Top Banner

of 47

GEOSTAT2013_Geostatistics_1

Jan 08, 2016

Download

Documents

JorgeTrabajo

geostatistics complete analysis mathematics geology statistics
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • GEOSTAT 2013 - A. Brenning Geostatistics 1 1 / 47

    GEOSTAT 2013:Geostatistics (1)

    Alexander Brenning

    University of Waterloo, Canada

  • Todays class

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 2 / 47

    Introduction

    Intrinsic Random Functions

    Semivariogram Modeling

  • Introduction

    . IntroductionOverview

    History

    Current Research

    Case Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 3 / 47

  • Overview

    Introduction

    . OverviewHistory

    Current Research

    Case Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 4 / 47

    Geostatistics deals with measurements of one or severalnumeric variables at point locations.

    Analysis of the spatial dependence structure Kriging interpolation Kriging & regression

    Interpolation with an underlying trend Regression in the presence of spatial autocorrelation

    Geostatistical simulation

  • History

    Introduction

    Overview

    . HistoryCurrent Research

    Case Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 5 / 47

    Since 1911: Early spatial analyses of agricultural data(Mercer & Hall, 1911; Youden & Mehlich, 1937) and forestry(Langsaetter, 1926; Matern, 1960; Jowett, 1955)

    Kolmogorov, 1941: Optimal spatial interpolation

    Concepts equivalent to variogram and kriging Motivated by meteorological applications Could not be applied: lack of computer power

    1950s: Daniel G. Krige, South African mining engineer,develops a technique that is now called kriging

    Predict block ore grades based on spatially autocorrelatedpoint samples

    1960s: Georges Matheron (Ecole des Mines,Fontainebleau) formulates geostatistical theory

    See Webster & Oliver, 2007

  • Current Research

    Introduction

    Overview

    History

    . Current ResearchCase Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 6 / 47

    Current research topics include:

    Space-time geostatistics (Christakos, 2000) Machine-learning techniques in geostastistics (Kanevski et

    al., 2008) Geostatistics for massive, multi-scale data

    e.g. combining multiple sources of remote sensing data ordownscaling remote sensing data

    Multipoint geostatistics

  • Case Study: Soil Contamination

    Introduction

    Overview

    History

    Current Research

    . Case StudyMotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 7 / 47

    Top soil heavy metalconcentrations (in ppm),and soil and landscapevariables

    At 155 locations on afloodplain of the riverMeuse / Maas,Netherlands

    Bulk samples from an areaof approx. 15m x 15m

    Sample dataset of thegstat package)

    Kriging prediction of cadmium

    Meuse river (photo: pbase.com)

  • Motivation

    Introduction

    Overview

    History

    Current Research

    Case Study

    . MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 8 / 47

    Observations at locations near to each other are, on average,more similar than observations at locations remote from eachother.

    This can be measured using some similarity or dissimilaritymeasure:

    Correlation correlogram(in time series analysis: autocorrelation function)

    Semivariance semivariogram (in geostats)

  • Semivariogram Cloud

    Introduction

    Overview

    History

    Current Research

    Case Study

    Motivation

    .SemivariogramCloud

    EmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 9 / 47

    Measurements ziat locations xi:

    Distance Semivariance|xj xi| (zj zi)2/2

    1 (3 7)2/2 = 83 (16 7)2/2 = 40.5. . . . . .

    (N locations N(N 1) pairs)

    Semivariogram cloud:Plot semivariance againstdistance.

  • Empirical Semivariogram

    Introduction

    Overview

    History

    Current Research

    Case Study

    MotivationSemivariogramCloud

    .EmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 10 / 47

    1. Group all pairs of sampleswith distance htogether in a class Nh.

    2. Average the semivariancewithin each class Nh:

    (h) =1

    2 |Nh|

    (i,j)Nh

    (zizj)2

    Semivariogram cloud:

    Empirical semivariogram:

  • Case Study: Empirical Semivariogram

    Introduction

    Overview

    History

    Current Research

    Case Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    .Case Study:Empirical Svgm.

