Top Banner
GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW Family Dollar Store Parshall, North Dakota NTI Project 18.FGO 05738 Prepared For: Geoscience Engineering & Testing, Inc. 2712 Satsuma Drive Suite 400 Dallas, TX
46

GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Mar 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW 

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

Prepared  For:  

Geoscience Engineering & Testing, Inc. 

2712 Satsuma Drive 

Suite 400 

Dallas, TX

Page 2: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing
Page 3: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

June 1, 2018 

 

 

 

Geoscience Engineering & Testing, Inc. 

2712 Satsuma Drive 

Suite 400 

Dallas, TX  75229 

 

Attn:  Mr Syed S. Afsar, P.E. 

 

Subject:  Geotechnical Exploration and Engineering Review 

  Family Dollar Store ‐ Parshall, North Dakota 

  NTI Project 18.FGO 05738 

In accordance with your request and subsequent May 7, 2018 authorization, Northern Technologies, LLC (NTI) conducted a Geotechnical Exploration for the above referenced project.  Our services included advancement of exploration borings, laboratory testing, and preparation of an engineering report with recommendations developed from our geotechnical services.  We performed our work in general accordance with our proposal of May 7, 2018. 

We will retain soil samples for 60 days after which we will discard the samples.  Please advise us in writing if you wish to have us retain them for a longer period.  You will be assessed an additional fee if soil samples are retained beyond 60 days. 

We appreciate the opportunity to have been of service on this project.  Please contact us at your convenience if there are any questions regarding the soils explored, or our review and recommendations. 

Northern Technologies, LLC 

 Bret R. Anderson, P.E. Principal 

 Dan Gibson, P.E. Senior Engineer 

Page 4: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing
Page 5: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall North Dakota 

NTI Project 18.FGO 05738 

 

 

Table of Contents 

1.0 EXECUTIVE SUMMARY ............................................................................................................................ 1

2.0 INTRODUCTION ...................................................................................................................................... 2

2.1 Site / Project Description .................................................................................................................... 2

2.2 Scope of Services ................................................................................................................................ 2

3.0 EXPLORATION PROGRAM RESULTS ........................................................................................................ 3

3.1 Exploration Scope ............................................................................................................................... 3

3.2 Surface Conditions .............................................................................................................................. 3

3.3 Subsurface Conditions ........................................................................................................................ 3

3.4 Ground Water Conditions................................................................................................................... 4

3.5 Laboratory Test Program .................................................................................................................... 4

4.0 ENGINEERING REVIEW AND RECOMMENDATIONS ............................................................................... 4

4.1 Project Scope ...................................................................................................................................... 4

4.2 Site Preparation .................................................................................................................................. 5

4.3 Shallow Foundations .......................................................................................................................... 6

4.4 Bearing Factor of Safety ..................................................................................................................... 7

4.5 Estimate of Settlement ....................................................................................................................... 8

4.6 Subsurface Drainage ........................................................................................................................... 8

4.7 Utilities ................................................................................................................................................ 9

4.8 Slab‐on‐Grade Floors .......................................................................................................................... 9

4.9 Exterior Backfill ................................................................................................................................. 10

4.10 Surface Drainage ............................................................................................................................... 11

4.11 Pavement Construction .................................................................................................................... 11

5.0 CONSTRUCTION CONSIDERATIONS ...................................................................................................... 13

5.1 Excavation Stability / Person in Charge ............................................................................................ 13

5.2 Engineered Fill & Winter Construction ............................................................................................. 14

5.3 Operation of Project Sumps ............................................................................................................. 14

6.0 CLOSURE ............................................................................................................................................... 14

 

 

Page 6: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

APPENDIX A 

GEOTECHNICAL EVALUATION OF RECOVERED SOIL SAMPLES 

FIELD EXPLORATION PROCEDURES 

Water Level Symbol 

Excavation Oversize 

APPENDIX B 

GROUND WATER ISSUES 

GEOTEXTILE FABRIC and GEOGRID REINFORCEMENT 

PLACEMENT and COMPACTION OF ENGINEERED FILL 

SWELLING of CLAY SOILS 

PROJECT SUMPS 

APPENDIX C 

Soil Boring Diagram 

Soil Boring Logs 

Fence Diagram 

 

Page 7: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 Page 1 of 15 

GEOTECHNICAL EXPLORATION AND ENGINEERING REVIEW 

Family Dollar Store 

Parshall North Dakota 

NTI Project 18.FGO 05738 

1.0 EXECUTIVE SUMMARY 

We briefly summarize below our geotechnical recommendations for the proposed project.  You must read this summary in complete context with our report. 

We conclude you may support the proposed Family Dollar Store [Building] on standard perimeter strip and isolated spread column footings providing such are founded on competent, non‐organic natural soil(s) or engineered fill, as recommended within our report.  This will require the removal of existing undocumented fill and buried topsoil (organics) present below building footprint.  Alternatively, you may support building on similar foundation system providing some form of beneficial pier system bridge through the undocumented fill / topsoil and bearing within underlying natural formation.  Major items of issue for your project include the following: 

Our original “scope of services” for project excluded assessment of stability for embankments / excavations.  We direct you to other report discussion concerning independent assessment of stability under Contractor’s “means and methods”. 

You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing pressures of Table 4‐3. 

Our exploration indicates Undocumented Fill and Buried Topsoil extends from approximately five and one half to 12 feet at project borings.  You should anticipate similar but variable depth of Undocumented Fill, Buried Topsoil across the project.  We recommend additional evaluation during site excavation to confirm removal of unsuitable soils from below project construction. 

While we did not encounter measurable ground water during or at the completion of drilling operations at the borings, soil samples recovered during our exploration program varied from dry to moist.  We direct you to other report sections and appendices attachments concerning ground water issues and recommendations for subsurface drainage. 

Through material composition, clay soils can swell with absorption of moisture.  This is especially true for marginal fat clays (CH‐CL, CH) or silty fat clays (CH‐MH) due to increased montmorillonite mineral content.  The attachment presented within the appendices provides a brief description of the swell process of clay and provides limited recommendation(s) for reducing this risk on your project.  Our present geotechnical exploration implies native clays at your project site have a 

Page 8: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 2 of 15 

moderate risk of swell and heave with moisture uptake.  Note a major attribute contributing to swell of clays is absorption of moisture under reduced confinement.  Continuous drainage of site excavations is necessary to reduce swelling impacts to your project. 

2.0 INTRODUCTION 

2.1 Site / Project Description 

You intend to construct the Building at parcel as defined by Table 2‐1, a property near Parshall, North Dakota.  Table 2‐1 also lists proposed construction for the Building. 

Table 2‐1: Project & Site Description 

Item  Description 

Building Type:  A single story, steel frame structure with composite masonry and steel stud wall and at‐grade floor construction. 

Floor Elevations:  Nominal 196 feet (NTI datam, estimated). 

Change in Site Elevation:  Estimated at approximately 4 1/2 feet (present site). 

Depth of Excavation at Site:  Nominal 6 1/2 to 12 feet to remove undocumented fill / buried topsoil (organics). 

Foundation Walls  Foundation walls for conventional frost footings of balanced earthen fill. 

Retaining Wall Construction  Non Anticipated. 

Project Location (coordinates)  47 deg, 57 min, 41.2 sec N latitude; 102 deg, 7 min, 41.2 sec W longitude. 

Existing Land Use   Present site consists of a gravel surfaced "yard".  Site was previously used as a "mancamp" for individual owned campers housing workers in the Bakken Oil Field. 

Topography at Site  Gentle to moderately rolling natural topography. 

2.2 Scope of Services 

The purpose of this report is to present a summary of our geotechnical exploration and provide generalized opinions and recommendations regarding the soil conditions and design parameters for founding of the project.  Our “scope of services” was limited to the following: 

1. Explore the project subsurface by means of six standard penetration borings extending to maximum depth of 16 feet, and conduct laboratory tests on representative samples to characterize the engineering and index properties of the soils. 

2. Prepare a report presenting our findings from our field exploration, laboratory testing, and engineering recommendations for footing depths, allowable bearing capacity, estimated settlements, floor slab support, excavation, engineered fill, backfill, compaction and potential construction difficulties related to excavation, backfilling and drainage. 

Our current authorized “scope of services” did not include assessment of environmental issues, or analysis and discussion of stability for project. 

Page 9: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 3 of 15 

3.0 EXPLORATION PROGRAM RESULTS 

3.1 Exploration Scope 

Site geotechnical drilling occurred on May 24, 2018 with individual borings advanced at approximate locations as presented on the diagram within the appendices.  NTI located the borings relative to existing site features and determined the approximate elevation of the borings relative to the temporary benchmark (TBM); the concrete floor at west entrance to facility shower building north of proposed Family Dollar Store location.  We assigned an elevation of 200 feet to the TBM. 

3.2 Surface Conditions 

The Building property is currently a site for servicing private campers of workers employed in development / operations within the Bakken Oil Field.  Present site consists of thin gravel surface overlying undocumented fill soil used to level parcel within the natural topography.  A services building with washrooms and bathing facilities is present at site.  We are unaware as to whether water, electrical, or sanitary services extend to individual camp locations. 

It is our premise no prior development of this property does not include demolition material or include any environmental contaminant.  The varied grade within the parcel direct surface runoff towards lower natural ground near site and/or to roadside ditching. 

3.3 Subsurface Conditions 

Please refer to the boring logs within the appendices for a detailed description and depths of stratum at each boring.  The boreholes were backfilled with auger cuttings.  Minor settlement of the boreholes will occur.  Owner is responsible for final closure of the boreholes. 

Table 3‐1 provides a general depiction of subsurface conditions at the project site based on results of the current geotechnical exploration.  We present additional comment on the evaluation of recovered soil samples within the appendices attachments. 

