Top Banner
Great feeling Walking Ifen without machines Sunday Jan 26, 2007
28

Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Dec 26, 2015

Download

Documents

Janice Miles
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Great feeling

Walking Ifenwithout

machines

Sunday Jan 26, 2007

Page 2: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

VUV photon absorption in warm dense matterJ. Meyer-ter-Vehn and A. Tronnier

Max-Planck-Institute for Quantum Optics, Garching, GermanyV. Krainov (MIFT, Moscow)

0.5

1

1.5

2

0.5

1

1.5

20

51015

11016

0.5

1

1.5

20

51015

11016

/F

T TB Fk T

1 s,effv T

Al (solid density)

Page 3: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

DESY VUV-FEL (FLASH) parameters 2006

1.5 *1012 photons= 32.3 nm (38 eV)

40 -50 fsfocus: 20 – 35 m

presently

implies

Pulse energy: ≈10 µJPulse power: 250 MWIntensity: ≤ 1014 W/cm2

heats metals up to ≈ few eV

38 eV photons

Al foil

Major problem for DESYpeak intensity experimentsis presently to reduce thefocal spot.

Now campaign for 2 m focus!

Page 4: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

VUV-photon interaction model:Collisional absorption and photo-ionisation

Dispersion relation

2T rk k ic

Light intensity

I ~ |E |2 ~ exp(-x)

Dielectric function for quasi-free electrons (Drude model)

2

2

11

1 /p

Tei

collision frequency e <<

2

2 2 2

1

1

p

pc

Page 5: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

What we used so far at MPQ

Laser absorption ( = 0.8 m) in Al versus

intensity (temperature)

Expt: Price et al.,PRL 75, 252 (1995)

Eidmann et al., PRE62, 1202 (2000)

Al refl.

Page 6: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Photon absorption by inverse Bremsstrahlung

x

p

p

Z

Start from spontaneous Bremsstrahlung emission rate

( , )spe ip p p

dR n

d

Do not forget about stimulated emission :

1( )tot sh

pe peR R n

stimulatedemission

22 30

2

8 ph

Ecn

Photon number per quantum state

2

3 2

( ) /( ', ) 64 '

3 ( ') (1 exp( 2 '))(exp( 2 ) 1)

d F dd p p p

d c p p p

Use differential cross-section (Sommerfeld, atomic units):

/Z p

24 /( )pp p p

221 /p pp

Page 7: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Absorption by Inverse Bremsstrahlung

Z x

p

p

( , )aR p p

Photon absorption rate

1

( , ) ( )

( , ) ( )

ph

aphsp

e

E E

E E

p p dZ d

p p dZ d n

R pn

R p

Ratio of absorption and emission rate only depends on final state densities:

Total absorption rate:

22 30

2

8 ( , ) ( , )( , )tot

t a i

p p p pp p

Ec d dw R n p p

d d

stim. emission

2 2p p

absorption2 2p p

Page 8: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Parameter plane of radiative Coulomb scattering

(I) Fast electrons (Born approx.)

2 2

30

3

2

3

it

Z n Ew

p

(II) Slow electrons (p3/Z>1) V.Krainov, JETP 92, 960 (2001)

2 2 30

3 3

2

3lni th

tth

Z n E pw

p Z

(III) Slow electrons (p 3/Z<1) V. Krainov, J.Phys.B33, 1585 (2000)

2 202/33

11.65 i

t

Z n E

pw

Z

p

Z

2p

3

1p

Z

3

1p

Z

fastslow

electrons

high low frequency

(I)

(II)(III)

1

2 2 30

3 3

2

3lni th

tth p

Z n E pw

p Z

Spitzer

result

Page 9: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Fermi average <1/p> including Pauli blocking

3

3

2 3 1ln

12( ) 1 ( ) 1 F

e

yF

y zF

zp d p e

en h p

Tf f h e

T

p

p

Integration over Fermi sphere ( , , ):/ By k T / Bz k T 2 / 2F B F Fk T p m

h

F

Collision frequency (slow electrons):

33 2

0 3

2/3

2 2 1.32/ ( , )e th

th

eff t

Zn pE

p Zv w F T h

( , ) 2

th F

F

p pF T h

p p

1/ 23

min , 1 for T 04 F F

T h

T

1 for T

( ) /( ) 1 1Bk Tf e 3

32( )( ) e p

hn f d p

Page 10: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Collision frequency (interpolated model)

3

3

2/31.32

22 2 ( , )ln 1e th

th

eff

Zn pF T h

p Zv

max( , )p

Fermi correction

0.5

1

1.5

2

0.5

1

1.5

20

51015

11016

0.5

1

1.5

20

51015

11016

/ FT T

B Fk T

effv

Al (solid density)

h=1 eV

h=10 eV

h=100 eV

(>p)

log

eff

1 0.1 10 100 1000

Te (eV)

Page 11: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Maximum Temperature (Te) and Transmisson vs Intensity

100 fs pulse of38 eV photons

50 nm Al foil

FLA

SH

20

06

550 eV

FLA

SH

20

06

Page 12: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Heating and expansion of 50 nm Al foil at 1015 W/cm2

38 eV photonsAl foil

Density Electron temperature

Page 13: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Al (T=300 K)100 nm

XUV

VUV transmission data as function of photon energyin cold Al compared with present model

L edge

plasmafrequency

presentmodel for T=300 K

Keenan et al. (2002)

Rus exp. 2006

DESY exp. 2006

DESY exp.

