Top Banner
GoBack
42

GoBack - CNR · Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 2/32 Nonequilibrium Statistical Mechanics Thermodynamics of systems at equilibrium, relies on firmly

Aug 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • GoBack

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 1/32

    Control of Heat Flow in Classical andQuantum Complex Systems

    Carlos Mejía-MonasterioInstitute for Complex Systems, CNR, Florence Italy

    http://calvino.polito.it/∼mejia/

    http://calvino.polito.it/~mejia/http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 2/32

    Nonequilibrium Statistical Mechanics

    Thermodynamics of systems at equilibrium , relies on firmly establishedprinciples and phenomenological laws.

    These laws are of empirical nature and rest on some statistical assumptions.

    Nonequilibrium Thermodynamics , is far from being understood.

    Given a particular classical, many-body Hamiltonian system, neither pheno-menological nor fundamental transport theory can predict whether or not thisspecific Hamiltonian system leads to realistic macroscopic transport.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 3/32

    Nonequilibrium Statistical Mechanics

    • What are the ingredients of the microscopic dynamics that lead to theobserved macroscopic transport?

    • Given a microscopic mechanical model, is it possible to control themacroscopic transport in terms of a small set of parameters of the mi-croscopic dynamics?

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 3/32

    Nonequilibrium Statistical Mechanics

    • What are the ingredients of the microscopic dynamics that lead to theobserved macroscopic transport? NESS

    • Given a microscopic mechanical model, is it possible to control themacroscopic transport in terms of a small set of parameters of the mi-croscopic dynamics? small systems

    + Mathematical modelling and numerical simulation of simple modelsystems.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 4/32

    from the Microscopic to the Macroscopic

    Reversible Microscopic Dynamics.

    q̇j =∂H

    ∂pj; ṗj = −

    ∂H

    ∂qj

    Irreversible Macroscopic Transport.

    Jn = Lnn∇ (µ/T ) + Lnu∇ (1/T )

    Ju = Lun∇ (µ/T ) + Luu∇ (1/T )

    Onsager reciprocity relations : microscopic reversibility ! macroscopicsymmetry of conjugated nonequilibrium processes.

    Fluctuation-Dissipation Theorem : reversible fluctuations at equilibrium !irreversible dissipation occurring out of equilibrium.

    Nonequilibrium Fluctuation Theorems : microscopic foundation for thesecond law of thermodynamics.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 5/32

    Small Systems

    Molecular fluctuations play a fundamental role for transport processes(phase transitions, nucleation, chemical reactions, DNA mutations).

    FT implies that dynamical fluctuations contrary to the thermodynamic forcesare likely to occur in small systems.

    This has strong implications for the behaviour of nano and molecular machinesand even for living organisms

    Nano-scales: size of the fluctuations are of the same order of the magnitude ofthe observables

    L Rondoni and C. M-M, Nonlinearity 20, R1 (2007)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 6/32

    Small Systems

    Chemically tunable nano-propellers

    (nano-propeller)

    Carbon nanotubes with attached aromatic blades.B Wang and P Král, PRL 98, 266102 (2007)

    http://calvino.polito.it/~mejia/

    surf-pho.aviMedia File (video/avi)

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 7/32

    Small Systems

    Jarzynski equality〈e−βW

    A→B= eβ[F (B)−F (A)]

    Reconstruction of free-energy landscapes of protein folding.

    F. Ritort, Ad. Chem. Phys. 137, (2007, Ed. Wiley & Sons)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 8/32

    Fourier’s Law

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    Ju = −κ∇T ,

    κ is the heat conductivity.Joseph Fourier (1822)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 9/32

    Fourier’s Law

    Classical systems

    H =N∑

    i=1

    (p2i

    2mi+ U(qi) + V (qi+1 − qi)

    )

    + bath’s coupling

    The harmonic chain does not satisfies Fourier’s law.Z. Rieder, J. L. Lebowitz and E. Lieb, J. Math. Phys. 8, 1073 (1967).

