Top Banner
HWAHAK KONGHAK Vol. 38, No. 6, December, 2000, pp. 882-888 (Journal of the Korean Institute of Chemical Engineers) 882 GGH (2000 2 29 , 2000 9 5 ) Analysis of the Scale Formed in GGH Seungmin Lee , Kyeongsook Kim, Sukran Yang and Nyeonho Jeong Water Chemistry & Materials Analysis Group, KEPRI, Taejon 305-380, Korea (Received 29 February 2000; accepted 5 September 2000) 50 kW GGH(gas gas heater) (T H ) GGH , . , GGH . EDX , Si, Al Ca , XRD mullite quartz , SEM 1 μm , . SEM XRD μm 10 μm 40 μm . GGH μm M/E(mist eliminator) GGH . Abstract - During the commission period of flue gas desulfurization(FGD), a considerable amount of scale was formed in GGH at 2 bituminous coal power plants which were named as T and H. Various attempts have been studied to identify the causes of the scale formed in GGH, for example, concentration analysis, surface morphology, and crystal structure of scale, gypsum and ash. According to the results of stereozoom microscopy, GGH scale was severely harder than absorber scale. In addition, Si, Al and Ca were observed from concentration analysis, and quartz and mullite crystal structure were identified from XRD, and very fine(size: less than 1 μm) and spherical-shaped particles were shown from SEM. In addition, the size of gypsum particle observed from XRD and SEM was 1-10 μm, and this size was very minute compared to the typical size of gypsum(size: about 40 μm) particle produced in FGD process. Although small differences were found between 2 power plants, the causes of scale formed in GGH were deduced that some saturated gypsum slurry was scattered in the reactor of FGD and that the slurry droplets were not eliminated properly in M/E. And then they arrived in GGH water or mist in them was elim- inated, and finally formed the scale in GGH. The scale in turn got entangled with coal ash of untreated flue gas from boiler, and so the formation of scale was accelerated. Key words: Gas Gas Heater(GGH), Flue Gas Desulfurization(FGD), Ljungstrom Type, Compact Type, Scale, Heating Ele- ment, Waste Heat Recovery, Dolomite, Mullite E-mail: [email protected] 1. . 29 SO x , , (Flue Gas Desulfurization, FGD) . FGD (gas duct)
7

GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm & 34 [1]. ' #& N.....

Feb 15, 2018

Download

Documents

ngotu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm & 34 [1]. ' #& N 6&Z B %

HWAHAK KONGHAK Vol. 38, No. 6, December, 2000, pp. 882-888(Journal of the Korean Institute of Chemical Engineers)

GGH ��� ��� �� �� �

���†���������

�� ����� ����� �� ��(2000� 2� 29� �, 2000� 9� 5� ��)

Analysis of the Scale Formed in GGH

Seungmin Lee†, Kyeongsook Kim, Sukran Yang and Nyeonho Jeong

Water Chemistry & Materials Analysis Group, KEPRI, Taejon 305-380, Korea(Received 29 February 2000; accepted 5 September 2000)

� �

50� kW� ��� ��� � �� � GGH(gas gas heater) ��� ����� ���� ��� �� �

��� ��� ! �"#$%� & ���(T' H( ��) GGH)* +,� ���) -� �../, 01 2 345

6./� 7#�89. :; <= >? @AB) � C0DE 3FG HI, JKL ���M NO) ���P Q�RS

01� HP TU( VW X*YS ZI) GGH ���M [\I? ]^_ �`U( ab cc�� d�e d� f

U( DEgh9. i� EDX 2 �../3F, Si, Al 2 Ca� jP kl� RUm, XRD)* mullite' quartz 345

6e DEg , SEM)* noe 1µm P�( ab Ap� /�q �0r� 50 �`P DEs fU( t u, PS

JKL� vwY xM Ay_s e�)* z{ /�q� fU( |4s9. } PC) SEMF XRD)* DEgS /

noS K µm)* 10µm ~P( �Zr� �� �)* ��gS / no� 40µm) �� 1�� ��9. & �

�� ��� ��)S �� �Pe RY� GGH ��� ����M � �� � Z�o)* Fk� / ��

_e ��g^ K µm �r�P M/E(mist eliminator))* �vgY x GGH �) �>g^ �.M �vg k�

g^ ���P ��� �o) H��)* �>gS Ay_s e� % /�qe �� �W g �.P �vgI*

����G ��� fU( Ncs9.

