Top Banner
Gross primary production algorithm development and validation K.MuramatsuNara Women’s Univ.S. Furumi (Nara Saho College ) M. Daigo (Doshisha Univ.) Yukiko Mineshita ( NWU M2 student) Yuri Hattori (NWU B4 student) 14114日火曜日
24

Gross primary production algorithm development and validation

Aug 02, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gross primary production algorithm development and validation

Gross primary production algorithm development

and validation

K.Muramatsu(Nara Women’s Univ.)S. Furumi (Nara Saho College )

M. Daigo (Doshisha Univ.)Yukiko Mineshita ( NWU M2 student)

Yuri Hattori (NWU B4 student)14年1月14日火曜日

Page 2: Gross primary production algorithm development and validation

Framework of GPP estimation

Photosynthesis velocity = Capacity x depression

Use light response curves  Estimate directly GPP, not use LAI

Correspond to photosynthesis process  Characteristics of the algorithm

●●● stomatal

opening and closing

Photosynthesis process: only the light exposure area

14年1月14日火曜日

Page 3: Gross primary production algorithm development and validation

Light reaction Carbon fixation

chlorophyll

light

Chemical energy

CO2

Carbon fixation

Calvin cycle

~ amount of absorbed light ~ amount of absorbed CO2

chlorophyll contents, light intensity

stomatal opening and closing, Weather, soil moisture

stomata

photosynthesis process

related to colorplant physiological parameter plant physiological actions

gas exchange is controlled fcapacity (PAR, chlorophyll) fstomata (xxx, xxx, •••)

14年1月14日火曜日

Page 4: Gross primary production algorithm development and validation

GPP capacity estimation framework

initial slope

PAR

photosynthesis velocity with low stress Pmax_capacity

From the plant physiological studyFor a leafInitial slope: efficiency of light conversion to carbon related to chlorophyll contentsPmax_capacity: volume of chloroplasts [Ono et. al, 1995, Oguchi 2003]

Pmax_capacity related to chlorophyll contents

slope x Pmax_capacity x PAR1+slope xPAR

CIgreen=G/NIR -1. [Gitellson et. al, 2006]

14年1月14日火曜日

Page 5: Gross primary production algorithm development and validation

Characteristics of CIgreen(=NIR/G-1 )

i) High sensitivity to Chlorophyll contents:Green>Red

ii) Linear relationship with Chlorophyll contents of a leafiii) Linear relationship with Pmax_capacity_2000

initial slope

PAR

Photosynthesis velocity with low stress Pmax_capacity

slope x Pmax_capacity x PAR1+slope xPAR

2000

Pmax_capacity_2000

Results from Previous study

(μmol)

14年1月14日火曜日

Page 6: Gross primary production algorithm development and validation

Previous studyPmax_capacity2000 vs. CIgreen

for each vegetation functional types

J.Thanyapraneedkul. et.al, 2012, Remote Sensing, 4, 3689-3720

14年1月14日火曜日

Page 7: Gross primary production algorithm development and validation

DNFEF

Grass

PF

DBFDBF

???

Use Grass parametersOpen Shrub ?Closed Shrub ?

GPP capacity estimation :        

Evergreen Broad Leaf forests ?

Amazon

Parameters determined mainly using Japan FLUX

14年1月14日火曜日

Page 8: Gross primary production algorithm development and validation

Km67: natural Forest IGBP: EBF

US-Los: ハンノキ,湿地IGBP: Closed shrub bland

US-Ses: Desert shrub landIGBP: Open shrub land

US-Wjs: Savanna(EGF)IGBP: Open shrub land

US-Whs: Grazing areaIGBP: Open shrub land

CA-LetIGBP: Grass

Km83: Logged Forest IGBP: EBF

Study site , this year

14年1月14日火曜日

Page 9: Gross primary production algorithm development and validation

Open shrub and GRASS

Grass (CA-Let) and Open shrubs (US-Wjs, US-Ses, US-Whs)On the same line

added data (Open Shrub)

Previous study (Grass)

0

0.5

1

1.5

2

0 2 4 6 8 10 12

Pmax

capa

city

2000

[mgC

O2/

m2/

s]

CI=NIR/Green-1

CI-2000

CA-LetUS-WjsUS-SesUS-Whs

0.42*x-0.33

14年1月14日火曜日

Page 10: Gross primary production algorithm development and validation

Amazonian Forest: Pmax_capacity_2000 has almost constant valueExcept for Amazonian Forest On the same line US-Los(Closed shrub), JP-FJY(ENF), JP-TMK (DNF), TH-SKR(EBF) Another line JP-TKY Slopes of them are the almost same value

Closed shrub and Amazonia Forest (EBF)

BEF( Amazonia F.)

closed shrub

Previous study NDFNEFBEF

BDF (Previous study)

Added data

0

0.5

1

1.5

2

0 2 4 6 8 10 12

Pmax

capa

city

2000

[mgC

O2/

m2/

s]

CI=NIR/Green-1

CI-2000

JP-TMKJP-FJY

TH-SKRUS-Los

km67km83

JP-TKY0.14*x+0.210.17*x-0.35

14年1月14日火曜日

Page 11: Gross primary production algorithm development and validation

The relationship between CI vs. Pmax_capacity_2000 Three vegetation groups

1) Grass and Shrubs 2) Woody plant except for Amazonian Forest 3) Amazonian Forest

In the same group: The slope are almost same values

If there is the determination rule of the intercept, determination of parameters can be generalized.

