Top Banner
Gianluigi De Geronimo , Jack Fried, Shaorui Li, Jessica Metcalfe * Neena Nambiar, Emerson Vernon, and Venetios Polychronakos Brookhaven National Laboratory - * CERN RD51 - SUNY - October 2012 VMM1 An ASIC for Micropattern Detectors - Preliminary Results -
22

Gianluigi De Geronimo , Jack Fried, Shaorui Li, Jessica Metcalfe *

Feb 23, 2016

Download

Documents

Keefe

VMM1 An ASIC for Micropattern Detectors - Preliminary Results -. Gianluigi De Geronimo , Jack Fried, Shaorui Li, Jessica Metcalfe * Neena Nambiar, Emerson Vernon, and Venetios Polychronakos Brookhaven National Laboratory - * CERN RD51 - SUNY - October 2012. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Gianluigi De Geronimo , Jack Fried, Shaorui Li, Jessica Metcalfe*

Neena Nambiar, Emerson Vernon, and Venetios PolychronakosBrookhaven National Laboratory - *CERN

RD51 - SUNY - October 2012

VMM1An ASIC for Micropattern Detectors

- Preliminary Results -

Page 2: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

micromesh

particle trackionization electrons

Epcbstrips

E

New Small Wheel• TGC Thin Gap Chamber• MICROMEGAS MICROMEsh GAs Structure

ATLAS Muon Spectrometer upgrade

2

Front-end electronics• 10-200 pF• 2 pC @ < 1 fC rms• 100 ns @ < 1ns rms• > 2M channels

Page 3: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

VMM ASIC family

3

VMM - ASIC family for ATLAS Muon Spectrometer upgrade MICROMEGAS and TGC

VMM1

• VMM1 - architecture and results

• VMM2 - plans

Page 4: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

or real time address (ART)

peak

time

addr

Architecture

4

direct timing (ToT or TtP)

timingmux

mux amplitude

mux

mux

address

logic

CA shaper

64 channels

• 200pF (few pF to nF), dual polarity, adj. gain (0.11 to 2 pC), adj. peaktime (25-200 ns), DDF• discriminator with sub-hysteresis and neighboring (channel and chip)

• address of first event in real time at dedicated output (ART)• direct timing outputs: time-over-threshold or time-to-peak ( for TGC )• multi-phase peak and time detector• multiplexing with sparse readout and smart token passing (channel and chip)• threshold and pulse generators, analog monitors, channel mask, temperature sensor, 600mV BGR, 600mV LVDS• power 4.5 mW/ch, size 6 x 8.4 mm², process IBM CMOS 130nm 1.2V

logic

neighbor

Page 5: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

1p 10p 100p 200p 1n100

1k

5k

10k100ns, 9mV/fC50ns, 9mV/fC25ns, 9mV/fC

200ns, 9mV/fC200ns, 1mV/fC200ns, 0.5mV/fC

EN

C [e

lect

rons

]

Input capacitance [F]

lines: theoreticalsymbols: measured with actual gain

1p 10p 100p 200p 1n100µ

1m

10m

200ns, 9mV/fC100ns, 9mV/fC50ns, 9mV/fC25ns, 9mV/fC

200ns, 3mV/fC200ns, 1mV/fC200ns, 0.5mV/fC

Gai

n [V

/fC]

Input capacitance [F]

Gain and energy resolution

5

Gain vs input capacitance ENC vs input capacitance

gain drop issue with compensation

0 200n 400n 600n0.0

0.2

0.4

0.6

0.8

1.0

Input Capacitance 2 pF 200 pF

Out

put v

olta

ge [V

]

Time [s]

Nominal peaking time 50 nsNominal gain 3 mV/fC, input charge ~ 175 fC

disagreement part due leakageissue with ESD protection

disagreement due to increased peaking timeissue with compensation

analog dynamic range Qmax /ENC exceeds 12,000

Page 6: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Delayed Dissipative Feedback (DFF)