Abstract − During the commission period of flue gas desulfurization(FGD), a considerable amount of scale was formed in

GGH at 2 bituminous coal power plants which were named as T and H. Various attempts have been studied to identify the

causes of the scale formed in GGH, for example, concentration analysis, surface morphology, and crystal structure of scale,

gypsum and ash. According to the results of stereozoom microscopy, GGH scale was severely harder than absorber scale. In

addition, Si, Al and Ca were observed from concentration analysis, and quartz and mullite crystal structure were identified

from XRD, and very fine(size: less than 1µm) and spherical-shaped particles were shown from SEM. In addition, the size of

gypsum particle observed from XRD and SEM was 1-10µm, and this size was very minute compared to the typical size of

gypsum(size: about 40µm) particle produced in FGD process. Although small differences were found between 2 power plants,

the causes of scale formed in GGH were deduced that some saturated gypsum slurry was scattered in the reactor of FGD andthat the slurry droplets were not eliminated properly in M/E. And then they arrived in GGH water or mist in them was elim-

inated, and finally formed the scale in GGH. The scale in turn got entangled with coal ash of untreated flue gas from boiler, and

so the formation of scale was accelerated.

Key words: Gas Gas Heater(GGH), Flue Gas Desulfurization(FGD), Ljungstrom Type, Compact Type, Scale, Heating Ele-

ment, Waste Heat Recovery, Dolomite, Mullite

†E-mail: [email protected]

1. � �

��� �� ����� �� ��� �� ��� ���� �

� ���� ��� �� � !�" #$�% #&'( )*+,�

�� -.& /�0 �1�2 34. 56 � �"% � ! 297��

�8 SOx� 9:, ;<, �= > 9?� (8 �@A� B� #-)*

(Flue Gas Desulfurization, FGD) CD& E �@F CG �� 34. )

*CD 9:H�" IJK #&'% LMN O8 PQ RS� TUT�

V AWX YZ &'Q IJK &'( [V� �\]^Q_ -`� a

bc : 3N dX �e� FGD CD( 9:HN Of� &'% :g

N h� �iA2 3�" &' jk(gas duct)l LM� �� SmN

n�c : 3^oQ �� pWA2 q- &'( r;sN tuvw x

882

Page 2: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm &amp; 34 [1]. ' #&amp; N 6&amp;Z B %

GGH ��� �� �� � 883

y �� > xz�� �� ��� pW� B8" 6&Z pmN {

|�4. Fig. 1� 56 � �" {|A2 3% 9:HN @GW }~

2[ #&'( 5ZN ��A\ 9:HN @� �[ #&'� &ZA

% pm� #&' 6&Z CD� �� ��V� F�T�4. � pm

~ 9:H �( #&' ZN ��A% �^Q AF( Z���& 9

:H ����" #&'& ��AV� CG�� 34. ���� &'

/&' pm( Z���� CGc �� [V�& �W }^oQ Z �

�N �&vw� A�, ��F i� �( Z �� pm~ Z ��~

���F ;( ��� (� Sm( � & 34[1].

#&' 6&ZN B� Z����% �¡�� Z�� !¢& £ A

% Ljungstrom pmf 2,m( Compact pmR \¤ pm� 34.

Fig. 2(a)� LjungstrompmN F�T�%¥ horizontal typef vertical

type ¦ §¨& 34. � pm~ i©�% 2[( #&'l i$�%

�[( IJ&'& Z���% pm^Q GGH ���ªW% «« 4

¬ iQ� OA\ i©, i$�� GGH�" Z�� !¢� (A\ Z

��� �­��4. �¤� pm~ Z�� !¢& £ A\ IJ &'

l ®IJ &'( ¯°� :±�oQ '²³ �´( �-s� �4.

±�� Fig. 2(b)� F�µ Compact pm~ Z!¢& 2,�� 3�

¶C( �& ·4% ¸¹� 3% ±�� CG& � º dX �e�

CGD�V h� !»K4% �¹� 34. �¼ Ljungstrom pm~ «

Z ½ !¢� IJ�W }~ #&'l IJK #&'& �AoQ S

ms� &¾� ¿ÀN ÁÂc : 3% 6ÃN �,8� �4. Ä� �

� CD6Ã~ hot side( ��% �°ÅÆ > �� iÇ 6ÃN Ç�

A\V ÈpAF, cold side% 2°ÅÆN Ç�A% �� É»A4. �

ÊË� <Ì� !( �� Ljungstrom pm� porcelain enamel Í

ÎK Z!¢� Ç�A2 34.