    Directional Svgm.

    Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 11 / 47

    Semivariogram of log(zinc concentration)

  • Directional Semivariograms

    Introduction

    Overview

    History

    Current Research

    Case Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    . Directional Svgm.Wrap-up

    Intrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 12 / 47

    Use pairs of samples withapproxly same orientationto estimate an empiricalsemivariogram

    Explore possibledependence on thedirection (anisotropy)

    E.g. air pollution moresimilar in wind directionthan perpendicular towind direction

  • Wrap-up of motivation

    Introduction

    Overview

    History

    Current Research

    Case Study

    MotivationSemivariogramCloudEmpiricalSemivariogram

    Case Study:Empirical Svgm.

    Directional Svgm.

    . Wrap-upIntrinsic RandomFunctions

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 13 / 47

    Results of variogram analysis are of practical importance:

    Nugget measurement error, apply smoothing insteadof interpolation?

    Range search radius of kriging interpolation Range optimize spatial sampling design

    This was just a rough, empirical introduction motivating thesemivariogram.

    Now we will use a more formal approach to link thisempirical motivation with geostatistical models.

  • Intrinsic Random Functions

    Introduction

    .Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 14 / 47

  • Regionalized variable

    Introduction

    Intrinsic RandomFunctions

    .Regionalizedvariable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 15 / 47

    A value z(x) R at a location x D is considered to be arealization of a random variable Z(x).

    D is the domain, e.g. the (infinite) set of all point locationsin the study area. Here: D R2.

    The set (z(x))xD = {z(x) : x D} of values is called aregionalized variable.

    It is a realization of the random function or random field

    Z = (Z(x))xD ,

    the infinite family of all random variables at points x D. However, we only observe a finite set of n regionalized

    values

    z1 = z(x1), . . . , zn = z(xn)

    from one particular realization (z(x))xD of Z.

  • Probability Distributions

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    .ProbabilityDistrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 16 / 47

    A random variable Z(x) is characterized by its probabilitydistribution function Fx:

    P (Z(x) z) = Fx(z) Fx(z) is the probability that an outcome of Z(x) is less or

    equal a given value z. In general, these distribution functions can potentially be

    incredibly complex, and even more so the joint distributionfunction of several random variables Z(x1), . . . , Z(xk).

    We have to make some assumptions to be able to modelthese distributions using semivariograms etc.

  • Stationarity

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    . StationarityCovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 17 / 47

    In general, random variables Z(x1), Z(x2) at differentlocations may follow different probability distributions. (almost) impossible to handle!

    Different types of stationarity make life easier. Strict stationarity means that any multiple-point

    distribution function depends only on the location of pointsrelative to each other.

    The joint distribution is the same throughout the entiredomain.

    Intrinsic stationarity and second-order stationarity areweaker forms of stationarity:

    only based on mean and covariance/variogram only based on pairs of points (two-point geostats)

  • Covariance

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    . CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 18 / 47

    Variation of the random field Z in space can be described byits mean or expected value m,

    m(x) = E(Z(x)), x D,and its covariance function C,

    C(x,x+h) = E [(Z(x) EZ(x)) (Z(x+h) EZ(x+h))] ,for all x,x+h D.Note that C(x,x) = Var(Z(x)) is the variance.

    The covariance function C is stationary if it only dependson the distance (vector) between points, i.e. if it can bewritten as

    C(x,x+h) = C(h).

  • Second-order Stationarity

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    Covariance

    .Second-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 19 / 47

    Second-order stationarity (or weak stationarity) describes atype of independence of location:

    The mean is constant:

    m(x) = m for all x D And the covariance function only depends on the distance

    vector h between an arbitrary pair of points x,x+h D:C(x,x+ h) = C(h) for all x,x+h D.

    C(h) is called the covariogram.

  • Correlogram

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    . CorrelogramSemivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 20 / 47

    The correlogram of a second-order stationary randomfunction is

    (h) =C(h)

    C(0),

    where the variance C(0) = Var(Z(x)) is constant in space. (h) may vary between 1 and +1.