6

Delay feedback of dissipative elements (i.e. resistors)

see G. De Geronimo and S. Li, TNS 58, Oct. 2011

-∞

Q

CF

CF·N

charge gain N

-∞

CS

RS

other poles

Q·N

Vout

Q·NCS

shaper

V1

DDF shaper

0 5

0

0.2

0.4

0.45

0.1

v t( )

92 t

2S

2CA

maxa

ENCENC

QDR

DDF - higher analog dynamic range

1) set Qmax with N,CS

2) get ENCS from RS

RSCS

Page 7: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

7

hysteresis

output

Sub-hysteresis discriminationComparator input stage

Positive feedback• high speed at low Vi+-Vi-

• hysteresis set NMOS ratio

upper threshold

lowerthreshold

sets minimum detectable

Vi+ Vi-

Vo+Vo- 3:3upper

threshold

hysteresis

Sub hysteresis1 - set window lower2 - raise window after trigger switch NMOS ratio hold until triggers back

4:2

Vi+ Vi-

Vo+Vo-

• limit reduced to overlap • no action on input or threshold signals

Page 8: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

1 - Track (< threshold)• MP and MN enabled• pulse tracked at hold capacitor

Multi-phase peak detection

8

2 - Peak-detect (> threshold)• only MP is enabled• pulse tracked and peak held at capacitor• peak-found from comparator (timing)

3 - Read (at peak-found)• amplifier reused as buffer, high drive capability• amplifier offset canceled, rail-to-rail enabled• some pile-up rejection

_+

CH

MP

MN

in

VP

_+

CH

MP

MN

in

peak-found

VP

_+

CH

MP

MN

outVP

Page 9: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Peak measurements

9

Large amplitude Small amplitude

• with sub-hysteresis nominal hysteresis 20 mV

• ~3 mV offset from external buffers

-500n 0 500n 1µ0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

enable (readout start)

event flag

peak out

Time [s]

Peaktime 200nsInput charge 55fCGain 9mV/fC

vout

Dig

ital

Am

plitu

de [V

]

-500n 0 500n 1µ0.192

0.194

0.196

0.198

0.200

0.202

0.204

0.206

0.208

Am

plitu

de [V

]

~ 3.2mV offset

peak out

(start readout start)

event flag

Dig

ital

Time [s]

Peaktime 200nsInput charge 0.17fCGain 9mV/fC

vout

-500n 0 500n 1µ0.702

0.704

0.706

0.708

0.710

0.712

0.714

0.716

0.718

~ 3mV offset

peak out

Am

plitu

de [V

]

Time [s]

Peaktime 200nsInput charge 55fCGain 9mV/fC

vout

Page 10: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Timing measurements

10

0.0 0.2 0.4 0.6 0.8 1.0100p

1n

10n

200pF, 200ns 200pF, 100ns 200pF, 50ns 200pF, 25ns 2pF, 25ns time walk

200pF, 25ns

Tim

ing

reso

lutio

n, ti

me

wal

k [s

]

Output pulse amplitude [V]

solid line: theor. 200pF, 25nssymbols: measurednominal gain 9mV/fCtiming ramp 125ns

• sub-ns timing• ns time walk (can be calibrated)

disagreement with theor. due to effective peaktime

Uses peak-found signal

p

ppt Q

ENC

8.03.0

p

p

G. De Geronimo, in “Medical Imaging” by Iniewski

• very low time-walk• high timing resolution

timetTH tPK tSTP

TAC ramp

0

0

TDO

ampl

itude

VTH

Page 11: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Direct timing

11

-500n 0 500n 1µ 2µ

0.2

0.4

0.6

0.8

1.0

1.2threshold-to-peak

time-over-threshold

Am

plitu

de [V

]

Time [s]

Peaktime 200nsInput charge 55fCGain 9mV/fC

vout

Direct timing

• dedicated output for each channel• available as ToT or TtP (time-to-

peak)

0.0 0.1 0.2 0.3 0.40

20

40

60

80

100

120

140

Gain 1 mV/fCPeaking time 25ns

Time over Threshold Time to Peak

Tim

e [n

s]