TS�% )*CD ±��( E � �¬ IJK #&' �( D;

Ê2l IJ�W }~ &'� ®Ï� ÊË£ �� TS > !¢� �

��� '²³Q s¸A\ Z��ÐN �AvÑ2, #�&'( ÒÓN

p8A% � E � W¸N n�c � & 34. Ô� SmpW� B

� i� ÍÎ�� �J�, <Õ�^Q ÖuN ©× ÍÎ� :ØN Ù

Ú2 CD6Ã( SmN �&vÛ : 3^oQ �� pWA� B� Ï

Ü CD� GGH soot blower �( ¸G� Ç���F soot blower(

steam ÝÌ� f4A\ GGH !¢& Öu�@F !¢( Þß 5u�

�´A% � \¤ »��Q �A\ à� E u*�" GGH� h~

'²³� �´K4. Fig. 3� H <Ì( GGH TS� '²³� á\

3% âãN F�T�4. ä¼( (a)% GGH TS �� �� '²³

§uN, (b)% GGH TS � SgN r�� âãN F�µ �^Q '

Fig. 1. Schematic diagram of waste heat recovery method.

Fig. 2. Two types of heat exchange method. Fig. 3. Scale on GGH inner surface.

HWAHAK KONGHAK Vol. 38, No. 6, December, 2000

Page 3: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm &amp; 34 [1]. ' #&amp; N 6&amp;Z B %

884 �� ��� ��� ���

²³� S?�� 3% �N å : 34.

\�" #- )*CD( E ¿ÀN æ�0 çèA� 4éf ê4.

ëì, ³±�� #- )*CD( E �¢% 9:� íîD(Ca/S ratio

=1.02), ï�D(L/G ratio=13.4l/m3, �uð�" ïuð^Q �à ½

¿a), ñ¤J pH 4.5-6.0, #&' òV > ÝÌÆA, gÈï�( ��

> �/ïg# ��4. óì, ñ¤J pH ¿,f i© i*( ôV� 2

 � �õvæ(15-20væ)( ¿,N BA\ 9:ï( �� ¿a, ñ¤

J( �� > #$ �� x��^Q �öW2 34. ÷ì, Ê£Ê( ø

sN 2 c : 3%¥, � !�" .©� Ê£Ê~ CaCO3 �V&

95% �u� �N Ç�A�, MgCO3 ôV% 4%�A� �N Ç��4.

� !�" .©A% Ê£Ê� �� gÊv ù�s úûüý(þQú�

k)& ��� 3% �^Q r��2 3^�, \� Ç�&ÿ� Ê£Ê

�:v þQú�k sg� f4A� h~ �~ Ç���N AW }2

34[2].

U³¤ E �" #&' i�� =/AW �A� � !% è ,W

c :�� ·2 �� �¬ ��� > CDE ( �,�� Ö8% �

F4. #- )*CD�" GGH CD% #&'& i�A% �æ� B

GA2 3� X ��� '²³Q Þ0@F iQ §s� ¼õ& ³�

F% �( �& ´�� � � CD� ,Wvw� A% �»� C

D�4. 56 � ( #- )*CD( E ~ n���� 3^�, �

�� E � �­��� �� \¤ &W �& �´A2 34. û �

( AF& GGH ��� �( 8�N BA\ Wò�� -.l �º

¤ �@p� �� :���� A% v¹� 34. � �~ 9:H(

§¨& spray typeQ �³A�" 56 sÿv��� Tl H <Ì�

!( GGH�" {�� '²³� �� sggÊ, §u > �,.¿g

ÊN O� GGH '²³( =/� #-)*CD( E N ��^Q 5

u��f gÊ �N OA\ GGH� ´sK '²³( �´=�f F�

&"% �@p�N ��" =/� )*CD( E � �\A2¢ �

à�N àvA�2 û �f� �¡A2¢ �4.