    FPU chain shows anomalous transport.S. Lepri, R. Livi and A. Politi, Phys. Rep. 377, 1 (2003)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 10/32

    Fourier’s Law

    Rotating Lorentz gas

    ωα

    α’

    ξC-

    ξC+

    ξH+

    ξH-

    Genuine many-body interacting particle system.• Local Thermal Equilibrium• Normal transport of heat and matter• Onsager reciprocity relations• Green-Kubo formulas

    C. M-M, H. Larralde and F. Leyvraz, PRL 86, 5417 (2001)H. Larralde, F. Leyvraz and C. M-M, JSP 113, 197 (2003)J-P Eckmann, C. M-M, and E. Zabey, JSP 123, 1339 (2006)J-P Eckmann and C. M-M, PRL 97, 094301 (2006)C. M-M and L. Rondoni, JSP (2008)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 11/32

    Fourier’s Law

    Classical systems

    For systems with no globally conserved quantities (globally ergodic),positive Lyapunov exponents (chaos) is, “in general”, a sufficient con-dition to ensure macroscopic transport.

    C. Casati and C. M-M, AIP Conf. Proc. 965, 221 (2007)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 12/32

    Fourier’s Law

    Quantum systems TL TR

    H =N−2∑

    n=0

    Hn +h

    2(σL + σR)

    ︸ ︷︷ ︸

    coupling

    .

    Diffusive vs ballistic behaviour and thermal conductivity in low dimen-sional magnetic systems is a long standing a controversial issue.

    σ(ω) = 2πDδ(ω) + σreg(ω) ,

    σreg(ω > 0) =1 − e−βω

    ωLRe

    ∫∞

    0

    dteiωt〈j(t)j(0)〉 .

    D is the so-called thermal Drude coefficient

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 12/32

    Fourier’s Law

    Quantum systems TL TR

    H =N−2∑

    n=0

    Hn +h

    2(σL + σR)

    ︸ ︷︷ ︸

    coupling

    .

    • Stochastic quantum bathsC. M-M, T. Prosen and G. Casati, EPL 72, 520 (2005)

    • Quantum Master Equation in Lindblad form (Monte Carlo Wave Function)C. M-M and H. Wichterich, Eur. Phys. J. ST, 151, 113 (2007)

    Fourier’s law sets in at the transition to quantum chaos

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 13/32

    Thermal Rectification

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 13/32

    Thermal Rectification

    A thermal rectifier is the analogue of an electric diode: Is a device with theability to carry the energy flow in one preferred direction.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 13/32

    Thermal Rectification

    A thermal rectifier is the analogue of an electric diode: Is a device with theability to carry the energy flow in one preferred direction.

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 13/32

    Thermal Rectification

    A thermal rectifier is the analogue of an electric diode: Is a device with theability to carry the energy flow in one preferred direction.

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 13/32

    Thermal Rectification

    A thermal rectifier is the analogue of an electric diode: Is a device with theability to carry the energy flow in one preferred direction.

    Dynamical control of the transmission probability (pt;LR 6= pt;RL).

    • Completely new technological devices that take advantage of heat flow.• Heat pumps (highly efficient cooling micro-devices).• Nano-technology engineering.• Micro-devices to control heat in chemical reactions.• Control of energy flow in bio-molecules.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 14/32

    Thermal Rectification

    First theoretical mechanism M. Terraneo, M. Peyrard and G. Casati, PRL 88,094302 (2002).

    H =N∑

    i=1

    p2i2mi

    + Ui(qi) +K

    2(qi − qi−1)2 ,

    whereUi(qi) = Di

    (e−αiqi − 1

    )2.

    Model for DNA denaturationM. Peyrard and A. R. Bishop, PRL 62, 2755 (1989)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 15/32

    Thermal Rectification

    weaklyanharmonic

    weaklyanharmonic

    nonlinear

    Tuning of the nonlinearity switches between overlap and no overlap of theeffective “phonon bands”.

    ∆ =max{|J+|, |J−|}min{|J+|, |J−|} ≈ 2.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 16/32

    Thermal Rectification

    Solid State Thermal Rectifier : C W Chang, D Okawa, A Majumdar and A Zett;Science 314, 1121 (2006)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 17/32

    Thermal Rectification in billiards

    Interaction induced thermal rectifier

    j<q<

    j>

    Rs

    jL,qLq>

    jR,qRδ

    (-) (+)

    Jn =tnLγ> − tnRγ<1 − α+Lα−R

    ; Ju =tuLε> − tuRε<1 − β+L β−R

    ,

    tn and tu are the particle and energy transmission probabilities.γ and ε are the particle and energy injection rates.

