Top Banner
Global fitting of pairing density functional; the isoscalar-density dependence revisited Masayuki YAMAGAMI (University of Aizu) Motivation Construction of energy density functional for description of static and dynamical properties across the nuclear chart Focusing on the pairing part (pairing density functional) a. Determination of –dependence (Not new problem, but one of bottlenecks in DF calc.) b. Connection to drip-line regions
16

Global fitting of pairing density functional; the isoscalar-density dependence revisited

Jan 23, 2016

Download

Documents

Shana

Global fitting of pairing density functional; the isoscalar-density dependence revisited. Masayuki YAMAGAMI ( University of Aizu ). Motivation. Construction of energy density functional for description of static and dynamical properties across the nuclear chart. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Global fitting of pairing density functional;the isoscalar-density dependence revisited

Masayuki YAMAGAMI (University of Aizu)

MotivationConstruction of energy density functional for description of static and dynamical properties across the nuclear chart

⇒ Focusing on the pairing part (pairing density functional)

a. Determination of –dependence (Not new problem, but one of bottlenecks in DF calc.)

b. Connection to drip-line regions

Page 2: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Our discussionDensity dependence of pairing in nuclei

• NN scattering of 1S0 (strong @low-• Many-body effects (e.g. phonon coupling)

Standard density functional for pairing

2104

,0

-30

0

0

1

depende

0.16 fm

nce

pairn p

n p

H r Vr

r

fo

(Isoscalar densi

parameter

ty),

r

Our question:   How to determine 0 ??

phonon coupling

Page 3: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Difficulty for 0 (-dependence)Mass number A dependence of pairing

J. Dobaczewski, W. Nazarewicz, Prog. Theor. Phys. Supp. 146, 70 (2002)

A

0=1 0=0

A

0 dep.

But...A

Neutron excess =(N-Z)/A dependence

Mass data: G. Audi et al., NPA729, 3 (2003)n,exp: 3-point mass difference formula

,exp 2 ( ) 1/3( )

1 7.74 , 75 / 6.AA

n

nn A

(same dependence for proton pairing)

1 & dependence

simultaneously for ,

n p

A

Page 4: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Our model

-33 01 , 1 (n), 1 (p), , 0.16 fmp pn n

2

, ,e,

0 2 x1 0 p, , ,tot HFBn p

V

Pairing density functional with isoscalar & isovector density dep.

Pairing density functional with isoscalar & isovector density dep.

Parameter optimization Parameter optimization 0 1 2 0, , ,V

Theoretical framework Theoretical framework

• Hartree-Fock-Bogoliubov theory (Code developed by M.V. Stoitsov et al.)• Axially symmetric quadrupole deformation• Skyrme forces (SLy4, SkM*, SkP, LNS) • Energy cutoff = 60 MeV for pairing

2

21 34

, 0

10 1

10

0 021pair

n p

rVH r

Page 5: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Procedures for parameter optimization

Data: G. Audi et al., NPA729, 3 (2003)exp: 3-point mass difference formula

0Determinat

Our go

ion

al

of

0

1 0 02 0

0 1 2

0

0

0

For each

, ,

optimizing

in regions of open-shell nuclei

,

, , ,

tot

totAt las

V

V

t

0 1 2 04 parameters; , , , V

2

21 34

, 0

10 1

10

0 021pair

n p

rVH r

Page 6: Global fitting of pairing density functional; the isoscalar-density dependence revisited

2

21 34

, 0

10 1

10

0 021pair

n p

rVH r

21 1, ,

21 1, ,

21 1, ,

Page 7: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Extrapolation: Zone1 → Zone2, 3

0 00.8 minimum of tot

- Skyrme SLy4 case -

Page 8: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Specific examples in Zone3 (outside fitting)

Sn

Pb

0

1 0 2 0 0 0

0.75 (SLy4 force)

, , Zon i en 1V

Page 9: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Verifying     for typical Skyrme forces0 0.8

Page 10: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Connection to drip-line region (low- limit)

2 2

2

Pairing strength in vaccum

22,

2nn cut

vac cutnn cut

a mEV k

m a k

n-n scattering length

18.5 MeVnna

(à la Bertsch & Esbensen)

Page 11: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Validity of assumption V0=Vvac

ComparisonProcedure 1; V0=Vvac + optimized (0, 1, 2)Procedure 2; Optimized (0, 1, 2, V0)

Results m*/m=0.7~0.8 ⇒ Good coincidence Procedure 1 ~ Procedure 2

  m*/m=1.0 ⇒ tot of 1 & 2 are comparable, although the minimum positions are different.

☺☹

Page 12: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Conclusion

a. Strong –dep. (0 ~ 0.8) for typical Skyrme forcesb. 1–tems should be included.c. Connection to drip-line regions, if m*/m=0.7~0.8.

0 global fitting 18.5 fmvac nnV V a

1. -dependence of the pairing part of local energy density functional is studied.

2. All even-even nuclei with experimental data are analyzed by Skyrme-HFB.

Page 13: Global fitting of pairing density functional; the isoscalar-density dependence revisited

☹☺

Page 14: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Definition of pairing gap

3 3

3 1 1

2

(same for proton)

N NN

Page 15: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Pairing gap: A-dependence only

, parametersA

Page 16: Global fitting of pairing density functional; the isoscalar-density dependence revisited

Survey of 1(opt.) : pairing and effective mass

-dependence of effective masses

*

*

**

*

*

* *

s s

s s

v

v

n

p

m

m

m

m

m

m

m m

m m

m m m

mm m

12 Skyrme parametersSKT6 (=0.00), SKO’ (0.14), SKO (0.17), SLy4 (0.25), SLy5 (0.25), SKI1 (0.25), SKI4 (0.25), BSK17 (0.28), SKP (0.36), LNS (0.37), SGII (0.49), SkM* (0.53)

.1 0 2 @ , 0.5,2.5opt

*

1*

/

:

/

)

1

(v

sm m

m m

Isoscalar effective mass :

Isovector effective mass :

Enhancment factor of TRK sum rule

n p

1*

( :

1

)

/vm m

Isovector effective mass :

Enhancment factor of TRK sum rule

† †''

, ' 0

*1

*

*

,exp

ˆ

exp 1/

( : constant single-particle level density)

sensitive to

Schematic model

[our case] ; ;

PPpair k kk k

k k

L

L

L

V

H G c c c c

G

mG G

m

mmG

m