2. � �

2-1. ��, �� � �� ��

sg gÊN B� ¡��ï~ Perkin-Elmer�" .©� ICP� 1,000

ppm�ïN �ÊA\ Ç�A�2,��Q Ç�� LiBO2% Scientifique

Claisse Inc.�" .©� øè vN, Ã;~ �� ��( ±V� �¿

� øè vN Ç�A�4. IJ � sggÊ~ iV�°��'ú

=¢p$g��(ICP-AES; Spectro-P, Spectro Co.)Q gÊA�2, §u

gÊ~ ��W g; g��(EDX)& S?K xÇ ¢5®�(SEM; JSM

6400, Jeol Co.)N Ç�A�2, �,.¿gÊ~ X-� £agÊ�(XRD;

Ultima+2200, Rigaku Co.)� �A�4.

2-2. �� � � � ��

sg gÊ� v`% ù��� ©�W }V� x(A�" Þ¢ Ç�

N ��A\ 74µm �AQ ®g�� � 45oCQ ¿aK � �" !

"� # $ªW À¿A\ :gN % 0 �@A�4. û R D�v�

^Q Ç��% -!v�Ë~ 800oCQ ¿aK �Q�" ash� X�

�" Ç�A�2, Ê2% sg gÊ� v`l �³A� IJ� àv

A�4. v` 0.25-0.3 g( È�� ,r0 ð,A\ qÅ V&e�

&2, ��Q_ LiBO2� v`( 3# ,V� &� 4é, v`l ���

' ¯°A�4. ®J 1,000oCQ ¿aK �Q� qÅ V&e� &2,

30gæ ��A�^� �$ 1-2£ ,V qÅ V&e� ' (��

x�" v`( �� u¨� �)A\ ¾v ��� ®9A� æ( �

�� * &A�4. ��� +F� �õ: 175 mll �� Ã; 10 ml(

�ï� ,- 3% 400 ml D�.� qÅ V&e� &2, 1-2væ �±

A� /~ u¨( �ï� ��4. @Ó0� 50 C� ��A\ 1J2

QÉ3 6Ã( 1 l S4��'�� ¾v 3N : 3% ù��N @52,

�õ:Q 6ŪW {E � ICP-AESQ sg( ôV� ð,A�4[3-5].

*gÊ~ ¢�i*gÊ�Q ,"A�2, S?:g~ ãg� �@K v

`� 260oC�" 1væ �( È��� (8" ð,A�4.

§ugÊ~ TS 7�� bulk v`� §u�) > sggÊN B8

8� 9�2(carbon tape)B� S?A2 100# �u( #ÐQ SEM

�)� ��AV� Å(Au) Q ¡�N ÍÎ� � EDXQ ®ÏSB(

sgN �)A�4.

�,.¿% Þ¢ Ç�N ��A\ 74µm �AQ ®g�� g:

v`� plate� Ý?A\ gÊA�4.

3. �� �

3-1. ���� ����

3-1-1. T � !

Table 1� T � ! GGH '²³(1;, 4;, 6;)f D�� B8 �

'²³( §s v�� Ç�K -! v�Ë{BHP : ADARO(6 : 4), Table

1�" ash� ØØ}( ÊË£l FGD�" ´sK Ê2(7;)� �� g

Ê�f� �< F�T�4. 1;� {�� '²³( sg~ -! v�Ë

( ÊË£(ash) sgf �"� iÇA�^F, 4;f 6;� �� gÊ�

f% 1;( gÊ �fF -! v�Ë( ÊË£(ash) sg� D8 =ý

(Ca), *(S) > úûüv>(Mg)( �"� h~ �^Q F�?4. 1;�

{�� '²³( sggÊ �f�"% � sÿv� �æ ��% u@

"( ÊË£& GGHQ D;K ±�� Ê2( At~ �~ �^Q B

���4. ±�� 4;f 6;� {�� '²³� �� sggÊ �f�

"% Caf S( �"^QSC � sÿv� �æ ��% ÊË£l *ù

� u@"( Ê2& GGHQ D;��éN D : 3�4. ø0 � v

�( '²³�% Mg( �"� 5.75l 5.59%Q ÊË£(1.22%)l Ê2

(0.19%)� �iK ôVU4 u@0 �� F�?4. �E �fQSC

GGH '²³ øs( y<( »�N 2 8U� #&' sgy<, x©

Ê£Ê( y<, E ¿À( y<(pH, Ê£ÊôV, ñ¤J ôV) �^Q

4í� y:& 34. #&' sgy<% @( ·N �^Q Äu�F,

GGH ��" #&'( ©¢u �ÃN �@8x% EP(electrostatic

precipitator)( FÐy<l � ! $Ì(MW) y<� �¬ g�"( �

& > M/E( FÐ �� �� GGH�" '²³<�% sg =!"(

y<& ½�à �^Q Äu�F x© Ê£Ê �( þQú�k sg�

G %�W� �� ,r� ¢`% ·2, E ¿À~ !v ³,� HBT

�" iWA�4. û¤oQ vE �æ ��( sgy<% x©K Ê

£Ê� ù�s úûüý( í( y<l '²³ �@� 'IÝÌ( y

Table 1. Results of the concentration analysis by ICP-AES

(unit: wt%)

