Top Banner
Geometry-I
22

Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Jan 05, 2016

Download

Documents

William Taylor
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Geometry-I

Page 2: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

What’s done• The two-tier representation• Topology-the combinatorial

structure• Geometry –The actual

parameters representing the geometric face.

In this Talk (and henceforth!)

GEOMETRY

Page 3: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

The Problem Before Us…

The geometric representation of edges/co-edges/faces.

• Edges/Coedges-part of a curve

• Faces-part of a surface

Page 4: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

2 Questions

• How does one represent a curve/surface• How does one represent a part of eitherImplicit-surface as an equation f(x,y,z)=0 curve as two such equationsParametric-edge is (x(t),y(t),z(t)) surface is (x(t,u),y(t,u),z(t,u)) Thus surface /curve :parameters on which the

coordinates depend.

Page 5: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

An Example

Implicit Parametric

Curve

(circle)

x^2 +y^2-1=0

z=0

x=(2t)/(1+t^2)

y=(1-t^2)/(1+t^2)

z=0

Surface

(cylinder)

x^2 +y^2 –1=0 x=(2t)/(1+t^2)

y=(1-t^2)/(1+t^2)

z=u

Page 6: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

In general

Implicit Parametric

Curve F(x,y,z)=0

G(x,y,z)=0

X=x(t)

Y=y(t)

Z=z(t)

Surface F(x,y,z)=0 X=x(t,u)

Y=y(t,u)

Z=z(t,u)

Page 7: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Another Example-Torus

Torus-occurs as a blend

Parametric

x=(R+r sin u)cos t

y=(R+r sin u)sin t

z=r cos u

Implicit-tedious

x^2 +y^2=

(R +/- sqrt(r^2 –z^2))^2

Page 8: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

The Twisted Torus

This occurs in a slanted blend

• Parametric is

difficult• Implicit is (practically)

Impossible

Page 9: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Implicit-cost benefits

Easy• Testing if point on

curve/surface

• Deciding which side point of surface

Hard

• Generating points on curve/surface

Page 10: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Parametric-cost benefits

Hard

• Testing if point on curve/surface

• Deciding which side point of surface

Easy

• Generating points on curve/surface

Exactly the Opposite!

Page 11: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Our Decision-Parametric !

Reasons• Generating points on

surfaces/curves is very important

• Interpolation/Approximation theory-creation of surfaces/curves from points is easy

Page 12: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Our Decision-Parametric !

Reasons• Generating points on

surfaces/curves is very important

• Interpolation/Approximation theory-creation of surfaces/curves from points is easy

Page 13: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

So Then -Parametric

• Curves: One parameter

X=x(t) Y=y(t) Z=z(t)

Domain of definition: an interval

• Surfaces: Two parameters

X=x(u,v) Y=y(u,v) Z=z(u,v)

Domain of definition: an Area

Page 14: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Parametric Representation-Edges

Edge• End vertices v1 , v2

• Interval [a,b]

• C: the curve function from

parameter space [a,b] to model space R3

Edge – image of [a,b]

Page 15: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Example

e1

e2

e1: part of a line

X=1+t; Y=t, Z=1.2+t

t in [0,2.3]

e2: part of a circle

X=1.2 +0.8 cos t

Y=0.8+0.8 sin t

Z=1.2

T in [-2.3,2.3]

Page 16: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Parametric Representation-Face

Face• Domain D subset of R2

• S: surface function from

parameter space R2 to model space R3

Face – image of D

Page 17: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Example

f1

f2

f1: part of cylinder

X=1.2 +0.8 sin v

Y=u

Z=2.1 +0.8 cos v

f2: part of a plane

X=u

Y=v

Page 18: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Domains Domains• P-curves in parameter

space• pi:[ai,bi] to parameter space R2

• Domain Loops

(p1,-p2,p3,p4)

• Normal Data

Page 19: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Example Domain

f1

f2

Parameter Space

u

v

Part removed by the boss

Part of Cylinder

Page 20: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

P-Curves

Parameter Space

u

vC1

C2

C3

C4

C5

C6A total of 6 p-curves

•All but c5 easy (lines)

• c5 inverse image of a cylinder-cylinder intersection.

•Only Approximately Computed!

Page 21: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Co-edges-The image of this p-curve is only an approximation to the correct intersection

-This results in 3 separate paramets of the same intersection curve

-all of these are required!

Page 22: Geometry-I. What’s done The two-tier representation Topology-the combinatorial structure Geometry –The actual parameters representing the geometric face.

Recap

Entity Toplogical data Geometric Data

Face Loops,

^co-edges

^domain

Surface function S

Edge ^vertices

[a,b]

Curve function C

Co-edge [a,b] : P-curve domains

P-curve functions C