.: product quality

Page 7: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 7/17

Droplet dispensing

Processparameters:

Valve opening time• Applied pressure• Needle tip diameter

Fluid properties:• Viscosity• Density• Rheological behavior

Page 8: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 8/17

Droplet imaging

Imaging

( )( ) ( )( )

−−−−= α α π  cos1

2

1cos1

6

1

3

4 33r V 

θ α  −°=180 θ ≈ 145O

Page 9: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 9/17

Experimental result

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5

ΔP (Pa)

   V

   (  n   L   )

80 ms (e)

60 ms (e)

50 ms (e)

40 ms (e)

Fluid : MEGDispenser tip : 0.1 mm ID

Valveopeningtime (t)

Page 10: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 10/17

Droplet dispensing - model

Model assumption:• Dispensing resistance is only in the

dispenser needle tip

• Steady laminar flow• No slip between fluid and needle-tip

wall• Newtonian behavior

P1

P2

x

L

D=2R

umax

t  g  L P  RQt V   

  

   +∆== ρ 

 µ π 8

4

Poiseuille's equation

Page 11: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 11/17

0

100

200

300

400500

600

700

800

900

1000

0 0.1 0.2 0.3 0.4 0.5

ΔP (Pa)

   V

   (  n   L   )

80 ms (m)

60 ms (m)

50 ms (m)

40 ms (m)

80 ms (e)

60 ms (e)

50 ms (e)

40 ms (e)

0

100

200

300

400500

600

700

800

900

1000

0 0.1 0.2 0.3 0.4 0.5

ΔP (Pa)

   V

   (  n   L   )

80 ms (m)

60 ms (m)

50 ms (m)

40 ms (m)

80 ms (e)

60 ms (e)

50 ms (e)

40 ms (e)

Model vs. Experiment

Model: underestimation at low ΔP needle-pistonmovement

overestimation at high ΔP higher resistance

Valveopeningtime (t)

Page 12: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 12/17

Model optimization

0

4

8

V t  g  L

 P  RV 

+  

 

 

 

+

=ρ 

 µ 

π 

Optimized parameters: L and V0

• L represents the total resistance of dispenser

• V0 represents the minimum volume

dispensed, caused by the piston movement

Page 13: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 13/17

Model optimization

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5

ΔP (Pa)

   V

   (  n   L   )

80 ms (m)

60 ms (m)

50 ms (m)

40 ms (m)

80 ms (e)

60 ms (e)

50 ms (e)

40 ms (e)

L = 2.09 ± 0.027 cm (P = 0.95)V0 = 16.25 ± 1.08 nL (P = 0.95)

Valveopeningtime (t)

rLV0 = 0.71

Page 14: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 14/17

Model optimization

-60

-40

-20

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

ΔP (Pa)

   V  r  e  s   i   d  u  a   l    [

   V  m  o   d  e

   l  -   V  e  x  p .   ]

   (  n   L   )

80 ms

60 ms

50 ms

40 ms

Residual is scattered, confidence interval P =0.95

Valveopeningtime (t)

Page 15: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 15/17

Effect of fluid viscosity

Model “confirms” the effect of fluidviscosity

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5

ΔP (Pa)

   V

   (  n   L   )

DEG

PEG

Page 16: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 16/17

Conclusion

High throughput experiments andpredictive modelling can be used as thetools to improve the research

Page 17: Guest Visit - UNIPA

8/14/2019 Guest Visit - UNIPA

http://slidepdf.com/reader/full/guest-visit-unipa 17/17

 Thank you

Questions?