SampleItems

99. 1(GGH)

99. 4(GGH)

99. 6(GGH)

Ash Gypsum

Ca as CaO 2.03 13.70 13.810 02.43 31.53S as SO3 4.08 13.75 19.480 01.90 44.36Combined water 3.49 08.83 7.70 − 19.96Si as SiO2 49.340 29.13 29.930 64.18 00.70Al as Al2O3 22.670 16.38 16.510 20.35 00.47Fe as Fe2O3 3.76 03.73 4.21 05.40 00.14Na as Na2O 0.42 00.94 0.48 00.38 0−Mg as MgO 3.09 05.75 5.59 01.22 00.19Ti as TiO2 1.04 00.76 0.76 01.03 0−Carbon 0.39 00.85 0.27 0− 0−

���� �38� �6� 2000� 12�

Page 4: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm &amp; 34 [1]. ' #&amp; N 6&amp;Z B %

GGH ��� �� �� � 885

<� (A\ ¿ÅJ '²³ øs� y<K �^Q Ú,�F ,r� ¥

�C� ;$A�% � K4.

3-1-2. H � !

Table 2� H � ! GGH '²³(L�, TS)f D�� B8 M/E

S?� > � '²³( §s v�� Ç�K -! v�Ë( ÊË£(Table

2�" ash� ØØ)l FGD�" ´sK Ê2� �� gÊ�f� �<

F�T�4. ê~ v�('99M 10;)� M/El GGH L��" {��

v`( �� sg� @( i� �^Q F�?^�, GGH L�f T

S� D�8 å $, L��"% =ý, *sg� TSU4 �~ ôVQ

ð,��^F, TS�"% àJ8(Si), D­®N(Al), O(Fe) > Mg s

g� L�� D8 �� ð,��4. � �fQSC M/El GGH L�

�"% Ê2( �"� �~ �^Q B��% ±��, GGH TS�"%

Ê2 R�V u@"( ÊË£& �i�� 3éN D : 3�4. ø0

� &W ø�� Çà~ GGH TS( Mg( �"� 9.26%Q" ��

�PQ '99M 8;( gÊ�fl% ½J �R gÊ('99M 10;)�"%

2.82%Q D�� Ù� F�?WX, M/E(0.50%), ÊË£(0.18%)l Ê2

(0.25%)� �iK ôVl D�8 å $ \ 0 �� F�?4. �%

S"" çè� T � !( �fl úT&WQ GGHQ i©�% ÊË

£ sgf 9:H�" D;�% Ê2 ñ¤J& ±�c $ ô��� '

²³( s¸N U�vÑ% �^Q ÚðK4.

3-2. ���� ��

3-2-1. �#Ð ©�5®� �)�f

Tl H � !�" {�� GGH '²³( §uN «« Fig. 4( (a,

T � !)l (b, H � !)�, ûJ2 D�� B8 (c)� H � !

FGD 9:H '²³( §uN F�T�4. Ç� (c)�" D : 3V�

9:H '²³� Bâí^Q B B� Ê2l ®" ÊË£& -ò�^

Q W�3% §uN U\x% ±�, Ç� (a)l (b)( GGH '²³~

�³A� �X�� Y�J âí^Q ««( '²³ Y�J�� GGH

CDT� á\3% §uN U\ x�4. ��^Q U� 9:H '²

³� Ö^Q Z� S"W%¥ DA\ GGH '²³~ Z� S"WW

}N ,VQ ÆV& *[ Æ� �^Q �)��4. ÏS�^Q ¦ �

! GGH '²³N D�8U�, T � ! GGH '²³ ¡�~ R�

u^Q \u^Q @]� U\WF, H � ! GGH '²³ ¡�~ �

^¤��, T � !( '²³U4 _~ *`N F�T�4[2, 6].