  • Semivariogram

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    . SemivariogramIntrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 21 / 47

    Instead of the covariance function or the correlogram,geostatisticians use the semivariogram

    (x,x+h) =1

    2Var (Z(x) Z(x+h)) ,

    The variogram is simply 2.

    The semivariogram is sometimes referred to as variogram(e.g. in the gstat package) this may cause confusion!

    Note: (x,x) = 0.

  • Intrinsic Stationarity

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    .IntrinsicStationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 22 / 47

    Consider the drift of the process:

    E (Z(x+ h) Z(x)) . A semivariogram is called stationary if it only depends on

    the distance vector h between pairs of points:

    (x,x+ h) = (h) for all x,x+h D. A random field with zero drift and a stationary semivariogram

    is defined to be intrinsically stationary (or just intrinsic). Second-order stationarity implies intrinsic stationarity. Intrinsic stationarity does not imply second-order stationarity!

  • Semivarigram and Covariogram

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    .Semi- andCovgm.

    Isotropy

    Svgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 23 / 47

    The covariance function and semivariogram of a random fieldare related to each other:

    2(x,x+h) = C(x,x) + C(x+h,x+h) 2C(x,x+h). If the random field is second-order stationary, then

    (h) = C(0) C(h). If the semivariogram of an intrinsic random field is bounded by a finite

    value (), then it has a stationary covariance function

    C(h) = () (h) +M, (1)

    where M > 0 is a constant (i.e. independent of h). Note that random

    functions with different covariograms may have the same semivariogram.

  • Isotropy

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    . IsotropySvgm. Shape

    Interpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 24 / 47

    Note that h has so far been considered to be a vector. In general, the semivariance and covariance may depend on

    the direction of h.

    directional semivariograms If the semivariogram depends only on the distance h = |h|,

    but not on the orientation of h, then it is called isotropic.

  • Shape of the Semivariogram

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    . Svgm. ShapeInterpretation

    SemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 25 / 47

    The svgm of an isotropic intrinsic random function is a simple graph

    this is its typical shape and structure:

    Note that (0) = 0! A nugget effect 2nug is present if (h) > 0 for h very close to zero.

    The sill 2 = () is the semivar. level of the plateau (if it exists). The range r is the lag distance where the svgm reaches the sill.

  • Interpretation of the Semivariogram

    Introduction

    Intrinsic RandomFunctions

    Regionalized variable

    Probability Distrib.

    Stationarity

    CovarianceSecond-orderStationarity

    Correlogram

    Semivariogram

    Intrinsic Stationarity

    Semi- and Covgm.

    Isotropy

    Svgm. Shape

    . InterpretationSemivariogramModeling

    GEOSTAT 2013 - A. Brenning Geostatistics 1 26 / 47

    sill: If the svgm is unbounded, then the random field is NOTsecond-order stationary.

    range (or autocorrelation range): Observations areconsidered to be uncorrelated beyond this distance.What uncorrelated means, depends however on the scale.

    nugget effect 2nug: represents microscale variation andmeasurement error not a continuous surface!

    Overall, the characteristics of the svgm near h = 0 are ofcritical importance for characterizing the random function.

  • Semivariogram Modeling

    Introduction

    Intrinsic RandomFunctions

    .SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 27 / 47

  • Semivariogram Models

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    . Svgm. ModelsSpherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 28 / 47

    The empirical svgm is NOTa valid svgm.: A function hasto honour certainmathematical properties inorder to be a valid svgm.

    A semivariogram model isa function

    (h; )

    that gives a valid svgm forany parameter = (1, . . . , k).

    is estimated from theempirical svgm.

    Many parameters moreflexible, but harder to fit.

    Svgm models can becombined by adding them.

  • Spherical Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    . Spherical Svgm.Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 29 / 47

    The one size fits all svgm. (?) The spherical semivariogram without nugget effect is:

    sph(h;2, r) =

    {2(3h2r h

    3

    2r3

    )if h < r,

    2 otherwise.