Table 3‐1: Typical Subsurface Stratigraphy at Project Site Note 1 

Stratum  Depth to Base of Stratum  Material Description  Relative Density / Consistency 

No. 1  5 ½ to 12 feet  Undocumented Fill  NA 

No. 2  6 ½ to 11 ½ feet (isolated)  Varies: Buried Topsoil  NA 

No. 3  15 to 16 feet (isolated)  Silty Fat Clay  Medium to stiff 

No. 4  Below Layers 1 through 3  Sandy Lean Clay / Lean Clay  Medium to rather stiff 

Note 1  Table summary is a generalization of subsurface conditions and may not reflect variation in subsurface strata occurring on site.  The upper portion of each boring is approximate as such was sampled using flight auger.  Ground surface at borings varied from 190.7 to 195.4 feet (project datum) 

Page 10: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 4 of 15 

3.4 Ground Water Conditions 

The drill crew observed the borings for ground water and noted cave‐in depth of the borings, if any, during and at the completion of drilling activities.  Such observations and measurement for ground water and cave‐in during and/or at completion of the borings are noted on the boring logs. 

While we did not encounter measurable ground water during or at the completion of drilling operations at the borings, soil samples recovered during our exploration program varied from dry to moist.  Overall, the site soils are conducive to movement of ground water laterally and vertically.  The moisture content of such soils can vary annually and per recent precipitation.  Such soils and other regional dependent conditions may produce ground water entry of project excavations.  We direct your attention to other report sections and appendices attachments concerning ground water issues and subsurface drainage. 

3.5 Laboratory Test Program 

We base our analysis and report recommendations upon our interpretation of the standard penetration resistance determined while sampling soils, hand penetrometer test results obtained during classification of retained soils, and experience with similar soils from other sites near the project.  We summarize such results on appended boring logs or attached forms. 

4.0 ENGINEERING REVIEW AND RECOMMENDATIONS 

We base our report recommendation on our present knowledge of the project.  We ask that you or your design team notify us immediately if you implement any significant changes to project size, location or design, as this notification would allow our review of current recommendations and provide means for our issue of modified or different recommendations with respect to such change(s). 

4.1 Project Scope 

We understand the Building will include concrete foundation walls and footings for support of above grade construction.  It is our premise interior of Building will include four isolated columns as minimum for conveyance of roof loading to individual square footings.  This implies bay spacing within the 90 feet by 102 feet dimension building will be nominal 30 feet by 34 feet.  We presume the outer half of each bay loading from roof will be conveyed to steel beam and stub columns which bear upon structural masonry wall supported by strip footing.  Table 4‐1 present our premise of loads and bearing elevation of foundations. 

Table 4‐1: Foundation Loads / Change in Grade / Footing Elevation 

Building Element  Load / Condition Footing Base Elevation 

[Project Datum] 

Perimeter Strip Footings (estimated)  4 kip per lineal foot (klf)  191.0 

Perimeter Columns (bearing by strip footing)  50 kip (estimated)  NA 

Interior Strip Footings  2 klf  194.0 

Isolated Interior Column Footings  100 kip (estimated)  193.5 

Page 11: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 5 of 15 

4.2 Site Preparation 

Project construction, as proposed, will involve stripping of the site and implementation of corrective grading.  We recommend removal of all Undocumented Fill, Buried Topsoil and/or any unsuitable material(s) encountered during advancement of project excavations.  Our field exploration indicates removal of Undocumented Fill, Buried Topsoil should result in excavations extending from approximately five and one half to 12 feet below existing grade. 

You must oversize all earthwork improvements and excavations that include placement of engineered fill below foundations.  The minimum excavation oversize should extend per the requirements outlined on appended Figure 1: Excavation Oversize.  Additional excavation may be necessary to achieve frost protection of footings.  Table 4‐2 presents summary of excavation necessary for the removal of unsuitable materials [at respective borings]. 

Table 4‐2: Summary of Project Excavation Note 1 

Boring Number 

Existing Ground Elevation (feet, NTI Datum) 

Depth (feet)  Unsuitable Soil / Material 

Estimated Excavation 

Elevation (feet) 

Building 

SB‐1  191.4  12  Undocumented Fill  179.4 

SB‐2  194.1  11 ½  Undocumented Fill / Buried Topsoil  182.6 

SB‐3  193.0  6 ½  Undocumented Fill / Buried Topsoil  186.5 

SB‐4  192.0  9  Undocumented Fill  183.0 

Parking Lot / Drive Lanes 

SB‐5  195.4  3  SB‐ 5: Undocumented Fill / Buried Topsoil 

SB‐6: No excavation anticipated as grading of site will place material for support of pavement construction.  See Pavement Section for Recommendation 

192.5 

SB‐6  190.7  None  NA 

Note 1: Refer to report for excavation at, and within, the vicinity of the soil borings. 

You must pump seepage from excavations continuously until the Geotechnical Engineer of Record or their designated representative determines such seepage no longer influences bearing soils, engineered fill system, backfill system or soils and concrete placement. 

The Geotechnical Engineer of Record or their designated representative must review project excavations to verify removal of unsuitable material(s), and determine exposed soils provide adequate bearing support of proposed construction.  All such observations must occur prior to the placement of engineering fill, or construction of footings and floor slabs. 

While not mandatory, you should also consider the placement of geotextile separation fabric as part of corrective earthwork below footing and floor slab construction should site conditions or weather influence stability of exposed soils.  The Geotechnical Engineer of Record or their designated representative should determine need for geotextile placement after observation of completed excavations.  We present within appendices attachment comment and recommendations for materials type and placement of geotextile. 

Page 12: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 6 of 15 

Engineered fill for overall corrective earthwork and for support of project perimeter footings may consist of native, non‐organic clay.  It is our opinion the excavated undocumented fill removed from site may be reused as engineered clay fill providing such soils do not include organic soils, debris, or other unwanted material.  Engineered fill placed interior to and above the base of perimeter frost footings should consist of granular soil that complies with the material properties listed for granular fill placement below floor slab construction.  Unless otherwise directed specifically within this report, you should temper engineered fill for correct moisture content and then place and compact individual lifts of engineered fill to criteria as presented within the specific appendices attachment provided for compaction of material. 

4.3 Shallow Foundations 

We base our bearing recommendations on our present understanding of project.  It is our premise foundation elements will impose maximum vertical loads as previously noted within this report.  We understand base of footing construction for this project will occur as listed within Table 2‐1 and Table 4‐1. 

In our opinion, you may support the proposed Building by strip footings and interior column footings founded on competent, non‐organic native soils, or engineered clay fill, providing such construction complies with the criteria established within this report. 

You should support exterior foundations at a common elevation within soils of the same strata, when possible.  You should support all perimeter footings by cohesive soils to limit migration of seepage interior to building, with design of footings based on the Table 4‐3 maximum net allowable soil bearing pressures. 

Table 4‐3: Maximum Net Allowable Soil Bearing Pressure ‐ Shallow Foundation 

Location    Criteria Note 1 

Perimeter Strip Footings Perimeter strip footings supported on natural soils or engineered clay fill below depth of frost penetration, and at an elevation as referenced within this report. 

Maximum of 3,000 psf 

Interior Strip Footings (if any)  Interior strip  and interior column footings supported on natural, competent soils and/or engineered fill at a depth which provides no less than 6 inches of clearance between the top of footing and underside of floor slab (for sand cushion). 

Maximum of  3,000 psf 

Interior Column Footings Maximum of 4,000 psf 

1. The maximum net allowable soil bearing pressure recommendations predicated on footing design and construction complying with report recommendations.  To minimize local failure of supporting soils, it is our opinion footing construction must also comply with the International Building Code (IBC) requirements with minimum strip footing width established at 18 inches and minimum isolated spread footings for interior columns established at 2 feet by 2 feet. 

You must protect footing construction from the adverse effects of frost.  For this project, you should extend at‐grade footing construction within permanently heated areas (60º Fahrenheit or above) to no less than five feet below final grades as protection against frost action.  Similarly, you should extend at‐grade footings to a minimum of seven feet below the exterior ground surface in areas lacking permanent heat. 

We previously noted clay soils have risk of swell with absorption of moisture.  This is especially true when clay soils absorb excess runoff pooled within excavations.  Partially constructed foundations, foundation with lesser confinement, and/or lightly loaded on‐grade floor construction may heave due to swell of clays.  

Page 13: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 7 of 15 

The native clays at project and engineered clay fill placed for support of foundations, when properly tempered for moisture content, is presumed as having moderate risk of heave.  We direct you to appendices attachment concerning swell of soils.  Further discussion of this issue is recommended. 

Foundation walls with unbalanced earthen fill (if any) will experience lateral loading from retained soils.  You may model this lateral loading as an equivalent earth pressure applied to the foundation wall providing site geometric and related conditions complies with the parameters supporting such modeling.  We recommend use of the Table 4‐4 at‐rest “equivalent fluid earth pressures” for establishing lateral loading of foundations walls within basement or with unbalanced earthen fill. 

Table 4‐4: Retained Soil ‐ Equivalent Fluid Weight / Coefficient of Friction 

Soil Type  Friction Factor 2 

Equivalent Fluid Unit Weight of Retained Soil 1 

“At Rest” Condition (pcf) 

“Active” Condition (pcf) 

“Passive Condition (pcf) 

Sand (SP, SP‐SM)  0.57  65  45  280 

Lean Clay (CL)  0.40  85  65  160 

1 The “equivalent fluid weight” recommendation based solely on premise of sloping ground and/or surcharge loads.  We caution design professional that actual loads imparted to the structure will be dependent on soil conditions, site geometric considerations, and surcharge loads imparted to the structure. 

2 The determination of resistance to sliding determined based on multiplication of the respective coefficient of friction by the effective vertical stress occurring at the elevation of interest. 