\�" æ�A� 9:HT�"( '²³ �´=�N abU�,

calcium sulfite( ;<v, pH( è � �AQ �� 2§�Ã( �8

v, L/G& SÂA\ ñ¤J S4@ �@�% SO2í� f4� ��,

9:H ±� ��& ÁgAW �A\ Ê2 f <V& �N ��, #

&'l ñ¤J g#& �aG }N ���@F ÊË£�( ®"Åò

sg TW% 9:HT( ;<¿À �^Q ´«c : 34. 56 �

�" {|A2 3% Æ� ;<pm�"( 9:H�"% Ê2 2�XN

´sA� �2 �% hard scaleQ" B�" çè� 9:HT�" '²

³ �´=�� AF( =� Ô% �õvæ� ³,AW }@F E ¿

À� cW }^� �,< s¸� ��Q �­�WW }2 2� d´s

� �¬ Ê2 '²³Q ¸GL�� e- W� K4. 9:H '²³f

GGH '²³( D�8U�, 9:H '²³( xsg~ Ê2�2 �%

9:HT( E ¿À� ��" '²³< �% �t� 3% �^Q B

��2, t� à��" 9:HT( '²³ff GGH '²³<( ��

� 2)c �g�4.

3-2-2. SEM > EDX �)�f

(1) T � !( �f

'²³N SEM Q �)� �f� Fig. 5( (a)l (b)Q .hA\ F

�T�4. (a) Sg~ '²³�( i�SB� �� Ç�^Q" ©uâí

( Ê2 sg� xQ �)��2, (b) Sg~ '²³�( .§SB�

�� �fQ" '²³�( ÊË£& xQ �)��4. � &W ø��

Ç!~ (b)�" �)�% ÊË£( ��& 1µm �AQ �x ®Ï

c dX �e�, (a)�" �)�% Ê2 ��& : µm�" 10µm Ç

�Q ³±�� )*CD�" ´s�% Ê2( ��� D8 u@0 j

4% ¹�4. �l ê~ ®Ï Ê2& k6�4% �~ '²³<& Z

4% (®l -�s� 3% �^Q U\�4. '²³� �´�% =�

~ Ê2 ñ¤J( �õvæf \¤ E y:l( ���" �,< �

�� % 0 @GW �� Ê2% ®Ï8W�" '²³<& # &ÿs

� �4. 9:H�"% Ê£Ê ñ¤J �N �8A�" ³,ôVQ i

WA� B� �±�& 32, Ê£Ê ñ¤J�� i© #&'� g;

(spray)�2 Ê£Ê ñ¤JQ i©�% f,�" Sg�^Q Ág� �

Table 2. Results of the concentration analysis by ICP-AES

(unit: wt%)

Period SampleItems

`99. 10 `99. 8

Ash GypsumWall side (GGH)

Inner side 1(GGH)

M/EInner side2(GGH)

Ca as CaO 20.60 10.21 20.43 17.56 0.31 31.81S as SO3 30.50 19.10 32.05 28.32 0.18 43.69Combined water 15.12 17.46 19.09 15.57 − 19.66Si as SiO2 17.33 32.63 17.19 20.20 75.711 11.31Al as Al2O3 17.68 16.91 17.63 12.36 5.32 10.28Fe as Fe2O3 12.01 14.16 12.00 13.87 5.32 10.11Na as Na2O 10.15 10.38 10.15 10.40 0.10 1−Mg as MgO 10.50 12.82 10.50 19.26 0.18 10.25Ti as TiO2 10.51 10.96 10.50 10.63 0.88 1−K as K2O 10.46 10.69 10.46 10.63 0.81 1−

Fig. 4. Stereozoom microscope feature of scale.

HWAHAK KONGHAK Vol. 38, No. 6, December, 2000

Page 5: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm &amp; 34 [1]. ' #&amp; N 6&amp;Z B %

886 �� ��� ��� ���

õvæN lW �� Ê2 ñ¤J& ®Ï<��" i$�% #&'ò�

�< ��� GGHQ i©# �-s~ ÁgA42 ´«K4.

��� �� EDX �f� i�SBl .§SB ««� �8 ûm

(c)l (d)� F�T�4, i�SB� �� (c)� abU�, Si, Al, Ca,

S, > Mg sg� �)�2, .§SB� �� (d)�"% Sil Al sg

� xsg^Q F�?4. ¦ EDX �f( n ��¹~ Caf S sg

^Q i�SB�% Ê2 sg� 4" �i�� 3éN D : 3�4.

