Top Banner
Graded Refractive-Index
39

Graded Refractive-Index

Apr 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Graded Refractive-Index

Graded Refractive-Index

Page 2: Graded Refractive-Index

Common Devices

Page 3: Graded Refractive-Index

Methodologies for Graded Refractive Index

Methodologies: β€’ Ray Optics β€’ WKB β€’ Multilayer Modelling

Solution requires: β€’ some knowledge of index profile 𝑛2 π‘₯

Page 4: Graded Refractive-Index

Ray Optics for graded refractive index

Page 5: Graded Refractive-Index

Phase-change due to propagation

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

=πœ”

𝑐 𝑛 π‘₯ π‘π‘œπ‘  πœƒ π‘₯ =

=πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑛 π‘₯ 𝑠𝑖𝑛 πœƒ π‘₯ 2 =

=πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

π‘˜π‘₯ π‘₯

πœƒ π‘₯𝑖

πœƒ π‘₯𝑖+1

π‘˜π‘₯ π‘₯ 𝑇

π‘˜π‘₯ π‘₯𝑖 Ξ”π‘₯𝑖𝑖

πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2 𝑑π‘₯π‘₯𝑑

0

𝑛 π‘₯𝑖+1

𝑛 π‘₯𝑖

𝑁

Page 6: Graded Refractive-Index

Cladding-Film Interface

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

π‘Žπ‘‘ π‘₯ = 0 𝛾𝑐 =πœ”

𝑐𝑁2 βˆ’ 𝑛𝑐

2

π‘˜π‘₯ =πœ”

𝑐𝑛2 π‘₯ = 0 βˆ’π‘2=

πœ”

𝑐𝑛𝑓2 βˆ’ 𝑁2

π‘‘π‘Žπ‘›βˆ’1𝛾𝑐

π‘˜π‘₯= π‘‘π‘Žπ‘›βˆ’1

𝑁2βˆ’π‘›π‘2

𝑛𝑓2βˆ’π‘2

β‰…πœ‹

2

𝑁

Page 7: Graded Refractive-Index

Turning Point β€œInterface”

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

π‘Žπ‘‘ π‘₯ = π‘₯𝑑

𝛾𝑠 =πœ”

𝑐𝑁2 βˆ’ 𝑛2 π‘₯ = π‘₯𝑑 βˆ’ βˆ†π‘₯

π‘˜π‘₯ =πœ”

𝑐𝑛2 π‘₯ = π‘₯𝑑 + βˆ†π‘₯ βˆ’π‘

2

𝑁

π‘₯𝑑

π‘‘π‘Žπ‘›βˆ’1𝛾𝑐

π‘˜π‘₯= π‘‘π‘Žπ‘›βˆ’1

𝑁2βˆ’π‘›2 π‘₯=π‘₯π‘‘βˆ’βˆ†π‘₯

𝑛2 π‘₯=π‘₯𝑑+βˆ†π‘₯ βˆ’π‘2β‰… π‘‘π‘Žπ‘›βˆ’1 1 =

πœ‹

4

𝑛 π‘₯ = π‘₯𝑑 = 𝑁

Page 8: Graded Refractive-Index

Bringing all the pieces together:

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2 𝑑π‘₯π‘₯𝑑

0

=3

4+π‘š πœ‹

πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2 𝑑π‘₯π‘₯𝑑

0

=πœ‹

4+πœ‹

2+ π‘š πœ‹

𝑁

π‘₯𝑑

dispersion relation for a graded-refractive index waveguide

Page 9: Graded Refractive-Index

WKB Technique for graded refractive index

Page 10: Graded Refractive-Index

Solving for TE modes

𝑑2𝐸𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐸𝑦 π‘₯ = 0

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

𝑛 π‘₯ = 𝑛𝑓 π‘˜π‘₯ π‘₯ = π‘˜π‘₯ 𝐸𝑦 π‘₯ = 𝐴 𝑒𝑗 π‘˜π‘₯ π‘₯ If:

When: Ξ” 𝑛2 π‘₯ βˆ’ 𝑁2

Ξ”π‘₯/πœ† π‘₯β‰ͺ 1

(constant) (constant) (constant)

𝐸𝑦 π‘₯ = 𝐴 π‘₯ 𝑒𝑗 π‘˜π‘₯ π‘₯ π‘₯

π‘˜π‘₯ π‘₯ π‘₯ ≑ πœ™ π‘₯

𝐸𝑦 π‘₯ = 𝐴 π‘₯ 𝑒𝑗 πœ™ π‘₯

where:

Page 11: Graded Refractive-Index

Major steps in the derivation:

𝐸𝑦 π‘₯ = 𝐴 π‘₯ 𝑒𝑗 πœ™ π‘₯

𝑑2𝐸𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐸𝑦 π‘₯ = 0

𝐴′′ + 2 𝑗 π΄β€²πœ™β€² + 𝑗 𝐴 πœ™β€²β€² βˆ’ 𝐴 πœ™β€²2= βˆ’ π‘˜π‘₯

2𝐴

𝐴′′ βˆ’ 𝐴 πœ™β€²2= βˆ’ π‘˜π‘₯

2𝐴

2 π΄β€²πœ™β€² + 𝐴 πœ™β€²β€² = 0

2 π΄β€²πœ™β€² + 𝐴 πœ™β€²β€² = 0 𝐴2πœ™β€² β€² = 0 𝐴 π‘₯ =π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

π‘˜π‘₯ π‘₯

𝐴′′ βˆ’ 𝐴 πœ™β€²2= βˆ’ π‘˜π‘₯

2𝐴 𝐴′′ = πœ™β€²2βˆ’ π‘˜π‘₯

2 𝐴 πœ™β€²2βˆ’ π‘˜π‘₯

2 β‰… 0

πœ™ π‘₯ = Β± π‘˜π‘₯ π‘₯ 𝑑π‘₯

Page 12: Graded Refractive-Index

General Solution

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

Page 13: Graded Refractive-Index

Cladding Region

π‘“π‘œπ‘Ÿ π‘₯ < 0

π‘˜π‘₯ π‘₯ =πœ”

𝑐𝑛2 π‘₯ βˆ’ 𝑁2 =

πœ”

𝑐𝑛𝑐2 βˆ’ 𝑁2 = 𝑗

πœ”

𝑐𝑁2 βˆ’ 𝑛𝑐

2= 𝑗 𝛾𝑐

𝐸𝑦 π‘₯ =𝑐1

𝑗 π›Ύπ‘π‘’βˆ’ 𝛾𝑐

0π‘₯ 𝑑π‘₯ +

𝑐2

𝑗 𝛾𝑐𝑒+ 𝛾𝑐

0π‘₯ 𝑑π‘₯ 𝐸𝑦 π‘₯ =

𝐴

𝛾𝑐 𝑒 𝛾𝑐 π‘₯

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

π‘₯

Page 14: Graded Refractive-Index

Guiding Region

π‘“π‘œπ‘Ÿ 0 < π‘₯ < π‘₯𝑑

π‘˜π‘₯ π‘₯ =πœ”

𝑐𝑛2 π‘₯ βˆ’ 𝑁2

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

𝐸𝑦 π‘₯ =𝐡

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯

π‘₯𝑑π‘₯ 𝑑π‘₯ +

𝐢

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯

π‘₯𝑑π‘₯ 𝑑π‘₯

π‘₯

Page 15: Graded Refractive-Index

Beyond Turning Point

π‘“π‘œπ‘Ÿ π‘₯ > π‘₯𝑑

𝐸𝑦 π‘₯ =𝑐1

π‘˜π‘₯ π‘₯𝑒+𝑗 π‘˜π‘₯ π‘₯ 𝑑π‘₯ +

𝑐2

π‘˜π‘₯ π‘₯π‘’βˆ’π‘— π‘˜π‘₯ π‘₯ 𝑑π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐 𝑛2 π‘₯ βˆ’ 𝑁2