Alternatively, you may consider partial (i.e. minimum 3 feet) depth subgrade correction below Building and the installation of densified stone column, helical piers, or drilled piers for support of Building.  The design of such systems and associated soil interaction values are specific to system selected as alternative bearing of project.  The design of each deep foundation alternative varies pending soil strength and interaction with natural formation.  Further consultation concerning appropriate end bearing and adhesive skin resistance of any such selection is recommended.  Note further that deep foundation support of the at‐grade floor would be necessary unless Owner chooses to forego such and accept risk related to settlement / movement of floor supported by undocumented fill / buried topsoil. 

4.4 Bearing Factor of Safety 

We estimate native soils provide a nominal three factor of safety against localized bearing failure when construction complies with report criteria and recommendations, and you design structure footings using the Table 4‐3 maximum net allowable soil bearing recommendation(s).  Note that this estimate simple bearing factor of safety does not address and is not intended to represent overall factor of safety for site, excavation(s), or foundations supported by the overall soil mass below site [i.e. does not represent shear stability of site].  We direct you to other report discussion concerning such issue. 

   

Page 14: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 8 of 15 

4.5 Estimate of Settlement 

Settlement of project will involve long‐term mass consolidation of the site from additional soil placement, and individual settlement of footings from varied loading.  We estimate mass settlement of the site to vary from 1/4 to 1/2 inches due to construction disturbance.  This settlement will likely vary over time with estimated movement terminating approximately one year after completion of site grading.  Overall, we anticipate this movement should have minimal impact to your project with exception of variable shear loading and displacement of underground utilities extending to/from municipal service lines. 

The settlement of structure footings and floor slab will vary based on the magnitude, frequency of application, and duration of applied loading to individual footings.  For your project, we estimate the elastic movement and consolidation settlement of footing construction will likely vary as outlined within Table 4‐5 with this movement dependent on discussion as of this report.  Note that the Table 4‐5 findings reflect a sum of elastic and consolidation settlement for respective footing while differential settlements reflect likely movement occurring between heavily loaded interior column footing and adjacent lightly loaded strip footing, unless otherwise noted. 

Table 4‐5: Estimated Settlement of Shallow Foundations (footings) Note 1 

Location  Est. Total Settlement  Est. Differential Settlement 

Perimeter Strip Footings  1/2 to 1 inch  1/4 to 1/2 inch 

Interior Column Footings  3/4 to 1 inch  1/2 to 3/4 inch 

Interior Strip Footings (if any)  1/2 to 1inch  1/2 to 1 inch 

1. We base the above estimated settlements on likely long‐term service loads as applied to respective footings designed for the 

Table 4‐3 maximum net allowable soil bearing pressure recommendation(s) and per other recommendations of this report. 

We anticipate settlement of the at‐grade floor should be less than ½ inch as referenced to movement of the structure [i.e. does not address or include mass movement of site due to soil placement].  Furthermore, total and differential movement of footings and floor slabs could be significantly greater than the above estimates if you support construction on frozen soils, the moisture content of the bearing soils significantly changes from insitu conditions, and/or you incorporate snow or ice lenses into site earthwork. 

4.6 Subsurface Drainage 

While not necessarily required for this project, you should install subsurface drainage at the base of foundation walls to limit moisture accumulation within granular soils placed below interior floors.  You should also consider placement of a separate subsurface drainage system exterior to perimeter foundation walls.  As a general guideline, subsurface drainage consists of a geotextile and coarse drainage encased slotted or perforated pipe extending to sump basin(s) [see appended Figure 2 for conceptual subsurface drainage along perimeter foundation walls].  We recommend that you separate exterior drainage from interior drainage to reduce risk of cross flow and moisture infiltration below structure interior.  The project Architect and/or Structural Engineer of Record should determine actual need for subsurface drainage. 

Page 15: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 9 of 15 

4.7 Utilities 

Placement of underground utilities typically includes granular bedding for support of piped systems.  Placement of granular soils within underground utility construction promotes migration of subsurface moisture towards and below the bearing stratum of footing construction.  This, in turn, can lead to moisture uptake by native clays producing heave of construction, loss of shear strength and/or differential settlement of footing and floors. 

Therefore, we recommend that you eliminate placement of all granular bedding soils within 10 feet of project excavations creating a zone where cohesive soils or lean concrete (i.e. controlled density fill) is used for all soil replacement within utility trenches.  This “zone of control” should significantly reduce moisture migration below the project foundations.  You should place and compact all clay‐bedding fill to same criteria recommended for utility trench backfill.  In lieu of placing clay soils within the above referenced “zone of control”, you may provide alternate means of interception and blockage of drainage along site utilities pending review and approval by Geotechnical Engineer of Record. 

You should place wetter soils in the lower portion of utility trench construction, and dryer soils in the upper most portion of trench fill.  You should temper the utility trench fill for correct moisture content and then place and compact individual lifts of trench fill to criteria established within the report appendices. 

There is a high probability that laminations or thin alluvium stratum occur within site soils and may be present along utility trench excavations.  Such formations and other regional dependent soil conditions may be water bearing.  While it is our opinion small pumps should handle typical seepage from site clays, we caution that exposure of a major “water bearing” strata could produce significant seepage of utility construction.  Therefore, we recommend that you include provisions within construction document for pumping of seepage from utility excavations. 

4.8 Slab‐on‐Grade Floors 

Our borings indicate poor soils within the project interior and recommend removal of all unsuitable soils and materials as previously recommended for structure footings.  We understand finished floor will be set at or near the prior referenced elevation and, conclude construction of at‐grade floors will require fill placement interior to the structure perimeter. 

We previously noted that conventional frost footing support of Building would occur on engineered clay fill with soil placement interior to and above the clay consisting of engineered granular fill.  Contrary the alternative deep foundation support of Building will retain portion of the undocumented fill / topsoil that exists at site.  We presume that no less than three feet of soil removal and replacement with engineered granular fill would provide support of floor slab under the alternative foundation support option presented. 

This Engineered Granular Fill placement from support of at‐grade floor slab should consist of granular material conforming to the Table 4‐6 mechanical analysis.  You must temper the granular material for correct moisture, place 8‐inch maximum depth loose lifts, and compact the granular material to criteria established within the appendices attachment. 

Page 16: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 10 of 15 

Table 4‐6: Mechanical Analysis of Granular Fill for Floor Slab Construction 

U.S. Sieve Designation Percent Passing 

(by dry weight of material) 

½ inch  100% 

⅜  95 – 100 

No. 4  90 – 100 

10  70 – 90 

20  50 – 70 

40  20 – 40 

100  10 – 20 

200  2 – 10 

You may design of the floor slab based on an estimated subgrade reaction modulus (k) of 150 lbs/in3 providing a minimum of 36 inches of granular fill supports floor construction.  Otherwise, we recommend you use a subgrade reaction modulus of 50 lbs/in3 for design of at grade or basement floor slab.  While it is our opinion that you reinforce floor slab construction, the Structural Engineer should determine need for inclusion of reinforcement within at‐grade floor construction. 

All interior at‐grade floors with impervious or near impervious surfacing such as, but not limited to, paint, hardening agent, vinyl tile, ceramic tile, or wood flooring, should include provision for installation of a vapor barrier system.  Historically, vapor barrier systems can consist of many different types of synthetic membrane with placement either below sand cushion or at the underside of the concrete floor.  All such issues are contentious and have positive and negative aspects associated with long‐term performance of floor.  Overall, we recommend you install some form of vapor barrier below the project at‐grade floor. 

You should isolate floor slabs from other building components.  It is our opinion such isolation should include installation of a ½ inch thick expansion joint between the floor and walls, and/or columns to minimize binding between construction materials.  This construction should also include application of a compatible sealant after curing of the floor slab to reduce moisture penetration though the expansion joint.  As a minimum, you should install bond breaker to isolate and reduce binding of building components. 

We previously noted risk of heave of on‐grade floor slab construction if exposed clay soils absorb moisture.  We direct your attention to the appendices attachment on “Swell of Clay Soils”. 

4.9 Exterior Backfill 

Exterior fill placement around the foundation and associated final grading adjacent to the building can significantly influence the performance of a structure.  We understand the project will not include basement construction or foundation walls that retain unbalanced soils. 

Exterior backfill of at‐grade foundations walls should consist of native, non‐organic soils for at‐grade construction.  Your placement of exterior backfill against at‐grade foundation walls should occur with interior backfill to minimize differential loading, rotation, and/or movement of the wall system. 

Page 17: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 11 of 15 

You should limit placement of exterior backfill against below grade foundations until your placement of lateral restraint of foundation walls complies with criterial of Structural Engineer of Record.  Final grading of exterior backfill should provide sufficient grade for positive drainage from structure.  We presented within other report section recommendations for final grading. 

4.10 Surface Drainage 

You should maintain positive drainage during and after construction of project and eliminate ponding of water on site soils.  We recommend you include provisions within construction documents for positive drainage of site.  You should install sumps at critical areas around project to assist in removal of seepage and runoff from site.  We present within appendices attachment recommendations for sump construction. 

You should maintain the moisture content of site clays as close to existing as possible as excessive changes can cause shrinkage or expansion of the soil, and lead to distress of construction. 

We understand sidewalks, curbing, and pavement will direct drainage from structure.  You should grade exterior to slope from building(s).  We recommend that you provide a two percent minimum gradient from building for drainage of sidewalks / pavements.  All pavements should drain to on‐site storm collection or roadside ditching as required by local statute.  You should direct roof runoff from building rain gutters, down spouts and splash pads. 

4.11 Pavement Construction 

We understand project traffic will include heavy vehicles comprised refuse trucks, delivery vans, and light duty passenger vehicles.  We base our following pavement recommendations on separation of this traffic.  In our opinion, you should remove no less than three feet and preferable all Undocumented Fill, Buried Topsoil from below sidewalk and pavement construction.  We understand project grading will include mass earthwork activities to establish the final grade of site and expect preparation of the pavement subgrade will occur with site corrective earthwork. 