    Sill 2, range r; stationary

  • Exponential Svgm.

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    .ExponentialSvgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 30 / 47

    exp(h;2, r) =

    {2exp(h/r) if h > 0,0 if h = 0.

    Similar to the spherical svgm. Converges to the sill as h.

    Use a practical range corresponding to 95% of the fullsill to describe the model.

    More convex shape than spherical svgm.

  • Nugget Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    . Nugget Svgm.Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 31 / 47

    Describes measurement error or microscale variation. Only used in combination with other svgm models.

    (h;2nug) =

    {0 if h = 0,2nug otherwise.

  • Semivariogram Cloud

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    . Svgm. CloudEmpirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 32 / 47

    For each pair of points (xi,xj), we can estimate thesemivariance individually as

    (xi,xj) = (zi zj)2/2.The scatter plot of (xi,xj) against hij = |xi xj | is calledthe semivariogram cloud.

  • Empirical Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    . Empirical Svgm.Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 33 / 47

    AKA sample svgm or experimental svgm

    Method of moments estimator: Let

    Nh ={(i, j) {1, . . . , n}2 : |xi xj | h

    }be the set of all pairs of points approximately distance hapart. Estimate the semivariance at distance h by

    (h) =1

    2|Nh|

    (i,j)Nh

    (zi zj)2

    The empirical semivariogram is NOT a valid semivariogrammodel!

  • Empirical Svgm. Meuse data

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    . Empirical Svgm.Robust Estimator

    Directional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 34 / 47

    Empirical semivariograms of log(zinc) in the Meuse data set:

  • Robust Estimator

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    . Robust EstimatorDirectional Svgm

    Anisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 35 / 47

    Robust: stable if data departs from the model assumptions,

    e.g. if random function is contaminated by anunknown process producing outliers

    A robust estimator proposed by Cressie & Hawkins (1980):

    (h) =1

    2B(h)med

    {|zi zj |1/2 : (xi,xj) Nh

    },

    where B(h) 0.457 corrects for bias. Large differences |zi zj | have a smaller impact on this

    estimator than when using (zi zj)2 The median (med) is more robust than mean

  • Directional Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    . Directional SvgmAnisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 36 / 47

    The empirical svgms estimators introduced so far areomnidirectional svgms.

    Now replace the set Nh of pairs approx. distance h apart bya restricted version Nh; containing only those pairs (xi,xj)where xi xj is oriented approximately in direction .

    Enough data? Use directional semivariograms only if enoughdata are available.

  • Directional Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    . Directional SvgmAnisotropy

    Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 37 / 47

    Directional semivariograms of log(zinc) in the Meuse data set:

  • Modeling Anisotropy

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    . AnisotropySvgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 38 / 47

    Geometric anisotropy:

    Can be dealt with by transforming the coordinate space.

    Local anisotropy:

    Anisotropy may follow nonlinear sediment structures,drainage networks,. . .

    Hard to explore, hard to model. . .

  • Fitting the Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    . Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 39 / 47

    Goal: Minimize the error e() of the svgm model with respect tothe empirical svgm as a function of the model parameters .

    Svgm fitting by eye

    Usually not too bad, sometimes not avoidable

    Ordinary-least-squares (OLS) estimation:

    e() =k

    j=1

    ((hj) (hj))2,

    where h1, . . . , hk are the bins of the empirical svgm.

    This estimator does not account for varying numbers ofpairs |Nhj | how can we do better?

  • Fitting the Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    . Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 40 / 47

    Iteratively reweighted least-squares (WLS) estimation(Cressie, 1985): In iteration i,

    ei() =k

    j=1

    w(i)j (

    (hj) (hj ; i))2,

    where w(0)j = |Nhj |, and w(i)j = |Nhj |((hj; i))2 for i > 0.

    More pairs more weight Smaller semivariance more weight Good fit near the origin.