    J.-P. Eckmann and C. M-M, PRL 97, 094301 (2006)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 18/32

    Thermal Rectification in billiards

    10-2

    10-1

    100

    101

    102

    103

    interaction

    68.5

    69

    69.5

    70

    α G ;

    β G

    -1 -0.5 0 0.5 1(γ

    > - γ

    <)/(γ

    > + γ

    <)

    -3

    -2

    -1

    0

    1

    2

    3

    103

    ε ; ν

    a b

    J.-P. Eckmann and C. M-M, PRL 97, 094301 (2006)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 19/32

    Thermal Rectification in billiards

    For certain temperature gradients, the system becomes insulating:

    (1 − β−L )(1 − β+L )(1 − β−R )(1 − β+R)

    =ε<ε>

    .

    J.-P. Eckmann and C. M-M, PRL 97, 094301 (2006)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 20/32

    Thermal Rectification in billiards

    Magnetically induced thermal rectifier

    TL TRR

    λ

    - fast particles of velocity v > vc, always enter theright cell, and thus contribute to the left to rightenergy flow.

    - Instead, slow particles of velocity v < vc, suchthat the gyro-magnetic radius ρ(v) = mv/(eB) isless than λ/2 will be mostly reflected.

    - Critical temperature:

    Tc =(eBcλ)

    2

    8mkB,

    G. Casati, C. Mejia-Monasterio, T. Prosen; PRL 98, 104302 (2007)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 21/32

    Thermal Rectification in billiards

    Magnetically induced thermal rectifier

    Let J+ be the heat current if TL < TR and J− if TL > TR.

    TL < TR

    For a closed billiard J+ ∝ p+t ∼ 2ρ(v)λ .A particle with velocity v is transmitted if it crosses the interface at adistance from the upper boundary shorter than 2ρ(v).Thus, J+ ∝ 2

    √2mkBτmin/eBλ

    TL > TRp−t = 1. Thus J

    − ∝ 1.

    ∆ = p−t /p+t ∝

    1√Tmin

    .

    G. Casati, C. Mejia-Monasterio, T. Prosen; PRL 98, 104302 (2007)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 22/32

    Thermal Rectification in billiards

    10-7

    10-5

    10-3

    10-1

    101

    τmin

    10-1

    100

    101

    102

    103

    104

    ∆(τ

    min)

    Arbitrarily large rectifications!

    G. Casati, C. Mejia-Monasterio, T. Prosen; PRL 98, 104302 (2007)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 23/32

    Thermal Rectification in billiards

    Two coupled QD with different magnetic properties.

    Diluted 2DEG:

    • λ = 100nm• B = 1T• Tc ∼ 0.5K• Setting Tmin ∼ 10−3K and Tmax ∼ 10K one obtains ∆ ∼ 10.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 24/32

    Thermal Rectification in billiards

    Quantum Dot as a Thermal Rectifier : R Scheiber, M König, D Reuter, A.D.Wieck, H Buhmann and L.W. Molenkamp; arXiv:cond-mat/0703514v1

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 25/32

    Thermoelectricity

    Thermoelectricity concerns the conversion of temperature differences intoelectric potential or vice-versa.

    It can be used to perform useful electrical work or to pump heat from cold to hotplace, thus performing refrigeration.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 26/32

    Thermoelectricity in Billiards

    TH

    TC

    V

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 26/32

    Thermoelectricity in Billiards

    Ju = −κ′∇T − TσS∇φ ,Je = −σS∇T − σ∇φ ,

    Je = eJρ is the electric current,

    E ≡ −∇φ is the electric field,σ is the electric conductivity,

    S = E/∇T when Je = 0 is the Seebeck coefficient andκ = κ′ − TσS2 is the thermal conductivity.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 27/32

    Thermoelectricity in Billiards

    Jn = Lnn∇ (µ/T ) + Lnu∇ (1/T )Ju = Lun∇ (µ/T ) + Luu∇ (1/T )

    For ergodic gases of noninteracting particles the so-called TE figure-of-meritZT is

    ZT =L2undet L

    ,

    where

    η = ηcarnot ·√

    ZT + 1 − 1√ZT + 1 + 1

    ,

    Therefore, the Carnot’s limit ZT = ∞ is reached if the Onsager matrix issingular det L = 0.