Subgrade preparation will need to establish a stable base for construction of project sidewalks and pavements.  The exposed clay soils (Undocumented Fill or native clays) can lose structural capacity with uptake of moisture, are easily disturbed, and may rut with excessive movement of construction equipment across bare ground.  You should install geotextile separation fabric between the exposed cohesive soils and aggregate base section to limit this displacement / distress.  It is our opinion this geotextile should consist of fabric formed from polypropylene yarn which provides the strength properties as listed within Table 4‐7. 

Table 4‐7: Geotextile Separation Fabric Properties 

Parameter  Requirement Note 1 

Base Yarn  Polypropylene 

Apparent Opening Size [AOS, US Sieve]  40 to 70 

Permitivity [gal/min/sq. ft CH, ASTM D 4491]  110 

Grab Tensile Strength [lbs, %, ASTM D 4632]  160 x 160 

1. All physical strength properties are minimum average roll values [MARV], unless noted otherwise. 

Page 18: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 12 of 15 

The pavement contractor should provide you with a detailed layout diagram showing how they intend to place the geotextile.  Geotextile panels should be oriented parallel with aggregate placement and occur in such manner that the overall number of panels are kept to a minimum.  All individual panels of geotextile must have a width equal to or greater than 12 feet and be overlapped a minimum of 18 inches with adjacent panels [side and butt seams].  We recommend anchoring individual panels of geotextile to ground with manufacturer provided “soil nails” or “staples”. 

Design must consider load and movement of traffic across pavement subgrade structure.  With moving traffic, design must provide sufficient paving materials to resist deflection and reflective loading imparted by vehicle wheels.  Static vehicles convey loads downward into the lower section of the pavement and subgrade soils.  Pavement design for parked vehicles must also consider and provide adequate bearing strength to resist soil compression/displacement.  As your facility includes both types of traffic, we conclude project pavement section must provide sufficient section capacity for moving traffic while minimizing the loads transferred by static vehicles parked on site.  You may improve the service life of pavement through the placement of geogrid reinforcement within the aggregate base section.  This is especially important during the spring thaw and other periods when softening of the subgrade occurs. 

For your project, we recommend you install one layer of grid reinforcement at mid‐depth within the aggregate base material of heavy duty pavement.  Geogrid material used to reinforcement the pavement section should conform to material and strength criteria as outlined within Table 4‐8. 

Table 4‐8: Geogrid Reinforcement of Aggregate Base Section 

Parameter  Requirement Note 1 

Base Yarn  Polypropylene 

Aperture Size [inch by inch]  1.3 x 1.3 

Wide Width Tensile Strength [lbs/ft, ASTM D 6637]  800 @ 2%, 1600 @ 5%, 2000 @ ultimate 

1. All physical strength properties are minimum average roll values [MARV], unless noted otherwise. 

The Table 4‐8 geogrid should be placed within the aggregate base section with individual 12 ‐ foot minimum width individual panels of geogrid reinforcement oriented parallel to major traffic movement.  Side seams of geogrid reinforcement must be overlapped no less than 12 inches while butt seams of geogrid should be overlapped no less than 24 inches.  We present within Table 4‐9 our estimate of pavement structure necessary for the support of listed traffic. 

Table 4‐9: Recommended Pavement Section(s) * 

Parameter Light Duty Bituminous 

Pavement Note A Heavy Duty Bituminous 

Pavement Note B Concrete Pavement 

Note C 

Estimated Subgrade CBR A CBR of 6 on an average annual basis reduced 

to a value of 3 during the spring thaw. 

Place Geotextile Separation Fabric  Yes  Yes  Yes 

Place Geogrid Reinforcement  Not Required  Yes  Yes 

Aggregate Base [Note 1]  8  12  12 

Asphalt Concrete Base [Note 2]   2  4  NA 

Asphalt Concrete Wear [Note 2]   2  2  NA 

Page 19: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 13 of 15 

Parameter Light Duty Bituminous 

Pavement Note A Heavy Duty Bituminous 

Pavement Note B Concrete Pavement 

Note C 

Est. Subgrade Support k   NA  NA  70 

Est. Support k – Reinforced Agg Base  NA  NA  250 

Est. Maximum Stress from Axle  NA  NA  300 

Stress Ratio (per 600 psi flexural)  NA  NA  0.50 

Concrete Pavement [Note 3]  NA  NA  6 

Note A  Pavement construction for light duty passenger vehicles equal to or less than 10,000 lbs total gross weight. 

Note B  Pavement construction for heavy‐duty vehicles.  No distinction between drive lanes and parking areas. 

Note C  Concrete pavement construction for heavy‐duty vehicles.  No distinction between drive lanes and parking areas. 

Note 1  Aggregate base shall conform to North Dakota Department of Transportation (ND DOT) Specification Section 816, Class 5; with materials herein amended such that the crushed content [one face] is not less than 20 percent. 

Note 2  Asphalt Concrete Base and Wear shall conform to ND DOT Specification Section 408, with asphalt concrete base / wear for either state amended per recommendations of this report. 

Note 3  Portland cement concrete pavement proportioned such that the 28‐day flexural strength is equal to or greater than 600 pounds per square inch (psi).  We recommend such pavement include 1 ½” ‐ #4 coarse aggregate. 

*  You should complete all pavements using NAPA or ACI approved methods to optimize the performance and service lift of construction.  We recommend that the construction specifications include necessary controls to eliminate practices that lead to poorly performing pavements.  Pavement recommendation for concrete has expected increase in design life over heavy duty bituminous pavement noted. 

All pavement recommendations assume the subgrade soils and aggregate section below paved surfaces, if any, drain to subsurface piping for eventual discharge into storm sewer, above grade to ditching, or similar acceptable systems.  Lack of drainage from both the surface of the pavement and subsurface will significantly reduce the capacity and longevity of the pavements. 

We recommend pavements receive annual maintenance, as a minimum, to correct damages to the pavement structure, clean and infill cracks, and repair or resurface areas exhibiting reduced performance.  The lack of maintenance can lead to moisture infiltration of the pavement resulting in the softening of the subgrade soils.  This, in turn, can degrade and result in poorly performing pavements of shortened life. 

5.0 CONSTRUCTION CONSIDERATIONS 

5.1 Excavation Stability / Person in Charge 

Excavation depth and sidewall inclination should not exceed those specified in local, state, or federal regulations.  You may need to widen and slope, or temporarily brace excavations to maintain or develop a safe work environment.  A licensed Professional Engineer retained by Contractor must design temporary shoring in accordance with applicable regulatory requirements. 

We base all report stability findings on premise with respect to loading, site conditions, ground water issues, and likely extent of work / surcharge conditions as listed.  Such findings do not imply or intend actual excavations advanced at project, or findings relative to 29 CFR 1926.6 as referenced above.  Contractor is solely responsible per “means and methods” for ascertaining stability of embankments / excavations, or any other work occurring on site. 

Page 20: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 14 of 15 

5.2 Engineered Fill & Winter Construction 

The Geotechnical Engineer of Record or their designated representative must observe and evaluate excavations to verify removal of uncontrolled fills, topsoil, and/or unsuitable material(s), and adequacy of bearing support of exposed soils.  Such observation should occur prior to construction of foundations or placement of engineered fill supporting excavations.  Lacking observation(s), you cannot hold NTI, its officers and professional engineers responsible for issues resulting from undocumented site conditions. 

We must evaluate engineered fill for moisture content, mechanical analysis and/or Atterberg limits prior to placement.  You must also temper engineered fill for correct moisture content and then place and compact individual lifts of engineered fill to criteria established within this report. 

You must never use frozen soil as engineered fill, nor should you support foundations on frozen soils.  Moisture freezing within the matrix of fine grained and/or cohesive soils produces ice lenses.  Such soils gain moisture from capillary action and, with continued growth, ice lens formation cause heave of the soil mass.  Foundations constructed on frozen soils settle after thaw with distress or failure likely. 

You must protect excavations and foundations from freezing conditions or accumulation of snow, and remove frozen soils, snow, and ice from within excavations, fill section or from below proposed foundations.  Replacement soil should consist of similar material as removed from excavation with moisture content, placement, and compaction conforming to report criteria. 

5.3 Operation of Project Sumps 

We previously noted the importance of removal of seepage and runoff from project excavations.  You must maintain temporary drainage of project excavations until such time that the Geotechnical Engineer of Record determines excess ground water pore pressure, seepage, and/or runoff no longer influences the strength or support of construction. 

We presented within appendices attachment typical recommendations for temporary project sumps.  Such provides general guideline of the minimum temporary drainage of project.  It is our premise the Contractor is solely responsible for establishing the magnitude, type, and operation of subsurface drainage for project. 

6.0 CLOSURE 

Our conclusions and recommendations, as represented within this report, imply NTI’s future observation and testing of earthwork under the direction of the Geotechnical Engineer of Record.  We arrived at our opinions based on presumptive data collected from the site.  Note that the collection of such data results from limited sampling of site conditions typical of geotechnical explorations performed for projects of similar scope.  For this and other reasons, we do not warrant conditions between or below the depth of our borings, or that the strata logged from our borings are necessarily typical of the site.  Thus, you agree herein to relieve, hold harmless, and indemnify NTI, its officers and engineering staff of responsibility pending any deviation(s) from our recommendations by plans, written specifications, or field applications, unless you establish and receive from NTI prior issued written concurrence with such deviations. 

Page 21: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 

Parshall, North Dakota 

NTI Project 18.FGO 05738 

 

 

Page 15 of 15 

We have prepared this report for Geoscience Engineering & Testing, Inc. in specific application to proposed “Family Dollar Store” project in Parshall, North Dakota.  Northern Technologies, LLC has endeavored to comply with generally accepted geotechnical engineering practice common to the local area.  Northern Technologies, LLC makes no other warranty, expressed or implied. 