𝐸𝑦 π‘₯ =𝐷

𝛾𝑠 π‘₯π‘’βˆ’ 𝛾𝑠 π‘₯π‘₯π‘₯𝑑

𝑑π‘₯

π‘₯

π‘˜π‘₯ π‘₯ =πœ”

𝑐𝑛2 π‘₯ βˆ’ 𝑁2 = 𝑗

πœ”

𝑐𝑁2 βˆ’ 𝑛2 π‘₯ = 𝑗 𝛾𝑠 π‘₯

Page 16: Graded Refractive-Index

3D Waveguides

Channel Waveguides Optical Fibers

Page 17: Graded Refractive-Index

π’•π’šπ’‘π’Šπ’„π’‚π’π’π’š: π’˜π’Šπ’…π’•π’‰(𝑾) > π’•π’‰π’Šπ’„π’Œπ’π’†π’”π’” (𝑻)

I V

II

III

IV

y x

y

x

𝑾

𝑻 𝑛1

𝑛3

𝑛2

𝑛4 𝑛5

Channel Waveguides

Page 18: Graded Refractive-Index

a) Marcatili’s Method

Hy

Ex TM-like modes: Hy & Ex

Page 19: Graded Refractive-Index

Transverse confinement along x-axis, tangential Hy

Region I: 𝐻𝑦 π‘₯, 𝑦 = 𝐻1 π‘π‘œπ‘  π‘˜π‘₯ π‘₯ + πœ™1

Region II :

Region III:

𝐻𝑦 π‘₯, 𝑦 = 𝐻2 𝑒𝛾π‘₯,2 π‘₯+𝑇

𝐻𝑦 π‘₯, 𝑦 = 𝐻3 π‘’βˆ’π›Ύπ‘₯,3 π‘₯

βˆ’π‘‡ < π‘₯ < 0

π‘₯ < βˆ’π‘‡

π‘₯ > 0

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1𝛾π‘₯,2𝑛22

𝑛12

π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

𝛾π‘₯,3𝑛32

𝑛12

π‘˜π‘₯+ 𝑝 πœ‹

Page 20: Graded Refractive-Index

Lateral confinement along y-axis, tangential Ex

Region I: 𝐸π‘₯ π‘₯, 𝑦 = 𝐸1 π‘π‘œπ‘  π‘˜π‘¦ 𝑦 + πœ™2

βˆ’π‘Š

2< π‘₯ <

π‘Š

2

π‘˜π‘¦ π‘Š = π‘‘π‘Žπ‘›βˆ’1𝛾𝑦,4π‘˜π‘¦+ π‘‘π‘Žπ‘›βˆ’1

𝛾𝑦,5π‘˜π‘¦+ π‘ž πœ‹

Region IV : 𝐸π‘₯ π‘₯, 𝑦 = 𝐸4 𝑒

βˆ’ 𝛾𝑦,4 π‘¦βˆ’π‘Š2

𝑦 < βˆ’π‘Š

2

𝐸π‘₯ π‘₯, 𝑦 = 𝐸5 π‘’βˆ’ 𝛾5,𝑦 𝑦+

π‘Š2

Region V:

𝑦 >π‘Š

2

Page 21: Graded Refractive-Index

Finding the propagation constants:

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1𝛾π‘₯,2𝑛22

𝑛12

π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

𝛾π‘₯,3𝑛32

𝑛12

π‘˜π‘₯+ 𝑝 πœ‹

π‘˜π‘¦ π‘Š = π‘‘π‘Žπ‘›βˆ’1𝛾𝑦,4

π‘˜π‘¦+ π‘‘π‘Žπ‘›βˆ’1

𝛾𝑦,5

π‘˜π‘¦+ π‘ž πœ‹

𝐹1 π‘˜π‘₯, 𝛾π‘₯,2, 𝛾π‘₯,3, 𝛽 = 0

𝑛12 πœ”2

𝑐2= π‘˜1

2 = π‘˜π‘₯2 + π‘˜π‘¦

2 + 𝛽2 𝐺1 π‘˜π‘₯, π‘˜π‘¦ , 𝛽 = 0

𝐹2 π‘˜π‘¦, 𝛾π‘₯,4, 𝛾π‘₯,5, 𝛽 = 0

𝑛22 πœ”2

𝑐2= π‘˜2

2 = βˆ’π›Ύπ‘₯,22 + π‘˜π‘¦

2 + 𝛽2

𝑛32 πœ”2

𝑐2= π‘˜3

2 = βˆ’π›Ύπ‘₯,32 + π‘˜π‘¦

2 + 𝛽2

𝑛42 πœ”2

𝑐2= π‘˜4

2 = π‘˜π‘₯2 βˆ’ 𝛾𝑦,4

2+ 𝛽2

𝑛52 πœ”2

𝑐2= π‘˜5

2 = π‘˜π‘₯2 βˆ’ 𝛾𝑦,5

2+ 𝛽2

𝐺2 𝛾π‘₯,2, π‘˜π‘¦ , 𝛽 = 0

𝐺3 𝛾π‘₯,3, π‘˜π‘¦ , 𝛽 = 0

𝐺4 π‘˜π‘₯, 𝛾𝑦,4, 𝛽 = 0

𝐺5 π‘˜π‘₯, 𝛾𝑦,5, 𝛽 = 0

Page 22: Graded Refractive-Index

b) Effective Index Method

𝒏𝒄

𝒏𝒔

𝒏𝒔

𝒏𝒔 𝒏𝒔

𝒏𝒇

𝒏𝒇

𝑡𝑰

Page 23: Graded Refractive-Index

TM-like modes

𝑛𝑐 , 𝑛𝑓, 𝑇 , 𝑛𝑠

𝐹 π‘Žπ‘€, 𝑏𝑀 𝑁𝐼 , 𝑉𝐼 = 0

I)

𝑁𝐼

II) 𝑛𝑠, 𝑁𝐼,π‘Š , 𝑛𝑠

𝐹 π‘ŽπΈ , 𝑏𝐸 𝑁𝐼𝐼 , 𝑉𝐼𝐼 = 0

𝑁𝐼𝐼

(TM)

(TE)

Page 24: Graded Refractive-Index

Criteria for Single-Mode Operation

𝑛𝑓 = 𝑛𝑠 + βˆ†π‘› βˆ†π‘› β‰ͺ 𝑛𝑠 with

I) cut-off condition for mode 𝑝 :

𝑏𝐼,𝑝 = 0

𝑉𝐼,𝑝 = π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ + 𝑝 πœ‹

Requirement for existence of only one mode in transverse direction:

Transverse confinement:

π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ < 𝑉𝐼 < π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ + πœ‹

Transverse confinement:

Page 25: Graded Refractive-Index

Lateral confinement:

II) cut-off condition for mode π‘ž :

𝑏𝐼𝐼,π‘ž = 0

𝑉𝐼𝐼,π‘ž = π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌπΌ + π‘ž πœ‹

0 < 𝑉𝐼𝐼 < πœ‹

Lateral confinement:

π‘ŽπΌπΌ = 0 it is a symmetric waveguide, so we have:

Requirement for existence of only one mode in lateral direction:

Page 26: Graded Refractive-Index

A little bit of algebra leads to:

𝑉𝐼 =πœ”

𝑐𝑇 𝑛𝑓

2 βˆ’ 𝑛𝑠2

𝑉𝐼𝐼 =πœ”

π‘π‘Š 𝑁𝐼

2 βˆ’ 𝑛𝑠2 =πœ”