(2) H � !( �f

Fig. 5. Results of SEM and EDX analysis of scale for T plant.

Fig. 6. Results of SEM and EDX analysis of scale for H plant.

���� �38� �6� 2000� 12�

Page 6: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm &amp; 34 [1]. ' #&amp; N 6&amp;Z B %

GGH ��� �� �� � 887

.-

c-

d-

\¤ GGH '²³� &¸ øo�� '99M 8;� inner side�" {

�� GGH '²³� �� SEM �f� Fig. 6( (a)l (b)Q .hA

\ F�T�4. (a) Sg~ '²³( ¢� ¡�N �)� �fQ" Ê

Ë£& 1 µm �AQ �)�2 FpW% Ê2Q Ú,�F ø��

�~ #-)* Ê2( §�� ©uâí� �)�W }%4% ¹�4.

q * ¢Ï0 �)A� B8 '²³N ¢¬ a��� �� �f� (b)

� F�T�4. a��( §uN U� \u^Q �� 3^� &E¥

Sg� &% ©u( Ê2& \u��" binder rcN A2 û íð^

Q .§( ÊË£& á\3% �N å : 3�4. ��� �� EDX

�f� ¢� ¡�f a�� ««� �8 (c)l (d)� F�T�4. ¢�

¡�� �� EDX �f� (c)� abU�, Si, Al, Ca, Mg, S > Fe

sg� �)��2, Mg( �"� h~ ¹� T � !( GGH '²³

f st� ��¹��4. a��� �� EDX �f� (d)� abU�,

Ca, S, Mg� xsg^Q �)��2 û R Si, Al� !"^Q �)�

�4. u2Q '99M 10;� {�� '²³( �� S" çè� Fig. 5

( T � !� �� �fl �� iÇA� �)��4.

3-3. ���� ��

�,.¿ gÊ�f� Table 3� F�T�4. ¦ � !( '²³�"

+O�^Q Ê2 sg� �:Ê2l i-Ë 2[-! � �´A% Ê

Ë£ sg� mullite(Al6Si2O13)l quartz(SiO2)� �� �,.¿& +

O�^Q �)��^F, H � !( GGH TS�"% øo�^Q

dolomite{Ca�Mg(CO3)2}& F�?4[7, 8]. Ê£Ê� dolomites� ù

�s Mg� k6A% �~ r�K Çà�2 sÿv� n��% � !

� ©AK Ê£Ê( ù�s Mg� �� ,"gÊN àvA�^F 56

% ³±�� Ê£Ê( sggÊf ZgÊN 1A2 3% à,�4. ù

�s Mg( gÊv~ Ê£Ê� �8�% sgN �@� 4é È� �

"v^Q ,"c : 34. Dolomite� �� =�N wØA2¢ H �

!( 9:H ñ¤J� Ç�� Ê£ÊN ;IJA\ �Sg( Ê£Ê

N �@� � XRDQ g� �f� Fig. 7� F�T�4. \��"

dolomite, calcite(CaCO3) > muscovite �, .¿& �)x� �� H

� !�" F�F% øo�� dolomite sg~ 9:H ñ¤J� Ç�

K ʣ�" i�K �yN D : 3�4[6, 9, 10].

4. � �

¦ � !�" {�� GGH '²³� �� gÊ�f% �Sg iÇ

� íuN F�T�4. �� �#Ð ©� 5®�� (� R§�) �

f� U�, 9:H '²³~ BB� '²³� á\3% §uN U�2

Ö^Q Z� S"W% ±�� GGH '²³~ �X��( Y�J âí

^Q �x ��A\ ÆV& Æ� �^Q �)��4. Ô� EDX >

sgg�f, Si, Al> CaN h� �A2 3^�, XRD�" mullite

l quartz& �)�2, SEM�" ��& 1 µm �AQ �x ®ÏA2

ÊË£( §�� .§ âí� �)K �^Q å $, �% 9:HN

@GW }~ ®IJK #&'�" F[ ÊË£³ �^Q Ú,K4. û

�R� SEMf XRD�" �)�% Ê2( ��% : µm�" 10µm

Ç�Q ³±�� )*CD�" ´s�% Ê2( ��� 40µm� D8

u@0 jP4. �% #- )*Ê2( �,<f,�" �,s¸� %�

�W }~ Ê2�� 9:H�" D;A\ GGHQ i©�% �^Q Ú

ðK4.