Pulse Amplitude from Baseline [V]

ToT and TtP

Page 12: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Amplitude measurements

12

Linearity

• within 2% for ~ 1 V full swing

0.0 0.2 0.4 0.6 0.8 1.0-4

-2

0

2

4Gain 3 mV/fCPeaking time

25 ns 200 ns

Inte

gral

Non

-Lin

earit

y [%

]

Pulse Amplitude from Baseline [V]

Channel uniformity

• peak dispersion includes baseline• threshold dispersion 8.8 mV rms requires improved matching and/or larger trimming range (currently 15 mV)

1 8 16 24 32 40 48 56 640

200

400

600

800

1000

Pulse peak 25ns, 9mV/fC (mean 684mV, rms 0.6%)

Baseline (mean 187.75mV, rms 1.23%)

Vol

tage

[V]

Channel number

Threshold untrim. (mean 405mV, rms 2.17% = 8.8mV)

Page 13: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

0 1µ 2µ 3µ0.0

0.4

0.8

1.2

1.6

2.0

Dig

ital

vout

first event (at peak)

flag b

flag aenable (readout start)

threshold

ch1b

ch63a

peak out b

first event (at threshold)

readout clock

peak out a

Am

plitu

de [V

]

Time [s]

ch64a

ART and Neighboring

13

Two chips (a,b) and one channel exceeding threshold (64 in chip a) ART• threshold or peak• with address

flags andreadout

multiplexed sequentialpeak detect outputs

analog pulses• only one exceeds threshold• neighbors (chan. and chip) enabled for peak detection

Page 14: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Beam tests at CERN - setup

14

fingerSci (SA)

Beam profile wire chamber

727

Si3 Si6Y-inverted

26 26

Jura

TOP VIEW

Si1

26

s1

s640

z

x

y

(π-, -80 GeV/c)

veto Sci

SBSD

5

SB

Saleve

170

15

SC

5

42

16

X XX XX X X X

T1

T2

T3

T4

T5

T6

T7

T8

XY XY

Tmm3

Tmm2XY

Tmm5

Freiburg frame

XY

Tmm6

1250

205

(π-, -120GeV/c after Mon 30.07)

s64s256

s1

s1

s256

1480

L1

0 30 194 224 386 416 581 611mm

T1-8; S=10x10cm2; p=0.4mm; dg=5mm; gG=104; Ar-CO2 93-7; vd=47um/ns; Elx=APV25; daq=SRS

Beam test on-going, started July 22

Page 15: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Beam tests at CERN - preliminary results

15

Track Slope Resolution as a function of angle

• Very preliminary measurements• ASICs uncalibrated and untrimmed• Only 6 chambers used• Lever arm ~ 35 cm

Page 16: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

6b coarse

count

Plans for VMM2

16

CA shaper

logic

peak

time

or

neighbor

direct timing (ToT, TtP, PDAD)real time address (ART)

data (ampl., time, addr.)

addr.

logic

channel

FIFO

10b ADC

10b ADC

data clock

trigger

6b PDAD timing clock

• external trigger

• 10-bit 5MS/s ADCs per channel and FIFOfully digital IOs, derandomization, simultaneous measurement and readout

• 6-bit peak detector and digitizer (PDAD) for direct timing

• counter for coarse timing

mux

mux

mux

mux

• fixes, higher gain setting, lower gain setting (5pC)

Page 17: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Conclusions

17

• VMM is an ASIC family for the ATLAS Muon Spectrometer upgrade (MICROMEGAS AND TGC)

• VMM1 has been developed and tested, with results in good agreement with the design. Main issues are charge amplifier compensation and large leakage from ESD. Preliminary test beam results at CERN are promising

• VMM2 (in design) will integrate a number of improvements for simultaneous measurement and readout

Acknowledgment

Ken A. Johns, Sarah L. Jones (University of Arizona, USA)

Nachman Lupu (Technion Haifa, Israel)

Howard Gordon and Craig Woody (BNL, USA)

ATLAS review team (J. Oliver, M. Newcomer, R. Richter, P. Farthouat)