π‘π‘Š 𝑏𝐼 𝑛𝑓

2 βˆ’ 𝑛𝑠2 =

π‘Š

𝑇 𝑉𝐼 𝑏𝐼

𝑏𝐼 ≅𝑁𝐼2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑛𝑠

2

0 < 𝑉𝐼𝐼 < πœ‹ 0 <π‘Š

𝑇<πœ‹

𝑉𝐼 𝑏𝐼

π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ < 𝑉𝐼 < π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΌ + πœ‹

and

π‘ŽπΌ β‰… ∞

single-mode region

Page 27: Graded Refractive-Index

Optical Fibers st

ep-

index

multimod

e

step-

index

sing

lemod

e

GRIN

a cylindrical dielectric waveguide

Page 28: Graded Refractive-Index

Modes in Optical Fibers

πœ•2𝐸 π‘₯, 𝑦

πœ•π‘₯2+πœ•2𝐸 π‘₯, 𝑦

πœ•π‘¦2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐸 π‘₯, 𝑦 = 0

πœ•2𝐸 π‘Ÿ, πœ™

πœ•π‘Ÿ2+1

π‘Ÿ

πœ•πΈ π‘Ÿ, πœ™

πœ•π‘Ÿ+1

π‘Ÿ2πœ•2𝐸 π‘Ÿ, πœ™

πœ•πœ™2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐸 π‘Ÿ, πœ™ = 0

Cartesian coordinates

Cylindrical coordinates

𝑬 π‘₯, 𝑦, 𝑧, 𝑑 = 𝐸 π‘₯, 𝑦 𝑒𝑗 πœ” 𝑑 βˆ’ 𝛽 𝑧

𝑬 π‘Ÿ, πœ™, 𝑧, 𝑑 = 𝐸 π‘Ÿ, πœ™ 𝑒𝑗 πœ” 𝑑 βˆ’ 𝛽 𝑧

Page 29: Graded Refractive-Index

Solutions

𝑑2𝑒

π‘‘π‘Ÿ2+1

π‘Ÿ

𝑑𝑒

π‘‘π‘Ÿ+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 βˆ’

𝑙2

π‘Ÿ2𝑒 = 0

𝐸 π‘Ÿ, πœ™ = 𝑒 π‘Ÿ 𝑒 𝑗 𝑙 πœ™ 𝑒

π‘˜π‘‡2 β‰‘π‘›π‘π‘œ2πœ”2

𝑐2 βˆ’ 𝛽2

𝛾2 ≑ 𝛽2 βˆ’π‘›π‘π‘™2πœ”2

𝑐2

Boundary conditions for

𝐸𝑧, 𝐻𝑧, πΈπœ™, π»πœ™

Page 30: Graded Refractive-Index

Graphical Representation

Page 31: Graded Refractive-Index

Power Confinement

Right above the cut-off, very little power is inside the core. As the core diameter increases, the power of the mode becomes confined inside the core.

Fraction of the power propagating inside the core against the V-number.

Page 32: Graded Refractive-Index

Optical Attenuation

1 𝑑𝐡 = βˆ’10 π‘™π‘œπ‘” 𝑇

0.16 dB = (3.6 %)

Page 33: Graded Refractive-Index

Number of Guided Modes in an Optical Fiber

𝑀 = 4

πœ‹2𝑉2

𝑉 = 2πœ‹ π‘Ž

πœ† π‘›π‘π‘œ

2 βˆ’ 𝑛𝑐𝑙2 = 2πœ‹

π‘Ž

πœ†π‘π΄

V-number

𝑁𝐴 = 𝑛0 sin πœƒ0 = π‘›π‘π‘œ2 βˆ’ 𝑛𝑐𝑙

2

Numerical Aperture

𝑉 < 2.405

single-mode operation

Page 34: Graded Refractive-Index

Coupled Mode Theory

Page 35: Graded Refractive-Index

A few examples:

Page 36: Graded Refractive-Index

𝔼𝑑 π‘₯, 𝑦, 𝑧 = π‘Žπ›Ό 𝑧

𝛼

𝑬𝑑,𝛼 π‘₯, 𝑦 π‘’βˆ’π‘— 𝛽𝛼 𝑧 + radiation modes

ℍ𝑑 π‘₯, 𝑦, 𝑧 = π‘Žπ›Ό 𝑧

𝛼

𝑯𝑑,𝛼 π‘₯, 𝑦 π‘’βˆ’π‘— 𝛽𝛼 𝑧 + π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘‘π‘–π‘œπ‘› π‘šπ‘œπ‘‘π‘’π‘ 

Decomposition into the eigenmodes of the original structure

Page 37: Graded Refractive-Index

After a Careful (& Long) Analysis, Final Result:

Β± π‘‘π‘Žπœ‡π‘‘π‘§= βˆ’π‘— π‘Žπ›Ό 𝑧 𝑒

βˆ’π‘— π›½π›Όβˆ’π›½πœ‡ 𝑧

𝛼

Ξšπœ‡,𝛼

4 Ξšπ‘‘πœ‡,𝛼 ≑ πœ” βˆ†πœ– π‘₯, 𝑦, 𝑧 𝑬𝑑,πœ‡βˆ—βˆ™ 𝑬𝑑,𝛼

∞

βˆ’βˆž

𝑑π‘₯ 𝑑𝑦

4Ξšπ‘§πœ‡,𝛼 ≑ πœ” πœ– βˆ†πœ–

πœ– + βˆ†πœ–π‘¬π‘§,πœ‡

βˆ—

βˆ™ 𝑬𝑧,𝛼

∞

βˆ’βˆž

𝑑π‘₯ 𝑑𝑦

Ξšπœ‡,𝛼 ≑ Ξšπ‘‘πœ‡,𝛼+ Ξšπ‘§πœ‡,𝛼

Ξšπœ‡,𝛼 = Ξšπ›Ό,πœ‡βˆ— whenever πœ– is a real number, then

Page 38: Graded Refractive-Index

Co-Directional Couplers:

𝐴 𝑧 2

𝐡 𝑧 2

𝐹 β‰‘Ξš2

𝛽𝑐2 =

Κ2

Κ 2 + βˆ†2

1 βˆ’ 𝐹 𝑠𝑖𝑛2 𝛽𝑐 𝑧 π‘π‘œπ‘ 2 𝛽𝑐 𝑧 +βˆ†2

𝛽𝑐2𝑠𝑖𝑛2 𝛽𝑐 𝑧 = =

𝐹 𝑠𝑖𝑛2 𝛽𝑐 𝑧 = = Κ2

𝛽𝑐2 𝑠𝑖𝑛

2 𝛽𝑐 𝑧

𝐹 = 0.2 𝐹 = 0.8

𝐹 = 1

𝐴 𝑧 2

𝐡 𝑧 2

βˆ† ≑ 𝛽𝑏 βˆ’π›½π‘Ž2= 0

when: 𝛽𝑏 = π›½π‘Ž

πœ‹

2

𝑧𝛽𝑐

𝑧𝛽𝑐

𝛽𝑐 ≑ Κ2 + βˆ†2= Κ 𝐿 =

πœ‹

2 𝛽𝑐=πœ‹

2 Κ

Page 39: Graded Refractive-Index

Counter-Directional Couplers

𝐴 𝑧 2 =1 + 𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝑧 βˆ’ 𝐿

1 + 𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝐿

𝐡 𝑧 2 =𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝑧 βˆ’ 𝐿

1 + 𝐹 π‘ π‘–π‘›β„Ž2 𝛼 𝐿

𝐹 ≑ Ξšπ‘2

Ξšπ‘2 βˆ’ βˆ†2

> 1

βˆ† = 0 Ξšπ‘= 0.2

𝐿 = 5 𝐴 𝑧 2

𝐡 𝑧 2

𝐴 𝑧 2

𝐡 𝑧 2

𝐿 = 9

𝐿 ≳π

Ξšπ‘

when: βˆ† = 0