Top Banner
Growth and Characterization of Co nanoparticles and nano wires 劉劉劉 劉劉劉 劉劉劉劉劉劉 劉劉劉劉劉劉 劉劉劉劉劉劉劉劉劉 劉劉劉劉劉劉劉劉劉 劉劉 劉劉劉劉劉劉劉 劉劉 劉劉劉劉劉劉劉
27

Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Jan 13, 2016

Download

Documents

Madlyn Davis
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Growth and Characterization of Co nanoparticles and nanowires

劉全璞劉全璞

國立成功大學 國立成功大學 材料科學及工程學系材料科學及工程學系

半導體奈米材料實驗室半導體奈米材料實驗室

Page 2: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Outline

1. Introduction : Nanoparticle; nanowire; and PVD

2. Co nanoparticle by magnetron sputtering

3. Co nanoparticle and nanotube by ion-beam deposition

4. Conclusions

Page 3: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Traditional PVDs for nanopaticle fabrication

• Clusters by free jet expansion

• Nanoparticle by low temperature deposition

• Quantum dot by epitaxial growth

Page 4: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Clusters by free jet expansion

Page 5: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Nanoparticle by low temperature deposition

Page 6: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Quantum dot by epitaxial growth

Stranski-Krastanow growth mode

What happen when together?

Shape evolution

Page 7: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Traditional VLS for nanowire growth

Page 8: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Objectives

Si substrate

native SiO2

Co nanoparticles

These can be used for catalysts.

Various types of CNT can be grown.

Page 9: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

(a) (b) (c)

(d) (e) (f)

Deposition distance vs surface morphologyAFM PW = 8 mtorr、 PDC = 50 W、 Vbias = -100 V、 tD = 10 sec

60mm 70mm 80mm

90mm 100mm 110mm

Size =60-120nm Size =120-150nm

Size = 130-170nm

Page 10: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

-50V(b)

0V(c)

+250V(d)

+525V(e)

0 nm

17.5 nm

35 nm-100V

(a)

500 nm

Substrate bias vs surface morphologyAFM PW = 8 mtorr、 PDC = 50 W、 DT, Sub = 110 mm、 tD = 10 sec

Page 11: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

(b)

Substrate bias vs size and height

Page 12: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Substrate bias vs island density

positive Vbias

obvious

particles

uniform

distribution

Page 13: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

1μm 100 nm

100 nm

Substrate bias vs surface morphologySEM plan view

-100V -50V

+250V

Page 14: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

20 nm 20 nm

fcc structure

BF DF

Substrate bias vs nanoparticle microstructureTEM plan view

Page 15: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

1010 0111

1101

2020

200

020

220

220

20 nm

100 nm 40 nm

Substrate bias vs nanoparticle microstructureTEM cross section Vsub = +250 V

Page 16: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Substrate bias – nanoparticle growth mechanismCoulomb force self-limited growth

deposition

e- e-

crevice filling

SiO2

Si substrate

repulsion

deposition

e- e-

repulsion

SiO2

Si substrate

island growth

Si substrate

deposition

e- e-

SiO2

Page 17: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

-100 V

-50 V

+525 V

+250 V

0 V

Substrate bias vs nanoparticle magnetic property

Page 18: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Growth time vs surface morphologyAFM PW = 8 mtorr、 PDC = 50 W、 DT, Sub = 110 mm、 tD = 10 sec、 Vsub = +525 V

(a)

20.1 ML

(b)

39.8 ML

(c)

59.6 ML

10 sec 20 sec 30 sec

Page 19: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

(a)

20 nm

(b)

20 nm

(a)

100 nm

(c)

50 nm

(b)

100 nm

20 secfcc

30 secfcc

Growth time vs nanoparticle microstructureTEM cross section Vsub = +250 V

Page 20: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

1: ANODE grid2: A/D grid3: Ground grid

solenoid coilPwaveguide

gas

ECR zone

1

2

3

E

θ

target

watercooling

Cu backing plate

resputtered atom

sputtered atom

fast Ar

substrate

sputter voltage (positive bias)

Mechanism of ion beam deposition

Page 21: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Co nanoparticle and wire by ion beam depositionSEM

2sec、 RT

2sec、 400℃

( c ) ( d )

2sec、 950℃

Page 22: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

1012 cm-2 1011 cm-2 5*108 cm-2

Co nanoparticle with various density

Page 23: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Co nanowire growth by ion beam depositionAFM

0.5m

Nucleation of Cobalt silicide nanowireOn Si(001)

0.5m

Cobalt magnetic quantum dots on Si(001)

Page 24: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

100nm100nm

402111

111

513

311622

222

531220

402

222131

440751

660351

042 333

-

-

-

-

-

351

000311

622

220531

751440

713

- - -

131 -

- -

- -

- -- -

- --

- -

-

-

-

-

- - -

- - -

- - -

042 -

Co nanowire growth by ion beam depositionTEM

Page 25: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Conclusions

Nanoparticle can be formed under negative bias at suitable conditions, however, damaged. Due to Coulomb force self-limited growth, Co nanoparticle is of very uniform distribution without obvious damage. Co nanoparticle as small as 10nm can be prepared by sputtering and exhibit superparamagnetic property

Page 26: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Conclusions

By IBS, the Co dot density can be varied by 1000 with very uniform size distribution EPitaxial Cobalt silicide nanowire can be fabricated by IBS

Page 27: Growth and Characterization of Co nanoparticles and nanowires 劉全璞國立成功大學材料科學及工程學系半導體奈米材料實驗室.

Acknowledgements

1. Students : 鍾秉憲 ; 王志欽

2. 國科會 NSC 91-2120-E006-003