Northern Technologies, LLC 

 Bret R. Anderson, P.E. Principal 

 Dan Gibson, P.E. Senior Engineer  BRA: dg  Attachments  Document1 

 

 

Bret Anderson, P.E. 

Date:  June 1, 2018   

Page 22: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing
Page 23: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

APPENDIX A 

   

Page 24: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

This page intentionally left blank.

Page 25: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

GEOTECHNICAL EVALUATION OF RECOVERED SOIL SAMPLES 

We visually examined recovered soil samples to estimate color, distribution of grain sizes, plasticity, consistency, moisture condition, and presence of lenses and seams.  We then classified the soils according to the Unified Soil Classification System (ASTM D2488).  We provide a chart describing this classification system and general notes explaining sampling procedures. 

We estimated the stratification lines between soil types based on the available data from our borings only.  Insitu, the transition between type(s) may be distinct or gradual in the horizontal or vertical directions.  Variations in the soil stratigraphy may occur between and around the borings, with the nature and extent of such change not readily evident until exposed by excavation.  You must properly assess these variations when utilizing information presented on the boring logs. 

FIELD EXPLORATION PROCEDURES 

Soil Sampling – Standard Penetration Boring: 

We performed soil sampling according to the procedures described by ASTM D‐1586.  Using this procedure, we drive a 2‐inch outside diameter “split barrel sampler” into the soil by a 140‐pound weight falling 30 inches.  After an initial set of six inches, the number of blows required to drive the sampler an additional 12 inches is recorded (known as the penetration resistance (i.e. “N‐value”) of the soil at the point of sampling.  This N‐value, as corrected for efficiency of equipment operation is an index of the relative density of cohesionless soils and an approximation of the consistency of cohesive soils [i.e. N60]. 

Soil Sampling – Power Auger Boring: 

The boring(s) was/were advanced with a 6‐inch nominal diameter continuous flight auger.  As a result, samples recovered from the boring are disturbed, and our determination of the depth, extend of various stratum and layers, and relative density or consistency of the soils is approximate. 

Soil Classification: 

Soil samples were visually and manually classified in general conformance with ASTM D‐2488 at removal from the sampler(s).  We then sealed within containers and returned representative fractions of soil samples to the laboratory for further examination and verification of the field classification.  We also submitted representative soil samples for laboratory tests.  We document on the boring logs and individual test reports sample information, identification of sampling methods, method of advancement of samples, and other pertinent information concerning the soil samples. 

   

Page 26: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

General Notes 

DRILLING & SAMPLING SYMBOLS  LABORATORY TEST SYMBOLS 

SYMBOL  DEFINITION  SYMBOL  DEFINITION 

C.S.  Continuous Sampling  W  Moisture content‐percent of dry weight P.D.  2‐3/8” Pipe Drill  D  Dry Density‐pounds per cubic foot C.O.  Cleanout Tube  LL, PL  Liquid and plastic limits determined in 

accordance with ASTM D 423, ASTM D 424 3 HSA  3 ¼” I.D. Hollow Stem Auger  Qu  Unconfined compressive strength‐pounds per 

square foot in accordance with ASTM D 2166‐66 4 FA  4” Diameter Flight Auger     6 FA  6” Diameter Flight Auger     2 ½ C  2 ½” Casing     4 C  4” Casing  Additional insertions in Qu Column D.M.  Drilling Mud  Pq  Penetrometer reading‐tons/square foot J.W.  Jet Water  S  Torvane reading‐tons/square foot H.A.  Hand Auger  G  Specific Gravity – ASTM D 854‐58 NXC  Size NX Casing  SL  Shrinkage limit – ASTM 427‐61 BXC  Size BX Casing  pH  Hydrogen ion content‐meter method AXC  Size AX casing  O  Organic content‐combustion method SS  2” O.D. Split Spoon Sample  M.A.*  Grain size analysis 2T  2” Thin Wall Tube Sample  C*  One dimensional consolidation 3T  3” Thin Wall Tube Sample  Qc*  Triaxial Compression     * See attached data Sheet and/or graph 

Water Level Symbol 

Water levels shown on the boring logs were determined at the time and under the conditions indicated.  In sand, you 

may consider the indicated levels reliable for most site conditions.  In clay soils, it is not possible to determine the 

ground water level within the normal scope of a geotechnical investigation, except where lenses or layers of more 

pervious water bearing soil are present; and then a long period may be necessary to reach equilibrium.  Therefore, the 

position of the water level symbol for cohesive or mixed soils may not indicate the true level of the ground water 

table.  We present, if any, available water level information on the boring logs. 

Descriptive Terminology 

DENSITY  CONSISTENCY TERM  “N60” VALUE  TERM  “N60” VALUE 

Very Loose  0‐4  Soft  0‐4 Loose  5‐8  Medium  5‐8 Medium Dense  9 – 15  Rather Stiff  9 – 15 Dense  16 – 30  Stiff  16 – 30 Very Dense  Over 30  Very Stiff  Over 30 

Standard “N60” Penetration: Blows per foot of a mechanical hammer using nominal 2‐inch OD split spoon as corrected to reflect similar sampling using a Standard Safety Hammer. 

Relative Proportions  Particle Sizes 

TERMS  RANGE  MATERIAL  DESTRIPTION  US SIEVE SIZE 

Trace  0‐5%  Boulders    Over 3” A little  5‐15%  Gravel ‐  Coarse  ¾” – 3” Some  15‐30%    Medium  #4 – ¾” With  30‐50%  Sand ‐  Coarse  #4  ‐ #10       Medium  #10 ‐ #40       Fine  #40 ‐ #200     Silt and Clay  Determined by plasticity characteristics. 

Page 27: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

Classification of Soils for Engineering Purposes 

ASTM Designation D‐2487 and D 2488 (Unified Soil Classification System) 

Major Divisions Group Symbol 

Typical Name  Classification Criteria 

Course Grained

 Soils 

More than

 50% retained

 on No. 200 sieve * 

Gravels 

50% or more of coarse fraction retained

 onNo.4

sieve.

Clean

 Gravels 

GW 

Well –graded gravels and gravel‐sand mixtures, little or no fines. 

Classification on basis of percentage

 of fines. 

Less than

 5% passing No. 200 Sieve: 

GW, G

P, SW, SP 

More than

 12% passing No. 200 Sieve: 

GM, G

C, SM, SC 

From 5% to 12% passing No. 200 Sieve: 

Borderline Classification 

requiring use of duel sym

bols. 

 

Cu = D60 / D10 greater than 4. Cz = (D30)2 / (D10 x D60)  between 1 & 3. 

GP 

Poorly graded gravels and gravel‐sand mixtures, little or no fines. 

Not meeting both criteria for GW materials. 

Gravels with 

Fines  GM 

Silty gravels, gravel‐sand‐silt mixtures. 

Atterberg limits below “A line”, or P.I. less than 4. 

Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols. 

GC Clayey gravels, gravel‐sand‐clay mixtures. 

Atterberg limits above “A line” with P.I. greater than 7. 

Sands 

More than

 50% of coarse fraction 

passesNo4sieve.

Clean

 Sands  SW 

Well‐graded sands and gravelly sands, little or no fines. 

Cu = D60 / D10 greater than 6. Cz = (D30)2 / (D10 x D60) between 1 & 3. 

SP 

Poorly‐graded sands and gravelly sands, little or no fines. 

Not meeting both criteria for SW materials. 

Sands with 

Fines 

SM Silty sands, sand‐silt mixtures. 

Atterberg limits below “A line”, or P.I. less than 4. 

Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols. 

SC Clayey sands, sand‐clay mixtures. 

Atterberg limits above “A line” with P.I. greater than 7. 

Fine Grained

 Soils 

More than

 50% passes  No. 200 sieve * 

Silts and Clays 

Liquid Lim

it of 50% or less  ML 

Inorganic silts, very fine sands, rock flour, silty or clayey fine sands. 

 

CL 

Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays. 

OL Organic silts and organic silty clays of low plasticity. 

Silts and Clays 

Liquid Lim

it greater than

 50%. 

MH 

Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts. 

CH Inorganic clays of high plasticity, fat clays. 

OH Organic clays of medium to high plasticity. 

Highly 

Organic 

Soils 

Pt Peat, muck and other highly organic soils. 

Plasticity Index Chart

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

Liquid Limit

Pla

stic

ity

Lim

it

Chart f or classif icat ion of f ine grained soils

and t he f in f ract ion of coarse grained soils.

At t erberg Limit s plot t ing in hat ched area are

borderline classif icat ions requir ing use of dual

symbols.

OH & M H Soils

CH Soils

CL Soils

OL & M L Soils

" A" Line

CL-M L Soils

Page 28: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

Excavation Oversize 

Excavation oversize facilitates distribution of “load derived” stress to supporting soils.  Unless otherwise superseded by report specific requirements, all construction should conform to the minimum oversize and horizontal offset requirements as presented within the diagram and associated chart. 

Definitions 

Oversize Ratio H:  The ratio of the horizontal distance divided by the engineered fill depth (i.e. # Horizontal / Depth D).  Refer to Chart for specific requirements. 

Horizontal Offset A:  The horizontal distance between the outside edge of footing or critical position, and the crest of the engineered fill section.  Refer to Chart for specific requirements. 

Note 1:  Excavation depth and sidewall inclination should not exceed those specified in local, state or federal regulations including those defined by Subpart P of Chapter 27, 29 CFR Part 1926 (of Federal Register).  You may need to widen and slope, or temporarily brace excavations to maintain or develop a safe work environment.  Contractor is solely responsible for assessing stability under “means and methods”. 

Condition  Unsuitable Soil Type  Horizontal Offset A  Oversize Ratio H 

Foundation Unit Load equal to or less than 3,000 psf. 