    Default method in the R package gstat

  • Fitting the Semivariogram

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    . Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 41 / 47

    Restricted (or Residual) Maximum Likelihood (REML)estimation: Kitanidis (1985)

    Based on more sophisticated mathematical arguments Depends on the assumption of a Gaussian (i.e. normal)

    distribution More often used in conjunction with spatial linear models

    fitted by (restricted) maximum likelihood estimation May be slow.

  • Svgm. Fitting Meuse data

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    . Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 42 / 47

    Fitted spherical semivariogram of log(zinc) in the Meuse data set:

  • Class Wrap-up

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Svgm. Models

    Spherical Svgm.

    Exponential Svgm.

    Nugget Svgm.

    Svgm. Cloud

    Empirical Svgm.

    Robust Estimator

    Directional Svgm

    Anisotropy

    . Svgm. Fitting

    GEOSTAT 2013 - A. Brenning Geostatistics 1 43 / 47

    Overview of applications of geostatistics Introduction to the mathematical concepts of intrinsic and

    stationary random functions

    Prerequisite for kriging!

    Exploring, interpreting and modeling semivariograms

    Ready for variogram analysis and kriging!

    Next class will be more fun with less math!

  • Some Basic Probability Theory

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    .

    Some BasicProbabilityTheory

    Expected value

    Variance

    Covariance

    GEOSTAT 2013 - A. Brenning Geostatistics 1 44 / 47

  • Expected value

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Some BasicProbability Theory

    . Expected valueVariance

    Covariance

    GEOSTAT 2013 - A. Brenning Geostatistics 1 45 / 47

    The expected value (mean) of a suitable random variableX is the average of its outcomes weighted by its probabilitydistribution.

    If the probability density function f of X exists,

    E(X) =

    R

    tf(t)dt.

    Note that E(aX + b) = aE(X) + b,E(X + Y ) = E(X) + E(Y ), i.e. the expectation is linear.

  • Variance

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Some BasicProbability Theory

    Expected value

    . VarianceCovariance

    GEOSTAT 2013 - A. Brenning Geostatistics 1 46 / 47

    The variance of a suitable random variable X is the meansquared variation of X around its mean value:

    Var(X) = E(X EX) = E(X2) (EX)2. The variance is not linear: Var(aX + b) = a2Var(X),

    E(X + Y ) = E(X) + E(Y ), i.e. the expectation is linear. For uncorrelated X, Y , we have

    Var(X + Y ) = VarX +VarY . Standard deviation: (X) =

    VarX

  • Covariance

    Introduction

    Intrinsic RandomFunctions

    SemivariogramModeling

    Some BasicProbability Theory

    Expected value

    Variance

    . Covariance

    GEOSTAT 2013 - A. Brenning Geostatistics 1 47 / 47

    The covariance of a pair of suitable random variables X, Yis defined as:

    Cov(X,Y ) = E(X EX)(Y EY ). It measures how X and Y vary together.

    Positive: the higher, the higher Negative: the higher, the lower Zero: uncorrelated

    X,Y independent X,Y uncorrelated X,Y uncorrelated ; X,Y independent Correlation: (X,Y ) = Cov(X,Y )/

    VarX VarY

    IntroductionOverviewHistoryCurrent ResearchCase Study: Soil ContaminationMotivationSemivariogram CloudEmpirical SemivariogramCase Study: Empirical SemivariogramDirectional SemivariogramsWrap-up of motivation

    Intrinsic Random FunctionsRegionalized variableProbability DistributionsStationarityCovarianceSecond-order StationarityCorrelogramSemivariogramIntrinsic StationaritySemivarigram and CovariogramIsotropyShape of the SemivariogramInterpretation of the Semivariogram

    Semivariogram ModelingSemivariogram ModelsSpherical SemivariogramExponential Svgm.Nugget SemivariogramSemivariogram CloudEmpirical SemivariogramEmpirical Svgm. Meuse dataRobust EstimatorDirectional SemivariogramDirectional SemivariogramModeling AnisotropyFitting the SemivariogramFitting the SemivariogramFitting the SemivariogramSvgm. Fitting Meuse data

    Some Basic Probability TheoryExpected valueVarianceCovariance