14年1月14日火曜日

Page 12: Gross primary production algorithm development and validation

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

CI

MONTH

CI

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

CI

MONTH

CI

CI seasonal changes of Shrubs

Not growing season’s CI value is this start point

US-Wjs US-Whs

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

Pmax

capa

city

2000

[mgC

O2/

m2/

s]

CI=NIR/Green-1

CI-2000

CA-LetUS-WjsUS-SesUS-Whs

0.42*x-0.33

For Woody plant group: considering

14年1月14日火曜日

Page 13: Gross primary production algorithm development and validation

Stomata opening closing

Daily change of stomatal conductance

Gas exchange is controlled by stomata opening and closing. When absorbing CO2, H2O is evapolated       → Leaf temperature rising is suppressed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

08: 09: 10: 11: 12: 13: 14: 15: 16: 17: 18:

Stom

atal

Con

duct

ance

( m

ol H

20 m

-2 s

-1 )

Time of Day

Observation with LI-6400

http://www.jspp.org/17hiroba/kaisetsu/kinoshita.html

14年1月14日火曜日

Page 14: Gross primary production algorithm development and validation

At Takayama (Gifu, Pref.) and Ymashiro (Kyoto Pref.) site

Canopy: MeasurementsPhotosynthesisLeaf Temperature : Thermal imager Brightness thermometer

Leaf : Measurements

Canopy temperature: Thermal imager

For three vegetation species: ミズナラ•ダケカンバ•コナラ        Quercus crispula, Betula ermanii, Quercus serrata

14年1月14日火曜日

Page 15: Gross primary production algorithm development and validation

Daily change of leaf temperature

Quercus crispula Betula ermanii

The relationship among conductance, leaf temperature, weather conditions (air temperature,humidity, solar radiation)     Calculate LUT using the moel[Baldocchi,1994]

ミズナラ ダケカンバ

14年1月14日火曜日

Page 16: Gross primary production algorithm development and validation

��� ������������

VPD(0~4)�

VPD(5~9)�

VPD(10~14)�

VPD(20~24)�

VPD(25~29)�

VPD(30~34)�

VPD(35~39)�

VPD(40~44)�

VPD(45~)�

VPD(15~19)�

LUT

Estimation results of stomatal conductance

stomata conductance(mol H20m-2s-1)

VPD: Vapor pressure deficit(kPa)

quercus serrata コナラLeaf T

PARPAR

Leaf temperature

Pattern : O.K.Absolute values:Calibration

Thermal imager

Measurements(LI6400)

Thermal imager

Thermocouple (LI6400)

Brightness thermometer

Brightness thermometer

14年1月14日火曜日

Page 17: Gross primary production algorithm development and validation

This year:

Continue the field measurements for scaling up from leaf to canopy at Takayama and Yamashiro site

MODIS data analysis for scaling up from canopy to satellite Using MODIS11C3 products (monthly averaged daily LST data )

14年1月14日火曜日

Page 18: Gross primary production algorithm development and validation

36.

44.

Example of field measurements at Yamashiro site

(℃)

(℃)

5 branches: daily change of photosynthesis measurement

14年1月14日火曜日

Page 19: Gross primary production algorithm development and validation

0 0.05

0.1 0.15

0.2 0.25

0.3 0.35

0.4

6 8 10 12 14 16 18 20

Con

duct

ance

Time

b1b2b3b4b5

0

5

10

15

20

6 8 10 12 14 16 18 20

Phot

osyn

thes

is

Time

b1b2b3b4b5

25

30

35

40

45

6 8 10 12 14 16 18 20

Brig

htne

ss T

empe

ratu

re

Time

b1

25

30

35

40

45

6 8 10 12 14 16 18 20

Brig

htne

ss T

empe

ratu

re

Time

b2

25

30

35

40

45

6 8 10 12 14 16 18 20

Brig

htne

ss T

empe

ratu

re

Time

b3

25

30

35

40

45

6 8 10 12 14 16 18 20

Brig

htne

ss T

empe

ratu

re

Time

b4

25

30

35

40

45

6 8 10 12 14 16 18 20

Brig

htne

ss T

empe

ratu

re

Time

b5

Stomatal conductance

(mol/m2/s)

(℃) (℃)

(℃)(℃) (℃)

photosynthesis

(μmol/m2/s)

Brightness Temperature (℃)b1 b2

b3 b4 b5

LUT is checked using these data.

14年1月14日火曜日

Page 20: Gross primary production algorithm development and validation

MODIS data analysis    study the daily variation range of surface

temperature for evergreen and deciduous types

14年1月14日火曜日

Page 21: Gross primary production algorithm development and validation

• ¥

Jan. Jan.

DeciduousEvergreendesert

MODIS daily variation of LST(max.-min. ) vs. CI

0.1CI 0.1CI

0.1CI0.1CI

DeciduousEvergreendesert

0.1CI 0.1CI

Jul. Jul.

14年1月14日火曜日

Page 22: Gross primary production algorithm development and validation

Study Plan

• GPP capacity estimation

• Another vegetation types : FLUX site

• consider the generalized rule for the estimation formula

• Stomatal opening and closing

• Consider scaling up method ( LUT for global study )

14年1月14日火曜日

Page 23: Gross primary production algorithm development and validation

Preparation for Validation

• Collect the validation data

• FLUX data sets

• find the available ( we can use ) data

• Calculate typical value of the site

• Ground observation data sets

• Nara prefecture forest, Yatsugatake site,,,

• Ecological study sites : Nasahara-san G

14年1月14日火曜日

Page 24: Gross primary production algorithm development and validation

Thank you!

14年1月14日火曜日