    G. Casati, C. M-M and T. Prosen, PRL (2008)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 28/32

    Diluted Polyatomic Ideal Gas

    In the context of classical physics this happens for instance in the limit oflarge number of internal degrees of freedom, provided the dynamics isergodic.

    Consider an ergodic gas of non-interacting particles with Dint internal

    degrees of freedom enclosed in a D dimensional container, d = D + Dint.Then

    Jn = t (γ> − γ − ε

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 28/32

    Diluted Polyatomic Ideal Gas

    In the context of classical physics this happens for instance in the limit oflarge number of internal degrees of freedom, provided the dynamics isergodic.

    Consider an ergodic gas of non-interacting particles with Dint internal

    degrees of freedom enclosed in a D dimensional container, d = D + Dint.Then

    Jn =λptL

    (2πm)1/2

    (d + 1

    2ρT 3/2∇

    (1

    T

    )

    + ρT 1/2∇(

    −µT

    ))

    Ju =d + 1

    2

    λptL

    (2πm)1/2

    (d + 3

    2ρT 5/2∇

    (1

    T

    )

    + ρT 3/2∇(

    −µT

    ))

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 28/32

    Diluted Polyatomic Ideal Gas

    In the context of classical physics this happens for instance in the limit oflarge number of internal degrees of freedom, provided the dynamics isergodic.

    Consider an ergodic gas of non-interacting particles with Dint internal

    degrees of freedom enclosed in a D dimensional container, d = D + Dint.Then

    ZT =d + 1

    2, d = D + Dint

    e.g. ZT = 2 for dilute mono-atomic gas in 3 dimensions.

    ZT is independent of the sample size L.

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 29/32

    Polyatomic Lorentz gas

    TL , µ

    LT

    R , µ

    R

    G. Casati, C. M-M and T. Prosen, PRL (2008)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 30/32

    Polyatomic Lorentz gas

    0 10 20 30 40 50d

    10-2

    100

    102

    104

    106

    108

    Lab

    Luu

    Luρ

    Lρρ

    G. Casati, C. M-M and T. Prosen, PRL (2008)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 31/32

    Polyatomic Lorentz gas

    0 10 20 30d

    0

    5

    10

    15

    20

    ZT 101 102L

    0

    5

    10

    15

    20

    ZT

    G. Casati, C. M-M and T. Prosen, PRL (2008)

    http://calvino.polito.it/~mejia/

  • Carlos Mejía-Monasterio, May 19, 2008 Control of Heat Flow - p. 32/32

    Final Remarks

    We have discussed the problem of heat conduction in classical and quantumsystems.

    We have shown, different microscopic mechanisms by which, the heat flow canbe controlled.

    High thermal rectification and high thermoelectric efficiency can be observed insimple mechanical systems.

    Such phenomena are also observed in quantum magnetic systems.

    Experimental prototypes at nano scales are possible.

    Whether biomolecules exploit rectification of heat is still a completely openproblem.

    http://calvino.polito.it/~mejia/

    Nonequilibrium Statistical MechanicsNonequilibrium Statistical MechanicsNonequilibrium Statistical Mechanics

    from the Microscopic to the MacroscopicSmall SystemsSmall SystemsSmall SystemsFourier's LawFourier's LawFourier's LawFourier's LawFourier's LawFourier's Law

    Thermal RectificationThermal RectificationThermal RectificationThermal RectificationThermal Rectification

    Thermal RectificationThermal RectificationThermal RectificationThermal Rectification in billiardsThermal Rectification in billiardsThermal Rectification in billiardsThermal Rectification in billiardsThermal Rectification in billiardsThermal Rectification in billiardsThermal Rectification in billiardsThermal Rectification in billiardsThermoelectricityThermoelectricity in BilliardsThermoelectricity in Billiards

    Thermoelectricity in BilliardsDiluted Polyatomic Ideal GasDiluted Polyatomic Ideal GasDiluted Polyatomic Ideal Gas

    Polyatomic Lorentz gasPolyatomic Lorentz gasPolyatomic Lorentz gasFinal Remarks