SP, SM soils, CL & CH soils with cohesion greater than 1,000 psf 

2 feet or width of footing, whichever is greater 

Equal to or greater than one (1) times Depth D 

Foundation Unit Load greater than 3,000 psf 

SP, SM soils, CL & CH soils with cohesion less than 1,000 psf 

5 feet or width of footing, whichever is greater 

Equal to or greater than one (1) times Depth D 

Foundation Unit Load equal to or less than 3,000 psf. 

Topsoil or Peat 2 feet or width of footing, whichever is greater 

Equal to or greater than two (2) times Depth D 

Foundation Unit Load greater than 3,000 psf 

Topsoil or Peat 5 feet or width of footing, whichever is greater 

Equal to or greater than two (3) times Depth D 

Figure 1: Excavation Oversize 

Page 29: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

APPENDIX B 

Page 30: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

This page intentionally left blank

Page 31: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

GROUND WATER ISSUES 

The following presents additional comment and soil specific issues related to measurement of ground water conditions at your project site. 

Note that our ground water measurements, or lack thereof, will vary depending on the time allowed for equilibrium to occur in the borings.  Extended observation time was not available during the scope of the field exploration program and, therefore, ground water measurements as noted on the borings logs may or may not accurately reflect actual conditions at your site. 

Seasonal and yearly fluctuations of the ground water level, if any, occur.  Perched ground water may be present within sand and silt lenses bedded within cohesive soil formations.  Groundwater typically exists at depth within cohesive and cohesionless soils. 

Documentation of the local ground water surface and any perched ground water conditions at the project site would require installation of temporary piezometers and extended monitoring due to the relatively low permeability exhibited by the site soils.  We have not performed such ground water evaluation due to the scope of services authorized for this project. 

We anticipate pumps installed within temporary sumps should control subsurface seepage from perched conditions.  However, we caution such seepage from such formations and any water entry from excavations below the ground water table may be heavy and will vary based on seasonal and annual precipitation, and ground related impacts in vicinity of project. 

   

Page 32: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

GEOTEXTILE FABRIC and GEOGRID REINFORCEMENT 

Unless otherwise amended by report, we recommend installation of a geotextile separation fabric between the native soils and the engineered fill section below project foundations, floors and/or between a clay subgrade and aggregate base of pavement construction.  It is our opinion this geotextile should consist of a non‐woven, needle punched or woven, fabric conforming to the following tabulated parameters. 

Geotextile Separation Fabric Properties 1 

Parameter  Requirement 

Base Yarn  Polypropylene 

Apparent Opening Size [AOS, US.  Sieve]  40 – 70 

Permitivity [gal/min/sq. ft CH, ASTM D 4491]  110 

Grab Tensile Strength [lbs, %, ASTM D 4632]  160 lbs by 160 lbs at 50% by 50% strain 

1. All physical strength properties are minimum average roll values [MARV], unless noted otherwise. 

We recommend that the geotextile panels be oriented parallel with proposed aggregate placement activities and occur in such a manner that the overall number of individual panels are kept to a minimum.  As placed, individual panels of geotextile should have a width equal to or greater than 12 feet.  We recommend that the Contractor overlap longitudinal and butt seam of adjacent panels a minimum of 18 inches with such joints oriented to follow initial construction traffic (shingles profile with traffic). 

Geogrid Reinforcement provided for support of permanent structural loads requires separate evaluation based on project specific conditions and applied loading.  Such work is beyond the scope of findings as presented by this report. 

Unless otherwise amended by report, Geogrid Reinforcement for placement below pavements should consist of material and provide properties as outlined within the following tabulation. 

Geogrid Reinforcement of Aggregate Base Section 1 

Parameter  Requirement 

Base Yarn  Polypropylene 

Aperture Size [inch by inch]  Minimum 1.5 by 1.5, Maximum 1.75 by 1.75 

Wide Width Tensile Strength [lbs/ft, ASTM D 6637]  Minimum 800 MD by 800 CD at 2% strain 

Minimum 1600 MD by 1,600 CD at 5% strain 

Minimum 2,000 MD by 2,000 CD at ultimate strain 

Tensile Modulus [lb/ft, ASTM D 6637  Minimum 41,000 MD by 41,000 CD at 2% strain 

Minimum 32,000 MD by 32,000 CD at 5% strain 

2. All physical strength properties are minimum average roll values [MARV], unless noted otherwise. 

The Table B geogrid should be placed above the above recommended geotextile separation fabric with individual 12‐foot minimum width individual panels of geogrid reinforcement oriented parallel to major traffic movement.  Side seams of geogrid reinforcement must be overlapped no less than 12 inches while butt seams of geogrid should be overlapped no less than 24 inches. 

   

Page 33: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

PLACEMENT and COMPACTION OF ENGINEERED FILL 

Unless otherwise superseded within the body of the Geotechnical Exploration Report, we recommend you following the following criteria for placement of engineered fill on project.  This includes but is not limited to earthen fill placement to improve site grades, fill placed below structural footings, fill placed interior of structure, and fill placed as backfill of foundations. 

Engineered fill placed for construction, if necessary should consist of natural, non‐organic, competent soils native to the project area.  Such soils may include, but are not limited to gravel, sand, or clays with Unified Soil Classification System (ASTM D2488) classifications of GW, SP, SM, CL or CH.  Use of silt or clayey silt as project fill will require additional review and approval of project Geotechnical Engineer of Record.  Such soils have USCS classifications of ML, MH, ML‐CL, and MH‐CH.  You must never use topsoil, marl, peat, other organic soils construction debris, and/or other unsuitable materials as engineered fill.  Such soils have USCS classifications of OL, OH, Pt. 

You should temper engineered fill, classified as clay for moisture content at the time of placement equal to and no more than four percent above the optimum content for as defined by the appropriate proctor test.  Likewise, you should temper engineered granular fill [gravel or sand] such that moisture content at the time of placement enables compaction to appropriate criteria. 

You should place all engineered fill in individual 8‐ inch maximum depth lifts.  Each lift of fill should be compacted by large vibratory equipment until the in‐place soil density is equal to or greater than the criteria established within the following tabulation. 

Type of Construction Compaction Criteria (% respective Proctor) 1 

Clay  Sand or Gravel 

General Embankment Fill  95 to 100  Min. 95 

Engineered Fill below Foundations  Min. 95  Min. 95 

Engineered Fill below Floor Slabs  95 to 98  Min. 95 

Engineered Fill placed against Foundation Walls  95 to 98  95 to 100 

Engineered Fill placed as Pavement Subgrade  Min. 95  Min. 95 

Engineered Fill placed as Pavement Aggregate Base  NA  Min. 98 

Engineered Fill placed within Utility Trench (to within 3 feet of pavement aggregate base or final grade 

Min. 95  Min. 95 

Engineered Fill placed as Utility Trench Fill (within 3 feet of pavement aggregate base or final grade 

Min. 98  Min. 98 

1  Unless otherwise required, compaction criteria per Standard Proctor Test (ASTM D698). 

Density tests should be taken during engineered fill placement to document earthwork has achieved necessary compaction of the material(s).  Recommendations for interior fill placement and backfill of foundation walls presented within other sections of this report. 

   

Page 34: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

SWELLING of CLAY SOILS 

Swell of clay soil occurs when moderate to highly desiccated, "over consolidated", moderate to highly plastic clay absorbs moisture concurrent within removal of overburden pressure.  The fat clay and silty lean clays near Parshall, North Dakota are known as to have "moderate" to "high risk" of swelling when conditions favorable for heave occur. 

Clay minerals are generally elongated bipolar charged particles aligned in plate like structures.  Absorption of water by the clay minerals is cause, in part, by the electrical attraction between the bipolar mineral and the electrical charged water molecule.  The electrical attraction at the molecular level is a strong bond that forces separation of the clay particle into a stratified system of bonded clay and water.  The resulting composite system has greatly increased volume as compared to the original clay minerals. 

Major clay minerals include Kaolinite, Holloysite, Illite, Calcium Montmorillonite, Sodium Montmorillonite, and Sodium Hectorite.  Mielenz and King (1955) have noted that absorption of water by clays leads to expansion or swelling with magnitude of swelling varied widely depending upon the type and quantity of clay mineral present, their exchangeable ions, electrolyte content of the aqueous phase, particle‐size distribution, void size and distribution, the internal structure, water content, superimposed load, and possibly other factors.  Research geology professor Mr. Ralph Grim [University of Illinois] collaborates free swelling of clay minerals varied widely [see below referenced table]. 

Free Swelling Data for Clay Minerals (%)  [After Mielenz and King, 1955] 

Clay Mineral Type  Sample Source  Percent Swell 

Calcium Montmorillonite:  Forest, Mississippi  145 

  Wilson Creek Dam, Colorado  95 

  Davis Dam, Arizona  45 ‐ 85 

  Osage, Wyoming (prepared from Na‐Mont.)  125 

Sodium Montmorillonite:  Osage, Wyoming  1,400 ‐ 1,600 

Sodium Hectorite:  Hector, California  1,600 ‐ 2,000 

Illite:  Fithian, Illinois  115 ‐ 120 

  Morris, Illinois  60 

  Tazewell, Virginia  15 

Kaolinite:  Mesa Alta, New Mexico  5 

  Macon, Georgia  60 

  Langley, North Carolina  20 

Halloysite:  Santa Rita, New Mexico  70 

As shown above, the effective range of swell in percent varies widely from as little as 5% with Kaolinite to 2,000% with Sodium Hectorite.  Of major concern, regional clay soils typically include varying concentration of montmorillonite mineral [commonly defined as smectite].  Note that defining the percent content and mineral type of clay soils calls for very costly and time intensive laboratory analysis.  We cannot make such determination through visual classification or simple laboratory testing of soil samples. 