Berkeleytables

Page 14: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

2B

DC 3 1/31.44

i

k Tme

n

13 1DC 10 s

Temperature (K)

Au

Exp

13 1DC 10 s

Temperature (K)

Ag

Exp

DC limit -> 0 of compares surprisingly well with data

obtained from measured electric and thermal conductivities

eff

Page 15: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Conclusions

• For VUV interaction with warm dense matter, the the Drude-Fermi description appears to be adequate, when combined with radiative Coulomb scattering appropriate for`slow electrons´, as derived by Krainov.

• A simple analytical expression is derived for the collision frequency, covering the full temperature range from solids to plasma and photons ranging from optical to X-rays.

• It is in reasonable agreement with existing data.

Page 16: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

First Transmission ExperimentFirst Transmission Experiment

Measured by Measured by Sokolowski-Sokolowski-Tinten, Tinten, Tschentscher Tschentscher Krzywinski, Juha, Krzywinski, Juha, Sobierajski et alSobierajski et al

Deduced absorption length in cold AL: L=130 nm

Page 17: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Light propagation in plasma

p

k

p2 = 4e2n/m

plasma frequency

2 = p2 /(1+ie/) + k2 c2

dispersion relation

EL=E0 exp{ikr-it}

plane wave

(k2 - 2/c2) EL = (4i/c2) j

Maxwell equation

j = -enu

-iu = -(e/m) EL - eu

electron current

du/dt collisions

lightpropagates

reflection

Page 18: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

0.5 1 1.5 2

11015

21015

31015

41015

51015

61015

71015

0.5

1

1.5

2

0.5

1

1.5

20

51015

11016

0.5

1

1.5

20

51015

11016

h=1 eV

h=10 eV

h=100 eV

log

eff

1 0.1 10 100 1000

Te (eV)

0.5 1 1.5 2 2.5 3

14.5

15

15.5

16

16.5

10 10001001

heV)

log

eff

300

K Te = 10 eV

Te = 1 keV

Page 19: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

12

32 2

02/33

1 / 3

2 / 3

2 4

315 3

1 i

t

Z n Ew

pZ

Inverse bremsstrahlung rate for slow electrons (Krainov,J.Phys.B33,1585(2000))

12

32 2

02/33

1 / 3

2 / 3

2 4 2

3 215 3

1 i th

tth

Z n E pw

p pZ

1.32 ( , )F T h

( , ) 2

th F

F

p pF T h

p p

1/ 23

min , 1 for T 04 F F

T h

T

1 for T

Page 20: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Absorption by Inverse Bremsstrahlung

Z x

1p

2p

1 2( , )aR p p

x

1p

2p

Z

Photon emission rate (spontaneous)

2 1 2( , )spe ip p

dR p m n

d

Photon absorption rate

Total photon emission rate

1( )tot sh

pe peR R n

stimulatedemission

22 30

2

8 ph

Ecn

Photon number per quantum state

Page 21: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Rates are related by detailed balance

2 2

1 1

1 2

1

2 1

2

1

( , ) ( )

( , ) ( )

ph

aphsp

e

E E

E E

p p dZ d

p p dZ d n

R pn

R p

1 2 2 1 2 1 1 2( , ) ( , ) ( , )tot sp spa ph e ph ep p p p p p p pR n R n R

absorption stim. emission

total absorption

Total photon emission rate

1( )tot sh

pe peR R n

stimulatedemission

22 30

2

8 ph

Ecn

Photon number per quantum state

Page 22: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Photon absorption by inverse Bremsstrahlung

Photon absorption rate:

'eppB uStimulated emission rate:

'appB u

20/ 2 / 8du E

(radiation energy density)

Detailed balance(Einstein relations)

3 2' 0

3' 8

epp

pp

B u c E

A d

' 'e app p pB B

2

3 2

( ) /64 '( ', )

3 ( ') (1 exp( 2 '))(exp( 2 ) 1)

d F dp dd p p

c p p p

Spontaneous photon emission rate:

' ( ', )pp iA pn d p p

Bremsstrahlung cross-section:

Page 23: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

XFEL Heating with 3 keV photons

Specific energy deposited:

e(J/g) = (cm2/g) I(W/cm2) (s)

100fsI = 1014 -1018 W/cm2

3.1 keV photons

e = 104 -108 J/gcm2/ggold opacity

1 keV 5 Gbar

Page 24: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Berkeley X-ray data : Transmission vs. photon energy

20 nm Cu 20 nm Ag 20 nm Au

Page 25: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Collosional absorption wave vector (from dispersion relation)

light intensity

absorption coefficient (e)

2

2 2 2

1

1 /

pe

pc

2

2

11

1 / 2p

re

k k ic i

I ~ |E |2 ~ exp(-x)

Page 26: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Unique feature: Explore absolute peak of photo-absorption in solid-density matter

ph

oto

-ab

sorp

tion

photo-ionisationLaser

Electrons

nc

10 100 10001h (eV)

as a function ofphoton energy

ph

oto

-ab

sorp

tion

10 100 10001T (eV)

plasmasolid

TTFermi

as a function oftemperature

Page 27: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.

Foils as Ultra-Fast Switches

1810 W/cm2h = 30 eV

50 nm Al foil

1.0

0.0

0.5

transmission

absorptionreflection

6 fs

0 10 20time (fs)

Page 28: Great feeling Walking Ifen without machines Sunday Jan 26, 2007.