�¼, ¦ � !( '²³~ æ 4¬ øsN F�T�4. XRD g

Ê�f, H � !�"% øo�^Q “dolomite”& �)��%¥ �%

Ê£Ê�" ��K �� ù�s Mg sg^Q ³±�� �8s Mg

sgf% ½J dolomite�( Mg�[~ Ê£Ê( ¡�N ��(blinding)

A\ Ê£Ê( �8V� ÙÚ% rcN A% �^Q D z 34. H

� !l% ½J T � !( ��% XRD�" “dolomite” .¿& �

)�W }% �^Q U� sgg�f�" �)�% Mg~ �8s^Q

æxc : 32, �% Ê2( Ca ¢J� �{ �WA\ MgSO4 �(

§¨Q +|c �^Q Ú,K4. û R M/E( OfÐ~ 100 mg/Nm3

,VQ" ®Ï� ©¢sg > �8s È�sg� ï�� ��� ³

,"� OfA� ��3^� #&'�( ©¢ �sÌN ��A\ &'

iQ( Æ� �pm^Q ®'k� �@A2 3^�, �� B8 \¤

§¨( zigzag& CGK4. 56 CGK M/E ï� OfÐN ,rA�

ð,c : 3% ¸D% ·^�, ³, DÐ~ OfA% �^Q U2 3

4. � E � M/ET( }~��( )� �� ��A\ IJ&'�

( ©¢u �Ã( OfÐ� h�W% ��V 34.

B gÊ�f� 0°8 å $, æ( ��% 3WX ¦ � ! GGH

'²³( ´s=�~ #- )*CD ±���" f < Ê2 ñ¤J&

D;�� : µm( ï��� M/E�" �@�W }2 GGH CD�

i©�� ãg~ �@�2 <�� '²³� �´A2 \�� U³¤

�" i©�% ®IJK #&' �( ÊË£& e- W� �2 ãg�

�@��" '²³<� U�� �^Q B�K4.

� �

1. Chang, K.: Report of Kepco, “The Design of FGD Facilitics ,” 214

(1995).

2. Lee, H.-K., Choi, W.-K., Jo, H.-D., Kim, J.-G., Yoon, H.-S., Lee, W

S. and Kim, I.-W.: Ministry of Trade, Industry & Energy, 1(1997).

3. Thompson, M.: “Handbook of Inductively Coupled Plasma Spe

trometry,” 2nd. Ed., Champman & Hall, 93(1989).

4. KS L9003-1996: “Method for Chemical Analysis of Gypsum,” KS, 1

(1996).

5. ASTM C471-76: “Chemical Analysis of Gypsum and Gypsum Pro

ucts,” 1(1985).

Table 3. Results of XRD

Sample(date) Site Crystallographic structures from XRD

T plant('99. 6)H plant('99. 10)

Inner sideInner sideLimestone

Gypsum, syn(CaSO4�2H2O), calcium sulfate(CaSO4), quartz, syn(SiO2), mullite, syn(Al6Si2O13)Quartz, syn(SiO2), dolomite{Ca�Mg(CO3)2}, gypsum, syn(CaSO4�2H2O)Calcite(CaCO3), dolomite{Ca�Mg(CO3)2}

Fig. 7. Result of XRD analysis of limestone(H plant).

HWAHAK KONGHAK Vol. 38, No. 6, December, 2000

Page 7: GGH Analysis of the Scale Formed in GGH - 화학공학 ... · PDF fileaddition, Si, Al and Ca were ... Waste Heat Recovery, Dolomite, Mullite ... ( ( ( Sm &amp; 34 [1]. ' #&amp; N 6&amp;Z B %

888 �� ��� ��� ���

.

of

6. Kim, K., Park, H., Lee, T. and Jeong, N.: Analytical Science & Tech-

nology, 13, 5(2000).

7. Kim, K., Yang, S., Park, H. and Lim, C.: Analytical Science & Tech-

nology, 13, 158(2000).

8. Lee, H.-K.: “Studies on Characterization of Wet FGD Processes and

Limestone Utilization,” Seminar at Boryung Power Plant, Kepco, Nov

1(1998).

9. Oki, Y., Ichikawa, K., Ashizawa, M. and Inumaru, J.: Report

CREPI, W97004(1997).

10. Han, B.(translation): “X-ray Diffraction,”Bando press(1990).

���� �38� �6� 2000� 12