You may achieve reduction of free swell through reduction or chemical modification of high swell mineral, elimination of water absorption, and/or replacement by soils having no risk of swell.  Each of these issues requires further review and/or modification to recommendations of this report.  Such may include but are not limited to the isolation of lightly loaded floor slabs from more heavily loaded foundation element, allowing unhindered movement between walls / floor and any piped penetrations and, most importantly, providing continuous automated drainage of site during construction and permanent subsurface drainage of foundations and at‐grade floors long term.  Lacking access to moisture, heave prone clay soils typically experience minimal volume change. 

Page 35: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

PROJECT SUMPS 

The collection, control and removal of seepage and runoff from within project excavations is critical in maintaining the bearing capacity of native soils, in‐place density of engineered fill and stability of embankments at project excavations. 

As constructed, it is our opinion all sumps should consist of a 2 foot by 2 foot or larger plan dimension excavation(s) located adjacent to and directly exterior to the excavation oversize limit for structural engineered fill [see appended Figure 1].  Sump excavations should extend a minimum of 2 feet below the base of the excavation for collection of seepage and runoff. 

You should line all sumps with a non‐woven, needle‐punched, geotextile having a grab tensile strength equal to or greater than 70 pounds per square inch (psi).  A standpipe of 12 inches in diameter or larger should be centered within the sump excavation.  This pipe should include sufficient openings for entry of seepage.  We recommend that the standpipe extend to the ground surface to facilitate pumping during project construction.  Infill within the sump area should consist of a 1½ to ¾ inch clear rock placed between the standpipe and walls of the sump excavation. 

Pump sump(s) until completion of the construction or until the Geotechnical Engineer of Record indicates such pumping is no longer necessary for stability of the project footings and related construction.  Properly abandon or remove sumps per the more stringent of methods required by the Geotechnical Engineer of Record, or per Federal, State and local governmental statutes. 

Discharge from sumps should be directed away from site and be disposed within storm water systems or other systems which comply with Federal, State and local governmental statute.  As constructed and operated, the General Contractor should be responsible for all permits, operation and abandonment of sumps or other temporary dewatering systems.

Page 36: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

Figure 2: Minimum Geotechnical Requirements for At‐Grade Construction 

Page 37: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

APPENDIX C 

   

Page 38: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

 

 

 

 

 

This page intentionally left blank.

Page 39: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

Family Dollar Store 18.FGO05878.000Parshall, North Dakota

Legend

Soil Boring

Temporary Benchmark

300 ft

N

➤➤

N© 2018 Google

© 2018 Google

© 2018 Google

Page 40: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

AU1

SS2

SS3

SS4

SS5

SS6

SS7

3-3-3(6)

3-4-4(8)

3-7-8(15)

7-10-11(21)

4-6-7(13)

3-4-5(9)

190.8

187.4

179.4

175.4

5.8

6.0

4.6

2.6

4.5

14

16

13

10

27

25

11

33

44

78

83

114

115

99

101

0.6

4.0

12.0

16.0

FILL, SANDY GRAVEL, dark brown

FILL, LEAN CLAY, dark brown, trace sand, trace gravel

FILL, LEAN CLAY, brown, trace sand, trace gravel

SILTY FAT CLAY, (CH/CL) light brown, medium stiff

Bottom of borehole at 16.0 feet.Borehole grouted.

DRILLING METHOD 3 1/4 in H.S.A

LOGGED BY Chris Nelson CHECKED BY Dan Gibson

DATE STARTED 5/24/18 COMPLETED 5/24/18

DRILLING CONTRACTOR NTI GROUND WATER LEVELS:

AT END OF DRILLING --- No Groundwater Encountered

AFTER DRILLING ---FROST DEPTH (ft) NACAVE IN (ft) NR

NOTES

HOLE SIZE 6 1/2 in.

AT TIME OF DRILLING ---

GROUND ELEVATION 191.4 feet

ATTERBERGLIMITS

PLA

ST

ICLI

MIT

DE

PT

H(f

t)

0

5

10

15

SA

MP

LE T

YP

EN

UM

BE

R

BLO

WC

OU

NT

S(N

VA

LUE

)

PO

CK

ET

PE

N.

(tsf

)

MO

IST

UR

EC

ON

TE

NT

(%

)

LIQ

UID

LIM

IT

RE

CO

VE

RY

%(R

QD

)

FIN

ES

DR

Y U

NIT

WT

.(p

cf)

Lat: 47° 57' 58.5"

PLA

ST

ICIT

YIN

DE

XMATERIAL DESCRIPTION

GR

AP

HIC

LOG

Long: -102° 7' 40.584"PAGE 1 OF 1

BORING NUMBER SB-01

PROJECT LOCATION Parshall, North Dakota

CLIENT Geoscience Engineering & Testing, Inc.

PROJECT NUMBER 18.FGO05738.000

PROJECT NAME Family Dollar Store

NT

I LO

G -

GE

NE

RA

L (U

SE

TH

IS O

NE

) -

NT

I-20

17-0

9-14

.GD

T -

5/3

1/18

16:

14 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

Page 41: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

AU1

SS2

SS3

SS4

SS5

SS6

SS7

2-3-3(6)

2-2-3(5)

5-4-6(10)

4-5-4(9)

4-5-6(11)

2-3-4(7)

193.5

192.1

186.1

182.6

179.1

178.1

16

13

20

20

27

28

56

44

78

78

100

100

115

123

105

103

98

96

0.6

2.0

8.0

11.5

15.0

16.0

FILL, SANDY GRAVEL, dark brown

FILL, SILTY LEAN CLAY, light brown, trace sand

FILL, LEAN CLAY, brown, trace sand, trace gravel

BURIED TOPSOIL, ORGANIC CLAY, (OL) black

SILTY FAT CLAY, (CH/CL) brown to light gray, ratherstiff, trace lenses of silt

SILTY LEAN CLAY, (CL) brown to light gray, medium

Bottom of borehole at 16.0 feet.Borehole grouted.

DRILLING METHOD 3 1/4 in H.S.A

LOGGED BY Chris Nelson CHECKED BY Dan Gibson

DATE STARTED 5/24/18 COMPLETED 5/24/18

DRILLING CONTRACTOR NTI GROUND WATER LEVELS:

AT END OF DRILLING --- No Groundwater Encountered

AFTER DRILLING ---FROST DEPTH (ft) NACAVE IN (ft) NR

NOTES

HOLE SIZE 6 1/2 in.

AT TIME OF DRILLING ---

GROUND ELEVATION 194.1 feet

ATTERBERGLIMITS

PLA

ST

ICLI

MIT

DE

PT

H(f

t)

0

5

10

15

SA

MP

LE T

YP

EN

UM

BE

R

BLO

WC

OU

NT

S(N

VA

LUE

)

PO

CK

ET

PE

N.

(tsf

)

MO

IST

UR

EC

ON

TE

NT

(%

)

LIQ

UID

LIM

IT

RE

CO

VE

RY

%(R

QD

)

FIN

ES

DR

Y U

NIT

WT

.(p

cf)

Lat: 47° 57' 59.652"

PLA

ST

ICIT

YIN

DE

XMATERIAL DESCRIPTION

GR

AP

HIC

LOG

Long: -102° 7' 40.548"PAGE 1 OF 1

BORING NUMBER SB-02

PROJECT LOCATION Parshall, North Dakota

CLIENT Geoscience Engineering & Testing, Inc.

PROJECT NUMBER 18.FGO05738.000

PROJECT NAME Family Dollar Store

NT

I LO

G -

GE

NE

RA

L (U

SE

TH

IS O

NE

) -

NT

I-20

17-0

9-14

.GD

T -

5/3

1/18

16:

14 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

Page 42: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

AU1

SS2

SS3

SS4

SS5

SS6

SS7

3-3-3(6)

3-3-4(7)

3-3-7(10)

3-5-6(11)

3-3-4(7)

3-3-3(6)

192.4

187.3

186.5

181.5

179.0

177.0

6.0

4.0

3.5

1.0

2.1

9

19

24

22

27

29

44

67

78

100

100

100

122

105

100

103

102

95

0.6

5.8

6.5

11.5

14.0

16.0

FILL, SANDY GRAVEL, dark brown

FILL, LEAN CLAY, brown, trace sand, trace gravel

BURIED TOPSOIL, ORGANIC CLAY, (OL) black, tracesandSILTY LEAN CLAY, (CL) light brown to light gray, ratherstiff

SILTY LEAN CLAY, (CL) light black to light gray,medium, with lenses of sand

LEAN CLAY, (CL/CH) brown to reddish brown, medium,with lenses of silt, iron oxide staining

Bottom of borehole at 16.0 feet.Borehole grouted.

DRILLING METHOD 3 1/4 in H.S.A

LOGGED BY Chris Nelson CHECKED BY Dan Gibson

DATE STARTED 5/24/18 COMPLETED 5/24/18

DRILLING CONTRACTOR NTI GROUND WATER LEVELS:

AT END OF DRILLING --- No Groundwater Encountered

AFTER DRILLING ---FROST DEPTH (ft) NACAVE IN (ft) NR

NOTES

HOLE SIZE 6 1/2 in.

AT TIME OF DRILLING ---

GROUND ELEVATION 193 feet

ATTERBERGLIMITS

PLA

ST

ICLI

MIT

DE

PT

H(f

t)

0

5

10

15

SA

MP

LE T

YP

EN

UM

BE

R

BLO

WC

OU

NT

S(N

VA

LUE

)

PO

CK

ET

PE

N.

(tsf

)

MO

IST

UR

EC

ON

TE

NT

(%

)

LIQ

UID

LIM

IT

RE

CO

VE

RY

%(R

QD

)

FIN

ES

DR

Y U

NIT

WT

.(p

cf)

Lat: 47° 57' 59.508"

PLA

ST

ICIT

YIN

DE

XMATERIAL DESCRIPTION

GR

AP

HIC

LOG

Long: -102° 7' 41.916"PAGE 1 OF 1

BORING NUMBER SB-03

PROJECT LOCATION Parshall, North Dakota

CLIENT Geoscience Engineering & Testing, Inc.