Page 18: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

18

Backup slides

Page 19: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Dual polarity charge amplifier

19

Qout = Qin ·NQin

-∞

CF CF·N

N1

Ibias

-∞

N1

Ibias

sp

sp

sp

sn

sn

sn

from sensor

to virtualground

rail-to-rail output

ESD protection - issue: excessive leakage (few nA)

Page 20: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Front-end voltage amplifier

20

Vin

L = 180 nmW = 10 mmM = 200ID = 2 mA

MI

Voutcomp

MC1

MS1

MC2

VC2

MC2

MS2

VC2

inverting output stage with bootstrapping

Mc2 bias circuit

switchable compensation- issue: unstable when set for large caps

MS2

C

fast response to positive charge

Page 21: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

21

Multi-phase peak detection

Chip 1 - negative offset Chip 2 - positive offset

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

MP gate (peak found)

out

hold

in

Sig

nal [

V]

Time [µs]

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

in

out

hold

MP gate (peak found)

Sig

nal [

V]

Time [µs]

Page 22: Gianluigi De Geronimo  , Jack Fried, Shaorui Li, Jessica Metcalfe *

Filter Shape aw aƒ(1) ap ƒ(ƒ)=aƒ(ƒ)/aƒ(1) w /p -p p p RU-2 0.92 0.59 0.92 7.49 0.98 - - RU-3 0.82 0.54 0.66 5.04 1.85 0.30 1.64 RU-4 0.85 0.53 0.57 4.17 2.50 0.44 1.60 RU-5 0.89 0.52 0.52 3.72 3.01 0.52 1.60 RU-6 0.92 0.52 0.48 3.46 3.40 0.57 1.61 RU-7 0 1 2 3 4 5 6 7 8 9 10

0

1

7th

2nd

0.94 0.51 0.46 0.8 0.9 1.0 1.1 1.2

0.9

1.0

1.1

7th

2nd

3.28 3.74 0.61 1.62 CU-2 0.93 0.59 0.88 6.17 1.05 - - CU-3 0.85 0.54 0.61 3.92 2.07 0.31 1.59 CU-4 0.91 0.53 0.51 3.16 2.95 0.48 1.57 CU-5 0.96 0.52 0.46 2.84 3.65 0.58 1.58 CU-6 1.01 0.52 0.42 2.66 4.22 0.63 1.60 CU-7 0 1 2 3 4 5 6 7 8 9 10

0

1

7th

2nd

1.04 0.52 0.40 0.8 0.9 1.0 1.1 1.2

0.9

1.0

1.1

7th

2nd

2.55 4.71 0.65 1.62 RB-2 1.03 0.75 1.01 16.6 0.34 0.29 - RB-3 1.11 0.78 0.76 9.87 0.69 0.41 - RB-4 1.30 0.81 0.66 7.67 0.98 0.47 - RB-5 1.47 0.85 0.62 6.61 1.20 0.51 - RB-6 1.61 0.87 0.59 5.96 1.39 0.54 - RB-7 0 2 4 6 8 10 12 14 16 18 20

-1

0

1

7th

2nd

1.74 0.90 0.57 0.8 0.9 1.0 1.1 1.2

0.9

1.0

1.1

7th

2nd

5.53 1.55 0.56 - CB-2 1.08 0.80 1.02 12.9 0.47 0.33 - CB-3 1.27 0.86 0.76 7.29 0.91 0.45 - CB-4 1.58 0.93 0.67 5.58 1.32 0.52 - CB-5 1.87 0.98 0.62 4.80 1.66 0.56 - CB-6 2.10 1.03 0.60 4.39 1.92 0.58 - CB-7 0 2 4 6 8 10 12 14 16 18 20

-1

0

1

7th

2nd

2.33 1.06 0.57 0.8 0.9 1.0 1.1 1.2

0.9

1.0

1.1

7th

2nd

4.10 2.15 0.61 -

ENC and timing coefficients for various shapers

22G. De Geronimo, in “Medical Imaging” by Iniewski