PROJECT NUMBER 18.FGO05738.000

PROJECT NAME Family Dollar Store

NT

I LO

G -

GE

NE

RA

L (U

SE

TH

IS O

NE

) -

NT

I-20

17-0

9-14

.GD

T -

5/3

1/18

16:

14 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

Page 43: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

AU1

SS2

SS3

SS4

SS5

SS6

SS7

2-2-3(5)

3-8-8(16)

3-4-7(11)

3-4-6(10)

4-5-9(14)

4-5-6(11)

191.3

183.0

176.0

5.0

4.0

4.0

2.0

5.0

4.5

15

17

16

24

26

28

33

61

83

83

100

100

110

115

121

103

98

98

0.8

9.0

16.0

FILL, SANDY GRAVEL, dark brown

FILL, LEAN CLAY, (CL) brown, trace sand, trace gravel

SILTY LEAN CLAY, (CL) brown, rather stiff

Bottom of borehole at 16.0 feet.Borehole grouted.

DRILLING METHOD 3 1/4 in H.S.A

LOGGED BY Chris Nelson CHECKED BY Dan Gibson

DATE STARTED 5/24/18 COMPLETED 5/24/18

DRILLING CONTRACTOR NTI GROUND WATER LEVELS:

AT END OF DRILLING --- No Groundwater Encountered

AFTER DRILLING ---FROST DEPTH (ft) NACAVE IN (ft) NR

NOTES

HOLE SIZE 6 1/2 in.

AT TIME OF DRILLING ---

GROUND ELEVATION 192 feet

ATTERBERGLIMITS

PLA

ST

ICLI

MIT

DE

PT

H(f

t)

0

5

10

15

SA

MP

LE T

YP

EN

UM

BE

R

BLO

WC

OU

NT

S(N

VA

LUE

)

PO

CK

ET

PE

N.

(tsf

)

MO

IST

UR

EC

ON

TE

NT

(%

)

LIQ

UID

LIM

IT

RE

CO

VE

RY

%(R

QD

)

FIN

ES

DR

Y U

NIT

WT

.(p

cf)

Lat: 47° 57' 58.464"

PLA

ST

ICIT

YIN

DE

XMATERIAL DESCRIPTION

GR

AP

HIC

LOG

Long: -102° 7' 41.952"PAGE 1 OF 1

BORING NUMBER SB-04

PROJECT LOCATION Parshall, North Dakota

CLIENT Geoscience Engineering & Testing, Inc.

PROJECT NUMBER 18.FGO05738.000

PROJECT NAME Family Dollar Store

NT

I LO

G -

GE

NE

RA

L (U

SE

TH

IS O

NE

) -

NT

I-20

17-0

9-14

.GD

T -

5/3

1/18

16:

35 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

Page 44: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

AU1

SS2

SS3

3-2-2(4)

2-3-3(6)

194.7

189.9

189.4

14

18

39

78

115

0.7

5.5

6.0

FILL, SANDY GRAVEL, dark brown

FILL, LEAN CLAY, brown, trace sand, trace gravel

BURIED TOPSOIL, ORGANIC CLAY, (OL) black

Bottom of borehole at 6.0 feet.Borehole grouted.

DRILLING METHOD 3 1/4 in H.S.A

LOGGED BY Chris Nelson CHECKED BY Dan Gibson

DATE STARTED 5/24/18 COMPLETED 5/24/18

DRILLING CONTRACTOR NTI GROUND WATER LEVELS:

AT END OF DRILLING --- No Groundwater Encountered

AFTER DRILLING ---FROST DEPTH (ft) NACAVE IN (ft) NR

NOTES

HOLE SIZE 6 1/2 in.

AT TIME OF DRILLING ---

GROUND ELEVATION 195.4 feet

ATTERBERGLIMITS

PLA

ST

ICLI

MIT

DE

PT

H(f

t)

0

5

SA

MP

LE T

YP

EN

UM

BE

R

BLO

WC

OU

NT

S(N

VA

LUE

)

PO

CK

ET

PE

N.

(tsf

)

MO

IST

UR

EC

ON

TE

NT

(%

)

LIQ

UID

LIM

IT

RE

CO

VE

RY

%(R

QD

)

FIN

ES

DR

Y U

NIT

WT

.(p

cf)

Lat: 47° 58' 0.228"

PLA

ST

ICIT

YIN

DE

XMATERIAL DESCRIPTION

GR

AP

HIC

LOG

Long: -102° 7' 41.088"PAGE 1 OF 1

BORING NUMBER SB-05

PROJECT LOCATION Parshall, North Dakota

CLIENT Geoscience Engineering & Testing, Inc.

PROJECT NUMBER 18.FGO05738.000

PROJECT NAME Family Dollar Store

NT

I LO

G -

GE

NE

RA

L (U

SE

TH

IS O

NE

) -

NT

I-20

17-0

9-14

.GD

T -

5/3

1/18

16:

14 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

Page 45: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

AU1

SS2

SS3

3-3-3(6)

3-5-10(15)

190.2

188.7

185.2

184.7

6.0

4.5

3.3

11

15

33

83 114

0.5

2.0

5.5

6.0

FILL, SANDY GRAVEL, dark brown

FILL, LEAN CLAY, brown to gray, trace sand, tracegravel

FILL, LEAN CLAY, dark brown, trace sand, trace gravel

LEAN CLAY, (CL) light brown, rather stiff, trace sand,trace gravel

Bottom of borehole at 6.0 feet.Borehole grouted.

DRILLING METHOD 3 1/4 in H.S.A

LOGGED BY Chris Nelson CHECKED BY Dan Gibson

DATE STARTED 5/24/18 COMPLETED 5/24/18

DRILLING CONTRACTOR NTI GROUND WATER LEVELS:

AT END OF DRILLING --- No Groundwater Encountered

AFTER DRILLING ---FROST DEPTH (ft) NACAVE IN (ft) NR

NOTES

HOLE SIZE 6 1/2 in.

AT TIME OF DRILLING ---

GROUND ELEVATION 190.7 feet

ATTERBERGLIMITS

PLA

ST

ICLI

MIT

DE

PT

H(f

t)

0

5

SA

MP

LE T

YP

EN

UM

BE

R

BLO

WC

OU

NT

S(N

VA

LUE

)

PO

CK

ET

PE

N.

(tsf

)

MO

IST

UR

EC

ON

TE

NT

(%

)

LIQ

UID

LIM

IT

RE

CO

VE

RY

%(R

QD

)

FIN

ES

DR

Y U

NIT

WT

.(p

cf)

Lat: 47° 57' 57.816"

PLA

ST

ICIT

YIN

DE

XMATERIAL DESCRIPTION

GR

AP

HIC

LOG

Long: -102° 7' 40.908"PAGE 1 OF 1

BORING NUMBER SB-06

PROJECT LOCATION Parshall, North Dakota

CLIENT Geoscience Engineering & Testing, Inc.

PROJECT NUMBER 18.FGO05738.000

PROJECT NAME Family Dollar Store

NT

I LO

G -

GE

NE

RA

L (U

SE

TH

IS O

NE

) -

NT

I-20

17-0

9-14

.GD

T -

5/3

1/18

16:

14 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

Page 46: GEOTECHNICAL EXPLORATION and ENGINEERING REVIEW · You may proportion linear strip footings and interior column footings (if required) using the maximum net allowable soil bearing

174

176

178

180

182

184

186

188

190

192

194

196

0 50 100 150 200 250 300174

176

178

180

182

184

186

188

190

192

194

196

0 50 100 150 200 250 300

114

115

99

101

5.8

6+

4.6

2.6

4.5

14

16

13

10

27

25

6

8

15

21

13

9

115

123

105

103

98

96

16

13

20

20

27

28

6

5

10

9

11

7

122

105

100

103

102

95

6+

4.0

3.5

1.0

2.1

9

19

24

22

27

29

6

7

10

11

7

6

110

115

121

103

98

98

5.0

4.0

4.0

2.0

5.0

4.5

15

17

16

24

26

28

5

16

11

10

14

11

115 14

18

4

6

114

6+

4.5

3.3

11

15

6

15

Ele

vatio

n (f

t)

Distance Along Baseline (ft)

Family Dollar Store

Parshall, North DakotaGeoscience Engineering & Testing, Inc.

18.FGO05738.000

Fill (made ground)

USCS Low PlasticityOrganic silt or clay

USCS Low PlasticityClay

USCS Low to HighPlasticity Clay

Water Level Readingafter drilling.

Pocket Pen. (tsf)

Soil Boring Number

Ground Elevation (ft)

Water Level Readingat time of drilling.

FILL

CH/CL

N Value (bpf)

Dry Unit Weight (pcf)

SB-01Soil Boring Lithology

MoistureContent (%)

SUBSURFACE DIAGRAM Northern Technologies, LLC3522 4th Avenue SouthFargo, ND 58103P: (701) 232-1822

ST

RA

T &

GW

- B

SIZ

E W

/LA

B T

ES

TS

& M

AP

RT

- G

INT

ST

D U

S L

AB

MA

Y 2

012.

GD

T -

5/3

1/18

16:

16 -

H:\F

AR

GO

\PR

OJE

CT

S\G

EO

\GE

OR

EP

201

8\F

AM

ILY

DO

LLA

R S

TO

RE

, PA

RS

HA

LL\F

AM

ILY

DO

LLA

R S

TO

RE

.GP

J

SB-01191.4

SB-02194.1

SB-03193

SB-04192

SB-05195.4

SB-06190.7

TBM

FILL

FILL

FILL

CH/CL

FILL

FILL

FILL

OL

CL

CL/CH

FILL

FILL

OL

CL

CL

CL/CH

FILL

CL

CL

FILL

FILL

OL

FILL

FILL

FILL

CL

SB-01

SB-02SB-03

SB-04

SB-05

SB-06